Skip to content
2000
Volume 13, Issue 3
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

In response to the escalating issue of antibiotic-resistant bacteria adhering to and thriving on medical equipment, scientists are pioneering innovative “intelligent” materials and coatings. These advancements entail the targeted release of antimicrobial substances, specifically activated when bacteria are detected. The next section discusses three revolutionary substances: hydrogels, nanoparticles, and thin films. Furthermore, intelligent antibacterial materials are divided into 2 groups based on the triggering source: those that react to biological stimuli and those that react to non-biological ones, like temperature and electric cues associated with bacterial presence, such as pH shifts or bacterial enzyme discharge. Moreover, because of their simple construction technique, outstanding biocompatibility, and robust antibacterial characteristics derived from polyphenols and metal ions, metallic-polyphenolic nanoparticles (MPNs) have obtained substantial interest in tackling antimicrobial infections. This article presents an introduction to several MPN-centered biomaterials (like nanoparticles, coatings, capsules, and hydrogels) and highlights the latest advancements in research in its applications for addressing microbial threats in the field of biomedicine. Furthermore, the usage of smart materials is classified based on their application domains, encompassing medical implants, waste reduction, and nano-engineered systems.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385274576240209054652
2024-02-21
2025-10-24
Loading full text...

Full text loading...

References

  1. World Health OrganizationThe world health report,2002.2004Available from:https://www.who.int/publications/i/item/9241562072
  2. ParsonnetJ. FriedmanG.D. VandersteenD.P. ChangY. VogelmanJ.H. OrentreichN. SibleyR.K. Helicobacter pylori infection and the risk of gastric carcinoma.N. Engl. J. Med.1991325161127113110.1056/NEJM1991101732516031891020
    [Google Scholar]
  3. TurnbaughP.J. LeyR.E. MahowaldM.A. MagriniV. MardisE.R. GordonJ.I. An obesity-associated gut microbiome with increased capacity for energy harvest.Nature200644471221027103110.1038/nature0541417183312
    [Google Scholar]
  4. Progulske-FoxA. KozarovE. DornB. DunnW. BurksJ. WuY. PeriodontJ. Porphyromonas gingivalis virulence factors and invasion of cells of the cardiovascular system.J Periodontal. Res.1999347393
    [Google Scholar]
  5. C.D.C.Antibiotic Resistance Threats in the United States.2013Available from:http://www.cdc.gov/drugresistance/threatreport-2013/
  6. O’NeillJ. Review on antimicrobial resistance. securing new drugs for future generations: The pipeline of antibiotics.Available from:https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (Accessed: May 2015).
  7. AyukekbongJ.A. NtemgwaM. AtabeA.N. The threat of antimicrobial resistance in developing countries: causes and control strategies.Antimicrob. Resist. Infect. Control2017614710.1186/s13756‑017‑0208‑x28515903
    [Google Scholar]
  8. BahlS. NagarH. SinghI. SehgalS. Smart materials types, properties and applications: A review.Mater. Today Proc.202028Part 31302130610.1016/j.matpr.2020.04.505
    [Google Scholar]
  9. LaloyauxX. FautréE. BlinT. PurohitV. LeprinceJ. JouenneT. JonasA.M. GlinelK. Temperature-responsive polymer brushes switching from bactericidal to cell-repellent.Adv. Mater.201022445024502810.1002/adma.20100253820734384
    [Google Scholar]
  10. XueX. ThiagarajanL. BraimS. SaundersB.R. ShakesheffK.M. AlexanderC. Upper critical solution temperature thermo-responsive polymer brushes and a mechanism for controlled cell attachment.J. Mater. Chem. B Mater. Biol. Med.20175254926493310.1039/C7TB00052A32264008
    [Google Scholar]
  11. HøibyN. BjarnsholtT. GivskovM. MolinS. CiofuO. Antibiotic resistance of bacterial biofilms.Int. J. Antimicrob. Agents201035432233210.1016/j.ijantimicag.2009.12.01120149602
    [Google Scholar]
  12. KimS. ChoiJ.E. ChoiJ. ChungK.H. ParkK. YiJ. RyuD.Y. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells.Toxicol. in vitro 20092361076108410.1016/j.tiv.2009.06.00119508889
