Skip to content
2000
Volume 13, Issue 3
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Objectives

Gynecological health is a global concern, and thus, the formulator researcher strives to improve the quality of life through innovative feminine pharmaceutical formulations. Vaginal delivery appears to be one of the vital strategies for local and systemic action of the therapeutically active agent. The rich vascular network, mucosal permeability, bypass of hepatic first-pass effect, and low enzymatic activity are the exclusive advantages of the vaginal route. But certain hindrances truncate the vaginal route, such as physiological factors including lower pH, self-cleansing mucus with constant secretion, and varying thickness of mucus layer due to menstrual cycle and microbiota.

Significance of Review

This present review envisages the advances in the polymeric nanocarriers in the delivery to the vaginal route. Polymeric (mucoadhesive and PEGylated, .) nanocarriers have been recently utilized for drug delivery purposes. The modernized analysis of the updated advancements in the polymeric nanocarrier-based vaginal drug delivery system with the budding development is compiled in the present review.

Results

The literature search reveals that the novel polymeric nanocarrier design strategies currently being proposed to perk up the delivery of customary drugs through the vaginal route prove effective.

Conclusion

Polymeric nanocarrier for vaginal delivery has provided better therapeutic efficacy due to higher drug residence, improved permeation, and sustained release of the active therapeutic agent. The polymeric nanocarriers can deliver various proteins, peptides, nuclear materials, hormones, ., vaginally that are difficult for administration.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385283801231212114538
2024-01-25
2025-11-14
Loading full text...

Full text loading...

References

  1. LalanM.S. PatelV.N. MisraA. Polymers in vaginal drug delivery: Recent advancements.Applications of Polymers in Drug Delivery.2nd ed MisraA. ShahiwalaA. United StatesElsevier202128130310.1016/B978‑0‑12‑819659‑5.00010‑0
    [Google Scholar]
  2. DeshkarS.S. MahoreJ.G. Herbal bioactive–based vaginal and rectal drug delivery systems.Herbal bioactive-based drug delivery systems. BakshiI.S. BalaR. MadaanR. SindhuR.K. United StatesAcademic Press202211116810.1016/B978‑0‑12‑824385‑5.00017‑0
    [Google Scholar]
  3. MajorI. McConvilleC. Vaginal drug delivery for the localised treatment of cervical cancer.Drug Deliv. Transl. Res.20177681782810.1007/s13346‑017‑0395‑228597123
    [Google Scholar]
  4. SrikrishnaS. CardozoL. The vagina as a route for drug delivery: A review.Int. Urogynecol. J. Pelvic Floor Dysfunct.201324453754310.1007/s00192‑012‑2009‑323229421
    [Google Scholar]
  5. HussainA. AhsanF. The vagina as a route for systemic drug delivery.J. Control. Release2005103230131310.1016/j.jconrel.2004.11.03415763615
    [Google Scholar]
  6. VermaniK. GargS. The scope and potential of vaginal drug delivery.Pharm. Sci. Technol. Today200031035936410.1016/S1461‑5347(00)00296‑011050460
    [Google Scholar]
  7. de Araújo PereiraR.R. BruschiM.L. Vaginal mucoadhesive drug delivery systems.Drug Dev. Ind. Pharm.201238664365210.3109/03639045.2011.62335521999572
    [Google Scholar]