    [Google Scholar]
  13. McCannM.T. GilmoreB.F. GormanS.P. <I>Staphylococcus epidermidis</I> device-related infections: pathogenesis and clinical management.J. Pharm. Pharmacol.200860121551157110.1211/jpp/60.12.000119000360
    [Google Scholar]
  14. KimM.K. ZhaoA. WangA. BrownZ.Z. MuirT.W. StoneH.A. BasslerB.L. Surface-attached molecules control Staphylococcus aureus quorum sensing and biofilm development.Nat. Microbiol.2017281708010.1038/nmicrobiol.2017.8028530651
    [Google Scholar]
  15. SintimH.O. SmithJ.A.I. WangJ. NakayamaS. YanL. Paradigm shift in discovering next-generation anti-infective agents: Targeting quorum sensing, c-di-GMP signaling and biofilm formation in bacteria with small molecules.Future Med. Chem.2010261005103510.4155/fmc.10.18521426116
    [Google Scholar]
  16. Alvarez-LorenzoC. Garcia-GonzalezC.A. BucioE. ConcheiroA. Stimuli-responsive polymers for antimicrobial therapy: Drug targeting, contact-killing surfaces and competitive release.Expert Opin. Drug Deliv.20161381109111910.1080/17425247.2016.117871927074830
    [Google Scholar]
  17. PalanisamyA. AlbrightV. SukhishviliS.A. Upper critical solution temperature layer-by-layer films of polyamino acid-based micelles with rapid, on-demand release capability.Chem. Mater.201729219084909410.1021/acs.chemmater.7b02748
    [Google Scholar]
  18. RamburrunP. KumarP. ChoonaraY.E. du ToitL.C. PillayV. Design and characterization of neurodurable gellan-xanthan pH-responsive hydrogels for controlled drug delivery.Expert Opin. Drug Deliv.201714329130610.1080/17425247.2017.126633127892726
    [Google Scholar]
  19. CardosoM.J. CaridadeS.G. CostaR.R. ManoJ.F. Enzymatic degradation of polysaccharide-based layer-by-layer structures.Biomacromolecules20161741347135710.1021/acs.biomac.5b0174226957012
    [Google Scholar]
  20. WuS. ButheA. JiaH. ZhangM. IshiiM. WangP. Enzyme‐enabled responsive surfaces for anti‐contamination materials.Biotechnol. Bioeng.201311061805181010.1002/bit.2484723335427
    [Google Scholar]
  21. HuK. SchmidtN.W. ZhuR. JiangY. LaiG.H. WeiG. PalermoE.F. KurodaK. WongG.C.L. YangL. A critical evaluation of random copolymer mimesis of homogeneous antimicrobial peptides.Macromolecules20134651908191510.1021/ma302577e23750051
    [Google Scholar]
  22. TripathiB.P. DubeyN.C. ChoudhuryS. StammM. Antifouling and tunable amino functionalized porous membranes for filtration applications.J. Mater. Chem.20122237199811999210.1039/c2jm34172g
    [Google Scholar]
  23. PerniS. PiccirilloC. PrattenJ. ProkopovichP. ChrzanowskiW. ParkinI.P. WilsonM. The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles.Biomaterials2009301899310.1016/j.biomaterials.2008.09.02018838166
    [Google Scholar]
  24. TomatsuI. PengK. KrosA. Photoresponsive hydrogels for biomedical applications.Adv. Drug Deliv. Rev.20116314-151257126610.1016/j.addr.2011.06.00921745509
    [Google Scholar]
  25. HigginsW. KozlovskayaV. AlfordA. AnknerJ. KharlampievaE. Stratified temperature-responsive multilayer hydrogels of poly( n -vinylpyrrolidone) and poly( N -vinylcaprolactam): Effect of hydrogel architecture on properties.Macromolecules201649186953696410.1021/acs.macromol.6b00964
    [Google Scholar]
  26. KarimiM. Sahandi ZangabadP. GhasemiA. AmiriM. BahramiM. MalekzadH. Ghahramanzadeh AslH. MahdiehZ. BozorgomidM. GhasemiA. Rahmani Taji BoyukM.R. HamblinM.R. Temperature-responsive smart nanocarriers for delivery of therapeutic agents: Applications and recent advances.ACS Appl. Mater. Interfaces2016833211072113310.1021/acsami.6b0037127349465
    [Google Scholar]
  27. CantiniE. WangX. KoelschP. PreeceJ.A. MaJ. MendesP.M. Electrically responsive surfaces: Experimental and theoretical investigations.Acc. Chem. Res.20164961223123110.1021/acs.accounts.6b0013227268783
    [Google Scholar]
  28. XueB. QinM. WuJ. LuoD. JiangQ. LiY. CaoY. WangW. Electro-responsive supramolecular graphene oxide hydrogels for active bacteria adsorption and removal.ACS Appl. Mater. Interfaces2016824151201512710.1021/acsami.6b0433827244345
    [Google Scholar]
  29. ManourasT. VamvakakiM. Field responsive materials: Photo-, electro-, magnetic- and ultrasound-sensitive polymers.Polym. Chem.201781749610.1039/C6PY01455K
    [Google Scholar]
  30. PanY.J. ChenY.Y. WangD.R. WeiC. GuoJ. LuD.R. ChuC.C. WangC.C. Redox/pH dual stimuli-responsive biodegradable nanohydrogels with varying responses to dithiothreitol and glutathione for controlled drug release.Biomaterials201233276570657910.1016/j.biomaterials.2012.05.06222704845
    [Google Scholar]
  31. VukomanovićM. GazvodaL. KurtjakM. Maček-KržmancM. SpreitzerM. TangQ. WuJ. YeH. ChenX. MatteraM. Puigmartí-LuisJ. PaneS.V. Filler‐enhanced piezoelectricity of poly‐ l ‐lactide and its use as a functional ultrasound‐activated biomaterial.Small20231935230198110.1002/smll.20230198137186376
    [Google Scholar]
  32. NingS. Sanchis-GualR. FrancoC. Wendel-GarciaP.D. YeH. VecianaA. TangQ. SevimS. HertleL. Llacer-WintleJ. QinX.H. ZhuC. CaiJ. ChenX. NelsonB.J. Puigmartí-LuisJ. PanéS. Magnetic PiezoBOTs: A microrobotic approach for targeted amyloid protein dissociation.Nanoscale20231536148001480810.1039/D3NR02418K37646185
    [Google Scholar]
  33. TakagiT. A concept of intelligent materials and the current activities of intelligent materials in Japan.First European Conference on Smart Structures and Materials.Glasgow, United Kingdom199210.1117/12.2298027
    [Google Scholar]
  34. McCabeJ.F. YanZ. Al NaimiO.T. MahmoudG. RollandS.L. Smart materials in dentistry.Aust. Dent. J.201156s131010.1111/j.1834‑7819.2010.01291.x21564111
    [Google Scholar]
  35. BogueR. Smart materials: A review of recent developments.Assem. Autom.20123213710.1108/01445151211198674
    [Google Scholar]
  36. HenselM.U. Performance-oriented architecture and the spatial and material organisation complex. rethinking the definition, role and performative capacity of the spatial and material boundaries of the built environment.FormA kademisk-forskningstidsskrift Design Design Didaktikk201141
    [Google Scholar]
  37. AddingtonD.M. SchodekD.L. Smart materials and new technologies: For the architecture and design professions.Routledge2005
    [Google Scholar]
  38. AddingtonM. SchodekD. Smart Materials and Technologies in Architecture: For the Architecture and Design Professions.Routledge201210.4324/9780080480954
    [Google Scholar]
  39. SadeghiM.J. MasudifarP. FaiziF. The function of smart material’s behavior in architecture.International Conference on Intelligent Building and Management.Singapore2011
    [Google Scholar]
  40. MohamedA.S.Y. Smart materials innovative technologies in architecture; towards innovative design paradigm.Energy Procedia201711513915410.1016/j.egypro.2017.05.014
    [Google Scholar]
  41. SongY. WeiW. QuX. Colorimetric biosensing using smart materials.Adv. Mater.201123374215423610.1002/adma.20110185321800383
    [Google Scholar]
  42. KamilaS. Introduction, classification and applications of smart materials: An overview.Am. J. Appl. Sci.201310887688010.3844/ajassp.2013.876.880
    [Google Scholar]
  43. GautamP. ValiathanA. Bio-smart dentistry: Stepping into the future!Trends Biomater. Artif. Organs20082129497
    [Google Scholar]
  44. FerraraM. BengisuM. Materials that change color. In: Materials that Change Color.Springer201496010.1007/978‑3‑319‑00290‑3_2
    [Google Scholar]
  45. TalletL. GribovaV. PlouxL. VranaN.E. LavalleP. New smart antimicrobial hydrogels, nanomaterials, and coatings: Earlier action, more specific, better dosing?Adv. Healthc. Mater.2020200119933043612
    [Google Scholar]
  46. AlbrightV. ZhukI. WangY. SelinV. van de Belt-GritterB. BusscherH. J. van der MeiH. C. Sukhishvili.Acta Biomater.2017616610.1016/j.actbio.2017.08.01228803214
    [Google Scholar]
  47. WeiQ.B. FuF. ZhangY.Q. TangL. Preparation, characterization, and antibacterial properties of pH-responsive P(MMA-co-MAA)/silver nanocomposite hydrogels.J. Polym. Res.201421234910.1007/s10965‑013‑0349‑4
    [Google Scholar]
  48. ZhouJ. HouS. LiL. YaoD. LiuY. JenkinsA.T.A. FanY. Theranostic infection‐responsive coating to in situ detect and prevent urinary catheter blockage.Adv. Mater. Interfaces2018524180124210.1002/admi.201801242
    [Google Scholar]
  49. HuJ. QuanY. LaiY. ZhengZ. HuZ. WangX. DaiT. ZhangQ. ChengY. A smart aminoglycoside hydrogel with tunable gel degradation, on-demand drug release, and high antibacterial activity.J. Control. Release201724714515210.1016/j.jconrel.2017.01.003