  8. AlexanderN.J. BakerE. KapteinM. KarckU. MillerL. ZampaglioneE. Why consider vaginal drug administration?Fertil. Steril.200482111210.1016/j.fertnstert.2004.01.02515236978
    [Google Scholar]
  9. AcartürkF. Mucoadhesive vaginal drug delivery systems.Recent Pat. Drug Deliv. Formul.20093319320510.2174/18722110978910565819925443
    [Google Scholar]
  10. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  11. ChavanT. MuttilP. KundaN.K. Introduction to nanomedicine in drug delivery.Mucosal Delivery of Drugs and Biologics in Nanoparticles. MuttilP. KundaN. ChamSpringer202032610.1007/978‑3‑030‑35910‑2_1
    [Google Scholar]
  12. El-HammadiM. AriasJ. Nano-sized platforms for vaginal drug delivery.Curr. Pharm. Des.201521121633164410.2174/138161282066614102915042725354177
    [Google Scholar]
  13. RizviS.A.A. SalehA.M. Applications of nanoparticle systems in drug delivery technology.Saudi Pharm. J.2018261647010.1016/j.jsps.2017.10.01229379334
    [Google Scholar]
  14. ZebA. RanaI. ChoiH.I. LeeC.H. BaekS.W. LimC.W. KhanN. ArifS.T. SaharN. AlviA.M. ShahF.A. DinF. BaeO.N. ParkJ.S. KimJ.K. Potential and applications of nanocarriers for efficient delivery of biopharmaceuticals.Pharmaceutics20201212118410.3390/pharmaceutics1212118433291312
    [Google Scholar]
  15. ChaowanachanT. KrogstadE. BallC. WoodrowK.A. Drug synergy of tenofovir and nanoparticle-based antiretrovirals for HIV prophylaxis.PLoS One201384e6141610.1371/journal.pone.006141623630586
    [Google Scholar]
  16. MohideenM. QuijanoE. SongE. DengY. PanseG. ZhangW. ClarkM.R. SaltzmanW.M. Degradable bioadhesive nanoparticles for prolonged intravaginal delivery and retention of elvitegravir.Biomaterials201714414415410.1016/j.biomaterials.2017.08.02928829952
    [Google Scholar]
  17. YangM. YuT. WangY.Y. LaiS.K. ZengQ. MiaoB. TangB.C. SimonsB.W. EnsignL.M. LiuG. ChanK.W.Y. JuangC.Y. MertO. WoodJ. FuJ. McMahonM.T. WuT.C. HungC.F. HanesJ. Vaginal delivery of paclitaxel via nanoparticles with non-mucoadhesive surfaces suppresses cervical tumor growth.Adv. Healthc. Mater.2014371044105210.1002/adhm.20130051924339398
    [Google Scholar]
  18. PavelićŽ. Škalko-BasnetN. SchubertR. Liposomal gels for vaginal drug delivery.Int. J. Pharm.20012191-213914910.1016/S0378‑5173(01)00637‑811337174
    [Google Scholar]
  19. RohanL.C. SassiA.B. Vaginal drug delivery systems for HIV prevention.AAPS J.2009111788710.1208/s12248‑009‑9082‑719194802
    [Google Scholar]
  20. GuptaS. GabraniR. AliJ. DangS. Exploring novel approaches to vaginal drug delivery.Recent Pat. Drug Deliv. Formul.201152829410.2174/18722111179547141821413924
    [Google Scholar]
  21. das NevesJ. BahiaM.F. Gels as vaginal drug delivery systems.Int. J. Pharm.20063181-211410.1016/j.ijpharm.2006.03.01216621366
    [Google Scholar]
  22. KhanvilkarK. DonovanM.D. FlanaganD.R. Drug transfer through mucus.Adv. Drug Deliv. Rev.2001482-317319310.1016/S0169‑409X(01)00115‑611369081
    [Google Scholar]
  23. ShattockR.J. RosenbergZ. Microbicides: Topical Prevention against HIV.Cold Spring Harb. Perspect. Med.201222a00738510.1101/cshperspect.a00738522355798
    [Google Scholar]
  24. Van DammeL. CorneliA. AhmedK. AgotK. LombaardJ. KapigaS. MalahlehaM. OwinoF. ManongiR. OnyangoJ. TemuL. MonediM.C. Mak’OketchP. MakandaM. ReblinI. MakatuS.E. SaylorL. KiernanH. KirkendaleS. WongC. GrantR. KashubaA. NandaK. MandalaJ. FransenK. DeeseJ. CrucittiT. MastroT.D. TaylorD. FEM-PrEP Study Group Preexposure prophylaxis for HIV infection among African women.N. Engl. J. Med.2012367541142210.1056/NEJMoa120261422784040