    [Google Scholar]
  50. BuY. ZhangL. LiuJ. ZhangL. LiT. ShenH. WangX. YangF. TangP. WuD. Synthesis and properties of hemostatic and bacteria-responsive in situ hydrogels for emergency treatment in critical situations.ACS Appl. Mater. Interfaces2016820126741268310.1021/acsami.6b0323527159886
    [Google Scholar]
  51. WangP. TanK.L. KangE.T. NeohK.G. Plasma-induced immobilization of poly(ethylene glycol) onto poly(vinylidene fluoride) microporous membrane.J. Membr. Sci.2002195110311410.1016/S0376‑7388(01)00548‑8
    [Google Scholar]
  52. HassanA. NiaziM.B.K. HussainA. FarrukhS. AhmadT. Development of anti-bacterial PVA/Starch based hydrogel membrane for wound dressing.J. Polym. Environ.201826123524310.1007/s10924‑017‑0944‑2
    [Google Scholar]
  53. VillanuevaM. E. CuestasM. L. PerezC. J. Dall’OrtoV. C. CopelloG. J. Smart release of antimicrobial ZnO nanoplates from a pH-responsive keratin hydrogel.J. Coll. Interface Sci.201953637210.1016/j.jcis.2018.10.067
    [Google Scholar]
  54. ZhuJ. HanH. YeT.T. LiF.X. WangX.L. YuJ.Y. WuD.Q. Biodegradable and pH sensitive peptide based hydrogel as controlled release system for antibacterial wound dressing application.Molecules20182315
    [Google Scholar]
  55. ZhouJ. YaoD. QianZ. HouS. LiL. JenkinsA.T.A. FanY. Bacteria-responsive intelligent wound dressing: Simultaneous in situ detection and inhibition of bacterial infection for accelerated wound healing.Biomaterials2018161112310.1016/j.biomaterials.2018.01.02429421548
    [Google Scholar]
  56. ZeynabadF.B. SalehiR. AlizadehE. KafilH.S. HassanzadehA.M. MahkamM. pH-Controlled multiple-drug delivery by a novel antibacterial nanocomposite for combination therapy.RSC Advances2015510567810.1039/C5RA22784D
    [Google Scholar]
  57. MontanariE. GennariA. PellicciaM. GourmelC. LallanaE. MatricardiP. McBainA.J. TirelliN. Hyaluronan/tannic acid nanoparticles via catechol/boronate complexation as a smart antibacterial system.Macromol. Biosci.201616121815182310.1002/mabi.20160031127735135
    [Google Scholar]
  58. SimsK.R. LiuY. HwangG. JungH.I. KooH. BenoitD.S.W. Enhanced design and formulation of nanoparticles for anti-biofilm drug delivery.Nanoscale201911121923610.1039/C8NR05784B30525159
    [Google Scholar]
  59. PornpattananangkulD. ZhangL. OlsonS. AryalS. ObonyoM. VecchioK. HuangC. M. ZhangL. F. AmJ. Bacterial toxin-triggered drug release from gold nanoparticle-stabilized liposomes for the treatment of bacterial infection.J Am Chem Soc20111331141329
    [Google Scholar]
  60. FraunholzM. SinhaB. Intracellular staphylococcus aureus: Live-in and let die.Front. Cell. Infect. Microbiol.201224310.3389/fcimb.2012.0004322919634
    [Google Scholar]
  61. YangS. HanX. YangY. QiaoH. YuZ. LiuY. WangJ. TangT. Bacteria-targeting nanoparticles with microenvironment-responsive antibiotic release to eliminate intracellular staphylococcus aureus and associated infection.ACS Appl. Mater. Interfaces20181017142991431110.1021/acsami.7b1567829633833
    [Google Scholar]
  62. XiongM.H. BaoY. YangX.Z. WangY.C. SunB. WangJ. Lipase-sensitive polymeric triple-layered nanogel for “on-demand” drug delivery.J. Am. Chem. Soc.201213494355436210.1021/ja211279u
    [Google Scholar]
  63. StewartC.A. HongJ.H. HattonB.D. FinerY. Responsive antimicrobial dental adhesive based on drug-silica co-assembled particles.Acta Biomater.20187628329410.1016/j.actbio.2018.06.03229940367
    [Google Scholar]
  64. NalamP.C. LeeH.S. BhattN. CarpickR.W. EckmannD.M. CompostoR.J. Nanomechanics of pH-responsive, drug-loaded, bilayered polymer grafts.ACS Appl. Mater. Interfaces2017915129361294810.1021/acsami.6b1411628221026
    [Google Scholar]
  65. WangB. LiuH. WangZ. ShiS. NanK. XuQ. YeZ. ChenH. A self-defensive antibacterial coating acting through the bacteria-triggered release of a hydrophobic antibiotic from layer-by-layer films.J. Mater. Chem. B Mater. Biol. Med.2017571498150610.1039/C6TB02614A
    [Google Scholar]
  66. SutrisnoL. WangS. LiM. LuoZ. WangC. ShenT. ChenP. YangL. HuY. CaiK. Construction of three-dimensional net-like polyelectrolyte multilayered nanostructures onto titanium substrates for combined antibacterial and antioxidant applications.J. Mater. Chem. B Mater. Biol. Med.20186325290530210.1039/C8TB00192H
    [Google Scholar]
  67. PavlukhinaS. ZhukI. MentbayevaA. RautenbergE. ChangW. YuX. van de Belt-GritterB. BusscherH. J. van der MeiH. C. Small-molecule-hosting nanocomposite films with multiple bacteria-triggered responses.NPG Asia Mater.20146e12110.1038/am.2014.63
    [Google Scholar]
  68. YanJ. ZhouW. JiaZ. XiongP. LiY. WangP. LiQ. ChengY. ZhengY. Endowing polyetheretherketone with synergistic bactericidal effects and improved osteogenic ability.Acta Biomater.20187921622910.1016/j.actbio.2018.08.03730172936
    [Google Scholar]
  69. WangX. SongL. ZhaoJ. ZhouR. LuanS. HuangY. YinJ. KhanA. Bacterial adaptability of enzyme and pH dual-responsive surface for infection resistance.J. Mater. Chem. B Mater. Biol. Med.20186467710771810.1039/C8TB01950A
    [Google Scholar]
  70. YaoQ. YeZ. SunL. JinY. XuQ. YangM. WangY. ZhouY. JiJ. ChenH. WangB. Bacterial infection microenvironment-responsive enzymatically degradable multilayer films for multifunctional antibacterial properties.J. Mater. Chem. B Mater. Biol. Med.20175438532854110.1039/C7TB02114C
    [Google Scholar]
  71. LiuP. HaoY. DingY. YuanZ. LiuY. CaiK. Fabrication of enzyme-responsive composite coating for the design of antibacterial surface.Mater. Sci.: Mater. Med.201829160
    [Google Scholar]
  72. XuQ. LiX. JinY. SunL. DingX. LiangL. WangL. NanK. JiJ. ChenH. WangB. Bacterial self-defense antibiotics release from organic–inorganic hybrid multilayer films for long-term anti-adhesion and biofilm inhibition properties.Nanoscale2017948192451925410.1039/C7NR07106J29188848
    [Google Scholar]
  73. FranceskoA. FernandesM.M. IvanovaK. AmorimS. ReisR.L. PashkulevaI. MendozaE. PfeiferA. HeinzeT. TzanovT. Bacteria-responsive multilayer coatings comprising polycationic nanospheres for bacteria biofilm prevention on urinary catheters.Acta Biomater.20163320321210.1016/j.actbio.2016.01.02026804206
    [Google Scholar]
  74. CadoG. AslamR. SéonL. GarnierT. FabreR. ParatA. ChassepotA. VoegelJ.C. SengerB. SchneiderF. FrèreY. JierryL. SchaafP. KerdjoudjH. Metz-BoutigueM.H. BoulmedaisF. Self‐defensive biomaterial coating against bacteria and yeasts: Polysaccharide multilayer film with embedded antimicrobial peptide.Adv. Funct. Mater.201323384801480910.1002/adfm.201300416
    [Google Scholar]
  75. ChangY. YandiW. ChenW.Y. ShihY.J. YangC.C. ChangY. LingQ.D. HiguchiA. Tunable bioadhesive copolymer hydrogels of thermoresponsive poly(N-isopropyl acrylamide) containing zwitterionic polysulfobetaine.Biomacromolecules20101141101111010.1021/bm100093g20201492
    [Google Scholar]
  76. RadhakumaryC. AntontyM. SreenivasanK. Drug loaded thermoresponsive and cytocompatible chitosan based hydrogel as a potential wound dressing.Carbohydr. Polym.201183270571310.1016/j.carbpol.2010.08.042
    [Google Scholar]
  77. PangilinanK.D. SantosC.M. EstilloreN.C. RodriguesD.F. AdvinculaR.C. Temperature‐responsiveness and antimicrobial properties of CNT–PNIPAM hybrid brush films.Macromol. Chem. Phys.2013214446446910.1002/macp.201200464
    [Google Scholar]
  78. UlijnR.V. Enzyme-responsive materials: A new class of smart biomaterials.J. Mater. Chem.20061623221710.1039/b601776m
    [Google Scholar]
  79. TianZ. ZhangY. LiuX. ChenC. GuiltinanM.J. AllcockH.R. Biodegradable polyphosphazenes containing antibiotics: Synthesis, characterization, and hydrolytic release behavior.Polym. Chem.201346182610.1039/c2py21064a
    [Google Scholar]
  80. KanellakopoulouK. KoliaM. AnastassiadisA. KorakisT. Giamarellos-BourboulisE.J. AndreopoulosA. DounisE. GiamarellouH. Lactic acid polymers as biodegradable carriers of fluoroquinolones: An in vitro study.Antimicrob. Agents Chemother.199943371471610.1128/AAC.43.3.71410049299
    [Google Scholar]
  81. ThorntonP.D. HeiseA. Highly specific dual enzyme-mediated payload release from peptide-coated silica particles.J. Am. Chem. Soc.201013262024202810.1021/ja909443920099895
    [Google Scholar]
  82. BaierG. CavallaroA. VasilevK. MailänderV. MusyanovychA. LandfesterK. Enzyme responsive hyaluronic acid nanocapsules containing polyhexanide and their exposure to bacteria to prevent infection.Biomacromolecules20131441103111210.1021/bm302003m23448580