    [Google Scholar]
  25. SolomonM.M. LamaJ.R. GliddenD.V. MulliganK. McMahanV. LiuA.Y. GuaniraJ.V. VelosoV.G. MayerK.H. ChariyalertsakS. SchechterM. BekkerL.G. KallásE.G. BurnsD.N. GrantR.M. iPrEx Study Team Changes in renal function associated with oral emtricitabine/tenofovir disoproxil fumarate use for HIV pre-exposure prophylaxis.AIDS201428685185910.1097/QAD.000000000000015624499951
    [Google Scholar]
  26. VanićŽ. Škalko-BasnetN. Nanopharmaceuticals for improved topical vaginal therapy: Can they deliver?Eur. J. Pharm. Sci.2013501294110.1016/j.ejps.2013.04.03523684936
    [Google Scholar]
  27. SoppimathK.S. AminabhaviT.M. KulkarniA.R. RudzinskiW.E. Biodegradable polymeric nanoparticles as drug delivery devices.J. Control. Release2001701-212010.1016/S0168‑3659(00)00339‑411166403
    [Google Scholar]
  28. das NevesJ. AraújoF. AndradeF. AmijiM. BahiaM.F. SarmentoB. Biodistribution and pharmacokinetics of dapivirine-loaded nanoparticles after vaginal delivery in mice.Pharm. Res.20143171834184510.1007/s11095‑013‑1287‑x24449442
    [Google Scholar]
  29. du ToitL.C. PillayV. ChoonaraY.E. Nano-microbicides: Challenges in drug delivery, patient ethics and intellectual property in the war against HIV/AIDS.Adv. Drug Deliv. Rev.2010624-553254610.1016/j.addr.2009.11.02219922751
    [Google Scholar]
  30. MallipeddiR. RohanL.C. Nanoparticle-based vaginal drug delivery systems for HIV prevention.Expert Opin. Drug Deliv.201071374810.1517/1742524090333805520017659
    [Google Scholar]
  31. MamoT. MosemanE.A. KolishettiN. Salvador-MoralesC. ShiJ. KuritzkesD.R. LangerR. AndrianU. FarokhzadO.C. Emerging nanotechnology approaches for HIV/AIDS treatment and prevention.Nanomedicine20105226928510.2217/nnm.10.120148638
    [Google Scholar]
  32. LakshmiY.S. KumarP. KishoreG. BhaskarC. KondapiA.K. Triple combination MPT vaginal microbicide using curcumin and efavirenz loaded lactoferrin nanoparticles.Sci. Rep.2016612547910.1038/srep2547927151598
    [Google Scholar]
  33. YangH. LiJ. PatelS.K. PalmerK.E. DevlinB. RohanL.C. Design of poly (lactic-co-glycolic acid)(PLGA) nanoparticles for vaginal co-delivery of griffithsin and dapivirine and their synergistic effect for HIV prophylaxis.Pharmaceutics201911418410.3390/pharmaceutics1104018430995761
    [Google Scholar]
  34. MeloC.M. CardosoJ.F. PerassoliF.B. de Oliveira NetoA.S. PintoL.M. de Freitas MarquesM.B. da Nova MusselW. MagalhãesJ.T. de Lima MouraS.A. de Freitas AraújoM.G. Da SilvaG.R. Amphotericin B-loaded Eudragit RL100 nanoparticles coated with hyaluronic acid for the treatment of vulvovaginal candidiasis.Carbohydr. Polym.202023011560810.1016/j.carbpol.2019.11560831887870
    [Google Scholar]
  35. RençberS. GündoğduE. Köksal KarayıldırımÇ. BaşpınarY. Preparation and characterization of mucoadhesive gels containing pentoxifylline loaded nanoparticles for vaginal delivery of genital ulcer.Iran. Polym. J.202130656958210.1007/s13726‑021‑00913‑0
    [Google Scholar]
  36. LookerK.J. MagaretA.S. MayM.T. TurnerK.M.E. VickermanP. GottliebS.L. NewmanL.M. Global and regional estimates of prevalent and incident herpes simplex virus type 1 infections in 2012.PLoS One20151010e014076510.1371/journal.pone.014076526510007