    [Google Scholar]
  83. SortinoS. Photoactivated nanomaterials for biomedical release applications.J. Mater. Chem.201222230131810.1039/C1JM13288A
    [Google Scholar]
  84. MatsunagaT. TomodaR. NakajimaT. WakeH. Photoelectrochemical sterilization of microbial cells by semiconductor powders.FEMS Microbiol. Lett.1985291-221121410.1111/j.1574‑6968.1985.tb00864.x
    [Google Scholar]
  85. YangC. LiangG.L. XuK.M. GaoP. XuB. Bactericidal functionalization of wrinkle-free fabrics via covalently bonding TiO2@Ag nanoconjugates.J. Mater. Sci.2009441894
    [Google Scholar]
  86. WilsonM. Light-activated antimicrobial coating for the continuous disinfection of surfaces.Infect. Control Hosp. Epidemiol.2003241078278410.1086/50213614587947
    [Google Scholar]
  87. DecraeneV. PrattenJ. WilsonM. Cellulose acetate containing toluidine blue and rose bengal is an effective antimicrobial coating when exposed to white light.Appl. Environ. Microbiol.20067264436443910.1128/AEM.02945‑0516751564
    [Google Scholar]
  88. CostertonJ.W. EllisB. LamK. JohnsonF. KhouryA.E. Mechanism of electrical enhancement of efficacy of antibiotics in killing biofilm bacteria.Antimicrob. Agents Chemother.199438122803280910.1128/AAC.38.12.28037695266
    [Google Scholar]
  89. DavisC.P. WagleN. AndersonM.D. WarrenM.M. Bacterial and fungal killing by iontophoresis with long-lived electrodes.Antimicrob. Agents Chemother.199135102131213410.1128/AAC.35.10.21311759837
    [Google Scholar]
  90. DavisC.P. WagleN. AndersonM.D. WarrenM.M. Iontophoresis generates an antimicrobial effect that remains after iontophoresis ceases.Antimicrob. Agents Chemother.199236112552255510.1128/AAC.36.11.25521489204
    [Google Scholar]
  91. HobdenJ.A. ReidyJ.J. O’CallaghanR.J. InslerM.S. HillJ.M. Ciprofloxacin iontophoresis for aminoglycoside-resistant pseudomonal keratitis.Invest. Ophthalmol. Vis. Sci.19903110194019442210988
    [Google Scholar]
  92. LiL. HeJ. EckertR. YarbroughD. LuxR. AndersonM. ShiW. Design and characterization of an acid-activated antimicrobial peptide.Chem. Biol. Drug Des.201075112713210.1111/j.1747‑0285.2009.00904.x19878192
    [Google Scholar]
  93. RisbudM.V. HardikarA.A. BhatS.V. BhondeR.R. pH-sensitive freeze-dried chitosan–polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery.J. Control. Release2000681233010.1016/S0168‑3659(00)00208‑X
    [Google Scholar]
  94. SmithA. G. DinA. DenyerM. CrowtherN. J. EaglandD. VowdenK. VowdenP. Microengineered surface topography facilitates cell grafting from a prototype hydrogel wound dressing with antibacterial capability.Biotechnol. Prog.200622140710.1021/bp060192n17022681
    [Google Scholar]
  95. GuptaP. BajpaiM. BajpaiS. Development of cotton fabric with antibacterial properties: Part I: Preparation of poly(acrylamide‐co‐itaconic acid) grafted cotton fabric and its water uptake analysis.J. Macromol. Sci.2008452179
    [Google Scholar]
  96. CordeiroC. WisemanD.J. LutwycheP. UhM. EvansJ.C. FinlayB.B. WebbM.S. Antibacterial efficacy of gentamicin encapsulated in pH-sensitive liposomes against an in vivo Salmonella enterica serovar typhimurium intracellular infection model.Antimicrob. Agents Chemother.200044353353910.1128/AAC.44.3.533‑539.200010681314
    [Google Scholar]
  97. ZhangC. ZhuY. ZhouC. YuanW. DuJ. Antibacterial vesicles by direct dissolution of a block copolymer in water.Polym. Chem.20134225525910.1039/C2PY20719B
    [Google Scholar]
  98. KimY. KeoghJ. B. Polyphenols and glycemic control.Nutrients201681710.3390/nu801001726742071
    [Google Scholar]
  99. WilliamsonG. The role of polyphenols in modern nutrition.Nutr. Bull.201742322623510.1111/nbu.1227828983192
    [Google Scholar]
  100. CardonaF. Andrés-LacuevaC. TulipaniS. TinahonesF.J. Queipo-OrtuñoM.I. Benefits of polyphenols on gut microbiota and implications in human health.J. Nutr. Biochem.20132481415142210.1016/j.jnutbio.2013.05.001
    [Google Scholar]
  101. ZhouY. ZhengJ. LiY. XuD.P. LiS. ChenY.M. LiH.B. Natural polyphenols for prevention and treatment of cancer.Nutrients20168851510.3390/nu808051527556486
    [Google Scholar]
  102. TsaoR. Chemistry and biochemistry of dietary polyphenols.Nutrients20102121231124610.3390/nu212123122254006
    [Google Scholar]
  103. CoppoE. MarcheseA. Antibacterial activity of polyphenols.Curr. Pharm. Biotechnol.201415438039010.2174/13892010150414082512114225312620
    [Google Scholar]
  104. BrudzynskiK. AbubakerK. MiottoD. Unraveling a mechanism of honey antibacterial action: Polyphenol/H2O2-induced oxidative effect on bacterial cell growth and on DNA degradation.Food Chem.2012133232933610.1016/j.foodchem.2012.01.03525683403
    [Google Scholar]
  105. PapucC. GoranG.V. PredescuC.N. NicorescuV. StefanG. Plant polyphenols as antioxidant and antibacterial agents for shelf‐life extension of meat and meat products: Classification, structures, sources, and action mechanisms.Compr. Rev. Food Sci. Food Saf.20171661243126810.1111/1541‑4337.1229833371586
    [Google Scholar]
  106. SongM. LiuY. LiT. LiuX. HaoZ. DingS. PanichayupakaranantP. ZhuK. ShenJ. Plant natural flavonoids against multidrug resistant pathogens.Adv. Sci.2021815210074910.1002/advs.202100749
    [Google Scholar]
  107. ChoubeyS. GoyalS. VarugheseL.R. KumarV. SharmaA.K. BeniwalV. Probing gallic acid for its broad spectrum applications.Mini Rev. Med. Chem.201818151283129310.2174/138955751866618033011401029600764
    [Google Scholar]
  108. BorgesA. FerreiraC. SaavedraM.J. SimõesM. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria.Microb. Drug Resist.201319425626510.1089/mdr.2012.024423480526
    [Google Scholar]
  109. ZhangC. HuangL. SunD-W. PuH. Interfacing metal-polyphenolic networks upon photothermal gold nanorods for triplex-evolved biocompatible bactericidal activity.J Hazard Mater.202242612782410.1016/j.jhazmat.2021.12782434838354
    [Google Scholar]
  110. XieY. ChenS. PengX. WangX. WeiZ. RichardsonJ.J. LiangK. EjimaH. GuoJ. ZhaoC. Alloyed nanostructures integrated metal-phenolic nanoplatform for synergistic wound disinfection and revascularization.Bioact. Mater.2022169510610.1016/j.bioactmat.2022.03.00435386317
    [Google Scholar]
  111. KimT. ZhangQ. LiJ. ZhangL. JokerstJ.V. A gold/silver hybrid nanoparticle for treatment and photoacoustic imaging of bacterial infection.ACS Nano20181265615562510.1021/acsnano.8b0136229746090
    [Google Scholar]
  112. LiuL. XiaoX. LiK. LiX. YuK. LiaoX. ShiB. Prevention of bacterial colonization based on self-assembled metal-phenolic nanocoating from rare-earth ions and catechin.ACS Appl. Mater. Interfaces20201219222372224510.1021/acsami.0c0645932312042
    [Google Scholar]
  113. StankicS. SumanS. HaqueF. VidicJ. Pure and multi metal oxide nanoparticles: Synthesis, antibacterial and cytotoxic properties.J. Nanobiotechnology20161417310.1186/s12951‑016‑0225‑6
    [Google Scholar]
  114. YougbaréS. MutalikC. OkoroG. LinI.H. KrisnawatiD.I. JazidieA. NuhM. ChangC.C. KuoT.R. Emerging trends in nanomaterials for antibacterial applications.Int. J. Nanomedicine2021165831586710.2147/IJN.S32876734475754
    [Google Scholar]
  115. JiaB. DuX. WangW. QuY. LiuX. ZhaoM. LiW. LiY.Q. Nanophysical antimicrobial strategies: A rational deployment of nanomaterials and physical stimulations in combating bacterial infections.Adv. Sci.2022910210525210.1002/advs.202105252
    [Google Scholar]
  116. EjimaH. RichardsonJ.J. CarusoF. Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces.Nano Today20171213614810.1016/j.nantod.2016.12.012
    [Google Scholar]
  117. ZhangY. ShenL. ZhongQ.Z. LiJ. Metal-phenolic network coatings for engineering bioactive interfaces.Colloids Surf. B Biointerfaces202120511185110.1016/j.colsurfb.2021.11185134020152
    [Google Scholar]
  118. GuoJ. L. PingY. EjimaH. AltK. MeissnerM. RichardsonJ. J. YanY. PeterK. von ElverfeldtD. HagemeyerC. E. CarusoF. Engineering multifunctional capsules through the assembly of metal-phenolic networks.Angew Chem Int Ed Engl201453554610.1002/anie.201311136
    [Google Scholar]
  119. ZhangZ. XieL. JuY. DaiY. Recent advances in metal‐phenolic networks for cancer theranostics.Small20211743210031410.1002/smll.202100314
    [Google Scholar]
  120. XuK. ZhouM. LiM. ChenW. ZhuY. CaiK. Metal-phenolic networks as a promising platform for pH-controlled release of bioactive divalent metal ions.Appl. Surf. Sci.202051114556910.1016/j.apsusc.2020.145569