    [Google Scholar]
  37. CortiniR. WilkieN.M. Physical maps for HSV type 2 DNA with five restriction endonucleases.J. Gen. Virol.197839225928010.1099/0022‑1317‑39‑2‑259206654
    [Google Scholar]
  38. RoizmanB. The structure and isomerization of herpes simplex virus genomes.Cell197916348149410.1016/0092‑8674(79)90023‑0222462
    [Google Scholar]
  39. ContinM. GarciaC. DobreckyC. LucangioliS. D’AccorsoN. Advances in drug delivery, gene delivery and therapeutic agents based on dendritic materials.Future Med. Chem.201911141791181010.4155/fmc‑2018‑045231368345
    [Google Scholar]
  40. McGowanI. GomezK. BruderK. FeboI. ChenB.A. RichardsonB.A. HusnikM. LivantE. PriceC. JacobsonC. MTN-004 Protocol Team Phase 1 randomized trial of the vaginal safety and acceptability of SPL7013 gel (VivaGel) in sexually active young women (MTN-004).AIDS20112581057106410.1097/QAD.0b013e328346bd3e21505316
    [Google Scholar]
  41. AvitabileE. ForghieriC. Campadelli-FiumeG. Cross talk among the glycoproteins involved in herpes simplex virus entry and fusion: The interaction between gB and gH/gL does not necessarily require gD.J. Virol.20098320107521076010.1128/JVI.01287‑0919656900
    [Google Scholar]
  42. CooperR. HeldweinE. Herpesvirus gB: A finely tuned fusion machine.Viruses20157126552656910.3390/v712295726690469
    [Google Scholar]
  43. HeldweinE.E. gH/gL supercomplexes at early stages of herpesvirus entry.Curr. Opin. Virol.2016181810.1016/j.coviro.2016.01.01026849495
    [Google Scholar]
  44. RuppR. RosenthalS.L. StanberryL.R. VivaGel (SPL7013 Gel): A candidate dendrimer--microbicide for the prevention of HIV and HSV infection.Int. J. Nanomedicine20072456156610.2147/IJN.S2.4.56118203424
    [Google Scholar]
  45. Sepúlveda-CrespoD. LorenteR. LealM. GómezR. De la MataF.J. JiménezJ.L. Muñoz-FernándezM.Á. Synergistic activity profile of carbosilane dendrimer G2-STE16 in combination with other dendrimers and antiretrovirals as topical anti-HIV-1 microbicide.Nanomedicine201410360961810.1016/j.nano.2013.10.00224135563
    [Google Scholar]
  46. Sepúlveda-CrespoD. SerramíaM.J. TagerA.M. VrbanacV. GómezR. De La MataF.J. JiménezJ.L. Muñoz-FernándezM.Á. Prevention vaginally of HIV-1 transmission in humanized BLT mice and mode of antiviral action of polyanionic carbosilane dendrimer G2-S16.Nanomedicine20151161299130810.1016/j.nano.2015.04.01325959924
    [Google Scholar]
  47. Ceña-DiezR. García-BroncanoP. Javier de la MataF. GómezR. ResinoS. Muñoz-FernándezM.Á. G2-S16 dendrimer as a candidate for a microbicide to prevent HIV-1 infection in women.Nanoscale20179279732974210.1039/C7NR03034G28675217
    [Google Scholar]
  48. BorgesS. BarbosaJ. TeixeiraP. Gynecological health and probiotics. Probiotics, prebiotics, and synbiotics-bioactive foods in health promotion.LondonElsevier201674175210.1016/B978‑0‑12‑802189‑7.00056‑3
    [Google Scholar]
  49. RossiS. ViganiB. SandriG. BonferoniM.C. CaramellaC.M. FerrariF. Recent advances in the mucus-interacting approach for vaginal drug delivery: From mucoadhesive to mucus-penetrating nanoparticles.Expert Opin. Drug Deliv.201916877778110.1080/17425247.2019.164511731314994
    [Google Scholar]
  50. NetsomboonK. Bernkop-SchnürchA. Mucoadhesive vs. Mucopenetrating particulate drug delivery.Eur. J. Pharm. Biopharm.201698768910.1016/j.ejpb.2015.11.00326598207
    [Google Scholar]
  51. ChavesP.D.S. FrankL.A. FrankA.G. PohlmannA.R. GuterresS.S. BeckR.C.R. Mucoadhesive properties of Eudragit® RS100, Eudragit® S100, and Poly (ε-caprolactone) nanocapsules: Influence of the vehicle and the mucosal surface.AAPS PharmSciTech20181941637164610.1208/s12249‑018‑0968‑529500762
    [Google Scholar]
  52. RossiS. ViganiB. PuccioA. BonferoniM. SandriG. FerrariF. Chitosan ascorbate nanoparticles for the vaginal delivery of antibiotic drugs in atrophic vaginitis.Mar. Drugs2017151031910.3390/md1510031929048359
    [Google Scholar]
  53. FrankL.A. ChavesP.S. D’AmoreC.M. ContriR.V. FrankA.G. BeckR.C.R. PohlmannA.R. BuffonA. GuterresS.S. The use of chitosan as cationic coating or gel vehicle for polymeric nanocapsules: Increasing penetration and adhesion of imiquimod in vaginal tissue.Eur. J. Pharm. Biopharm.201711420221210.1016/j.ejpb.2017.01.02128161547
    [Google Scholar]
  54. de LimaJ.A. PainesT.C. MottaM.H. WeberW.B. dos SantosS.S. CruzL. da SilvaC.B. Novel Pemulen/Pullulan blended hydrogel containing clotrimazole-loaded cationic nanocapsules: Evaluation of mucoadhesion and vaginal permeation.Mater. Sci. Eng. C20177988689310.1016/j.msec.2017.05.03028629093
    [Google Scholar]
  55. Martínez-PérezB. Quintanar-GuerreroD. Tapia-TapiaM. Cisneros-TamayoR. Zambrano-ZaragozaM.L. Alcalá-AlcaláS. Mendoza-MuñozN. Piñón-SegundoE. Controlled-release biodegradable nanoparticles: From preparation to vaginal applications.Eur. J. Pharm. Sci.201811518519510.1016/j.ejps.2017.11.02929208486
    [Google Scholar]
  56. AmaralA.C. SaavedraP.H.V. Oliveira SouzaA.C. de MeloM.T. TedescoA.C. MoraisP.C. Soares FelipeM.S. BoccaA.L. Miconazole loaded chitosan-based nanoparticles for local treatment of vulvovaginal candidiasis fungal infections.Colloids Surf. B Biointerfaces201917440941510.1016/j.colsurfb.2018.11.04830481701
    [Google Scholar]
  57. OsmariB.F. GiulianiL.M. ReolonJ.B. RigoG.V. TascaT. CruzL. Gellan gum-based hydrogel containing nanocapsules for vaginal indole-3-carbinol delivery in trichomoniasis treatment.Eur. J. Pharm. Sci.202015110537910.1016/j.ejps.2020.10537932473199
    [Google Scholar]
  58. EnglertA.V. VerdiC.M. SantosR.C.V. CruzL. SariM.H.M. Diphenyl diselenide and clotrimazole co-loaded into Eudragit® RS 100 nanocapsules formulation has superior antioxidant potential and promising anti-candida activity.Braz. Arch. Biol. Technol.202063e2020008710.1590/1678‑4324‑2020200087
    [Google Scholar]
  59. AraújoD.E. de OliveiraA.A. CabralM.S. CostaA.F. SilvaB.C. do Carmo SilvaL. de MenezesL.B. de Almeida SoaresC.M. AmaralA.C. PereiraM. Investigation of thiosemicarbazide free or within chitosan nanoparticles in a murine model of vulvovaginal candidiasis.Braz. J. Microbiol.20205141465147310.1007/s42770‑020‑00326‑w32638273
    [Google Scholar]
  60. ChaterP.I. WilcoxM.D. PearsonJ.P. Efficacy and safety concerns over the use of mucus modulating agents for drug delivery using nanoscale systems.Adv. Drug Deliv. Rev.201812418419210.1016/j.addr.2017.12.00629247764
    [Google Scholar]
  61. LuoX. FengM. PanS. WenY. ZhangW. WuC. Charge shielding effects on gene delivery of polyethylenimine/DNA complexes: PEGylation and phospholipid coating.J. Mater. Sci. Mater. Med.20122371685169510.1007/s10856‑012‑4632‑422481628
    [Google Scholar]
  62. KimS. TraoreY.L. LeeJ.S. KimJ.H. HoE.A. LiuS. Self-assembled nanoparticles made from a new PEGylated poly(aspartic acid) graft copolymer for intravaginal delivery of poorly water-soluble drugs.J. Biomater. Sci. Polym. Ed.201728172082209910.1080/09205063.2017.137403228853638
    [Google Scholar]
  63. JiZ. XieZ. ZhangZ. GongT. SunX. Engineering intravaginal vaccines to overcome mucosal and epithelial barriers.Biomaterials201712881810.1016/j.biomaterials.2017.03.00728285195
    [Google Scholar]
  64. WangX. FuL. LinW. ZhangW. PeiQ. ZhengX. LiuS. ZhangT. XieZ. Vaginal delivery of mucus-penetrating organic nanoparticles for photothermal therapy against cervical intraepithelial neoplasia in mice.J. Mater. Chem. B Mater. Biol. Med.20197294528453710.1039/C9TB00984A
    [Google Scholar]
  65. SimsL.B. MillerH.A. HalwesM.E. Steinbach-RankinsJ.M. FrieboesH.B. Modeling of nanoparticle transport through the female reproductive tract for the treatment of infectious diseases.Eur. J. Pharm. Biopharm.2019138374710.1016/j.ejpb.2018.09.00330195726
    [Google Scholar]
  66. LvF. WangJ. ChenH. SuiL. FengL. LiuZ. LiuY. WeiG. LuW. Enhanced mucosal penetration and efficient inhibition efficacy against cervical cancer of PEGylated docetaxel nanocrystals by TAT modification.J. Control. Release202133657258210.1016/j.jconrel.2021.07.00834245785
    [Google Scholar]
  67. das NevesJ. SarmentoB. Antiretroviral drug-loaded nanoparticles-in-films: A new option for developing vaginal microbicides?Expert Opin. Drug Deliv.201714444945210.1080/17425247.2017.1270938
    [Google Scholar]
  68. LabordeN.D. LeslieJ. KrogstadE. MorarN. MuteroP. EtimaJ. WoodrowK. van der StratenA. Perceptions of the “Fabric” – An exploratory study of a novel multi-purpose technology among women in Sub Saharan Africa.PLoS One20181310e020482110.1371/journal.pone.020482130379839
    [Google Scholar]
  69. MesquitaL. GalanteJ. NunesR. SarmentoB. das NevesJ. Pharmaceutical vehicles for vaginal and rectal administration of anti-HIV microbicide nanosystems.Pharmaceutics201911314510.3390/pharmaceutics1103014530917532
    [Google Scholar]
  70. MachadoA. Cunha-ReisC. AraújoF. NunesR. SeabraV. FerreiraD. das NevesJ. SarmentoB. Development and in vivo safety assessment of tenofovir-loaded nanoparticles-in-film as a novel vaginal microbicide delivery system.Acta Biomater.20164433234010.1016/j.actbio.2016.08.01827544812
    [Google Scholar]
  71. Cunha-ReisC. MachadoA. BarreirosL. AraújoF. NunesR. SeabraV. FerreiraD. SegundoM.A. SarmentoB. das NevesJ. Nanoparticles-in-film for the combined vaginal delivery of anti-HIV microbicide drugs.J. Control. Release2016243435310.1016/j.jconrel.2016.09.02027664327
    [Google Scholar]
  72. CautelaM.P. MosheH. SosnikA. SarmentoB. das NevesJ. Composite films for vaginal delivery of tenofovir disoproxil fumarate and emtricitabine.Eur. J. Pharm. Biopharm.201913831010.1016/j.ejpb.2018.02.00129408341
    [Google Scholar]
  73. SofiH.S. Abdal-hayA. IvanovskiS. ZhangY.S. SheikhF.A. Electrospun nanofibers for the delivery of active drugs through nasal, oral and vaginal mucosa: Current status and future perspectives.Mater. Sci. Eng. C202011111075610.1016/j.msec.2020.11075632279775
    [Google Scholar]
  74. ZongS. WangX. YangY. WuW. LiH. MaY. LinW. SunT. HuangY. XieZ. YueY. LiuS. JingX. The use of cisplatin-loaded mucoadhesive nanofibers for local chemotherapy of cervical cancers in mice.Eur. J. Pharm. Biopharm.20159312713510.1016/j.ejpb.2015.03.02925843238
    [Google Scholar]
  75. AgrahariV. MengJ. EzoulinM.J.M. YoumI. DimD.C. MolteniA. HungW.T. ChristensonL.K. YouanB.B.C. Stimuli-sensitive thiolated hyaluronic acid based nanofibers: synthesis, preclinical safety and in vitro anti-HIV activity.Nanomedicine201611222935295810.2217/nnm‑2016‑010327785967
    [Google Scholar]
  76. AggarwalU. GoyalA.K. RathG. Development and characterization of the cisplatin loaded nanofibers for the treatment of cervical cancer.Mater. Sci. Eng. C20177512513210.1016/j.msec.2017.02.01328415413
    [Google Scholar]
  77. KrogstadE.A. RamanathanR. NhanC. KraftJ.C. BlakneyA.K. CaoS. HoR.J.Y. WoodrowK.A. Nanoparticle-releasing nanofiber composites for enhanced in vivo vaginal retention.Biomaterials201714411610.1016/j.biomaterials.2017.07.03428802690
    [Google Scholar]
  78. BrakoF. Raimi-AbrahamB.T. MahalingamS. CraigD.Q.M. EdirisingheM. The development of progesterone-loaded nanofibers using pressurized gyration: A novel approach to vaginal delivery for the prevention of pre-term birth.Int. J. Pharm.20185401-2313910.1016/j.ijpharm.2018.01.04329408268
    [Google Scholar]
  79. SouzaR.O. Henrique de LimaT. OréficeR.L. de Freitas AraújoM.G. de Lima MouraS.A. MagalhãesJ.T. da SilvaG.R. Amphotericin B-loaded poly (lactic-co-glycolic acid) nanofibers: an alternative therapy scheme for local treatment of vulvovaginal candidiasis.J. Pharm. Sci.2018107102674268510.1016/j.xphs.2018.06.01729940181
    [Google Scholar]
  80. TyoK.M. DuanJ. KolliparaP. dela CernaM.V.C. LeeD. PalmerK.E. Steinbach-RankinsJ.M. pH-responsive delivery of Griffithsin from electrospun fibers.Eur. J. Pharm. Biopharm.2019138647410.1016/j.ejpb.2018.04.01329698714
    [Google Scholar]
  81. Tuğcu-DemirözF. SaarS. TortS. AcartürkF. Electrospun metronidazole-loaded nanofibers for vaginal drug delivery.Drug Dev. Ind. Pharm.202046611110.1080/03639045.2020.176712532393132
    [Google Scholar]
  82. NematpourN. MoradipourP. ZangenehM.M. ArkanE. AbdoliM. BehboodL. The application of nanomaterial science in the formulation a novel antibiotic: Assessment of the antifungal properties of mucoadhesive clotrimazole loaded nanofiber versus vaginal films.Mater. Sci. Eng. C202011011063510.1016/j.msec.2020.11063532204071
    [Google Scholar]
  83. GuptaP.N. PattaniA. CurranR.M. KettV.L. AndrewsG.P. MorrowR.J. WoolfsonA.D. MalcolmR.K. Development of liposome gel based formulations for intravaginal delivery of the recombinant HIV-1 envelope protein CN54gp140.Eur. J. Pharm. Sci.201246531532210.1016/j.ejps.2012.02.00322360941
    [Google Scholar]
  84. RiaziS. DoverS.E. ChikindasM.L. Mode of action and safety of lactosporin, a novel antimicrobial protein produced by Bacillus coagulans ATCC 7050.J. Appl. Microbiol.2012113371472210.1111/j.1365‑2672.2012.05376.x22737982
    [Google Scholar]
  85. YangS. ChenY. AhmadieR. HoE.A. Advancements in the field of intravaginal siRNA delivery.J. Control. Release20131671293910.1016/j.jconrel.2012.12.02323298612
    [Google Scholar]
  86. WhaleyK.J. HanesJ. ShattockR. ConeR.A. FriendD.R. Novel approaches to vaginal delivery and safety of microbicides: Biopharmaceuticals, nanoparticles, and vaccines.Antiviral Res.201088Suppl. 1S55S6610.1016/j.antiviral.2010.09.00621109069
    [Google Scholar]
  87. WhaleyK.J. ZeitlinL. Antibody-based concepts for multipurpose prevention technologies.Antiviral Res.20131000Suppl.S48S5310.1016/j.antiviral.2013.09.02724188703
    [Google Scholar]
  88. das Neves J. Vaginal delivery of biopharmaceuticals In: . das Neves J. Sarmento B. Mucosal delivery of biopharmaceuticalsBoston (MA): Springer201410.1007/978‑1‑4614‑9524‑6_10
    [Google Scholar]
  89. Ariza-SáenzM. EspinaM. BolañosN. CalpenaA.C. GomaraM.J. HaroI. GarcíaM.L. Penetration of polymeric nanoparticles loaded with an HIV-1 inhibitor peptide derived from GB virus C in a vaginal mucosa model.Eur. J. Pharm. Biopharm.20171209810610.1016/j.ejpb.2017.08.00828842284
    [Google Scholar]
  90. MarcielloM. RossiS. CaramellaC. Remuñán-LópezC. Freeze-dried cylinders carrying chitosan nanoparticles for vaginal peptide delivery.Carbohydr. Polym.2017170435110.1016/j.carbpol.2017.04.05128522002
    [Google Scholar]
  91. Ariza-SáenzM. EspinaM. CalpenaA. GómaraM.J. Pérez-PomedaI. HaroI. GarcíaM.L. Design, characterization, and biopharmaceutical behavior of nanoparticles loaded with an HIV-1 fusion inhibitor peptide.Mol. Pharm.201815115005501810.1021/acs.molpharmaceut.8b0060930226777
    [Google Scholar]
  92. NiuG. JinZ. ZhangC. HeD. GaoX. ZouC. ZhangW. DingJ. DasB.C. SeverinovK. HitzerothI.I. DebataP.R. MaX. TianX. GaoQ. WuJ. YouZ. TianR. CuiZ. FanW. XieW. HuangZ. CaoC. XuW. XieH. XuH. TangX. WangY. YuZ. HanH. TanS. ChenS. HuZ. An effective vaginal gel to deliver CRISPR/Cas9 system encapsulated in poly (β-amino ester) nanoparticles for vaginal gene therapy.EBioMedicine20205810289710.1016/j.ebiom.2020.10289732711250
    [Google Scholar]
  93. CurrieS. KimS. GuX. RenX. LinF. LiuS. YangC. KimJ.H. LiuS. Mucus-penetrating PEGylated polysuccinimide-based nanocarrier for intravaginal delivery of siRNA battling sexually transmitted infections.Colloids Surf. B Biointerfaces202019611128710.1016/j.colsurfb.2020.11128732768985
    [Google Scholar]
  94. GuptaS. GuptaM.K. Possible role of nanocarriers in drug delivery against cervical cancer.Nano Rev. Exp.201781133556710.1080/20022727.2017.133556730410707
    [Google Scholar]
  95. EnsignLM TangBC WangYY Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus.Sci Transl Med20124138138ra7910.1126/scitranslmed.3003453
    [Google Scholar]
  96. YoheS.T. HerreraV.L.M. ColsonY.L. GrinstaffM.W. 3D superhydrophobic electrospun meshes as reinforcement materials for sustained local drug delivery against colorectal cancer cells.J. Control. Release201216219210110.1016/j.jconrel.2012.05.04722684120
    [Google Scholar]
  97. WolinskyJ.B. ColsonY.L. GrinstaffM.W. Local drug delivery strategies for cancer treatment: Gels, nanoparticles, polymeric films, rods, and wafers.J. Control. Release20121591142610.1016/j.jconrel.2011.11.03122154931
    [Google Scholar]
  98. LaiS.K. O’HanlonD.E. HarroldS. ManS.T. WangY.Y. ConeR. HanesJ. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus.Proc. Natl. Acad. Sci. USA200710451482148710.1073/pnas.060861110417244708
    [Google Scholar]
  99. ConeR.A. HoenT. WongX. AbusuwwaR. AndersonD.J. MoenchT.R. Vaginal microbicides: Detecting toxicities in vivo that paradoxically increase pathogen transmission.BMC Infect. Dis.2006619010.1186/1471‑2334‑6‑9016740164
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385283801231212114538
Loading
/content/journals/pnt/10.2174/0122117385283801231212114538
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test