    [Google Scholar]
  121. ZhouJ. LinZ. JuY. RahimM.A. RichardsonJ.J. CarusoF. Polyphenol-mediated assembly for particle engineering.Acc. Chem. Res.20205371269127810.1021/acs.accounts.0c0015032567830
    [Google Scholar]
  122. LinZ. ZhouJ. Cortez-JugoC. HanY. MaY. PanS. HanssenE. RichardsonJ.J. CarusoF. Ordered mesoporous metal-phenolic network particles.J. Am. Chem. Soc.2020142133534110.1021/jacs.9b10835
    [Google Scholar]
  123. WangG. QinJ. ZhaoY. WeiJ. Nanoporous carbon spheres derived from metal-phenolic coordination polymers for supercapacitor and biosensor.J Colloid Interface Sci.201954424110.1016/j.jcis.2019.03.001
    [Google Scholar]
  124. AlomaryM.N. AnsariM.A. Proanthocyanin‐capped biogenic TiO 2 nanoparticles with enhanced penetration, antibacterial and ros mediated inhibition of bacteria proliferation and biofilm formation: A comparative approach.Chemistry202127185817582910.1002/chem.20200482833434357
    [Google Scholar]
  125. HeX. GopinathK. SathishkumarG. GuoL. ZhangK. LuZ. LiC. KangE.T. XuL. UV-assisted deposition of antibacterial Ag-tannic acid nanocomposite coating.ACS Appl. Mater. Interfaces20211317207082071710.1021/acsami.1c0356633900718
    [Google Scholar]
  126. Godoy-GallardoM. Manzanares-CéspedesM.C. SevillaP. NartJ. ManzanaresN. ManeroJ.M. GilF.J. BoydS.K. RodríguezD. Evaluation of bone loss in antibacterial coated dental implants: An experimental study in dogs.Mater. Sci. Eng. C20166953854510.1016/j.msec.2016.07.020
    [Google Scholar]
  127. WangR. ZhaoX. JiaN. ChengL. LiuL. GaoC. Superwetting oil/water separation membrane constructed from in situ assembled metal-phenolic networks and metal–organic frameworks.ACS Appl. Mater. Interfaces2020128100001000810.1021/acsami.9b2208032013382
    [Google Scholar]
  128. ChenZ. FaragM.A. ZhongZ. ZhangC. YangY. WangS. WangY. Multifaceted role of phyto-derived polyphenols in nanodrug delivery systems.Adv. Drug Deliv. Rev.202117611387010.1016/j.addr.2021.11387034280511
    [Google Scholar]
  129. GengH. ZhuangL. LiM. LiuH. CarusoF. HaoJ. CuiJ. Interfacial assembly of metal-phenolic networks for hair dyeing.ACS Appl. Mater. Interfaces202012260c0692810.1021/acsami.0c0692832469497
    [Google Scholar]
  130. LuoW. XiaoG. TianF. RichardsonJ.J. WangY. ZhouJ. GuoJ. LiaoX. ShiB. Engineering robust metal–phenolic network membranes for uranium extraction from seawater.Energy Environ. Sci.201912260761410.1039/C8EE01438H
    [Google Scholar]
  131. WangH. WangC. ZouY. HuJ. LiY. ChengY. Natural polyphenols in drug delivery systems: Current status and future challenges.Giant2020310002210.1016/j.giant.2020.100022
    [Google Scholar]
  132. WangY. ZouY. WuY. WeiT. LuK. LiL. LinY. WuY. HuangC. ZhangY. ChenH. YuQ. Universal antifouling and photothermal antibacterial surfaces based on multifunctional metal-phenolic networks for prevention of biofilm formation.ACS Appl. Mater. Interfaces20211341484034841310.1021/acsami.1c1497934610742
    [Google Scholar]
  133. AmelootR. VermoorteleF. VanhoveW. RoeffaersM.B.J. SelsB.F. De VosD.E. Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability.Nat. Chem.20113538238710.1038/nchem.102621505497
    [Google Scholar]
  134. ShiJ. ZhangL. JiangZ. Facile construction of multicompartment multienzyme system through layer-by-layer self-assembly and biomimetic mineralization.ACS Appl. Mater. Interfaces20113388188910.1021/am101241u21348442
    [Google Scholar]
  135. WangX. JiangZ. ShiJ. LiangY. ZhangC. WuH. Metal-organic coordination-enabled layer-by-layer self-assembly to prepare hybrid microcapsules for efficient enzyme immobilization.ACS Appl. Mater. Interfaces2012473476348310.1021/am300559j22724538
    [Google Scholar]
  136. PingY. GuoJ. EjimaH. ChenX. RichardsonJ.J. SunH. CarusoF. pH-responsive capsules engineered from metal-phenolic networks for anticancer drug delivery.Small201511172032203610.1002/smll.20140334325556334
    [Google Scholar]
  137. WeiY. WeiZ. LuoP. WeiW. LiuS. pH-sensitive metal-phenolic network capsules for targeted photodynamic therapy against cancer cells.Artif Cells Nanomed Biotechnol.2018Dec4681552156110.1080/21691401.2017.137772428918670
    [Google Scholar]
  138. WangH. ZhuW. PingY. WangC. GaoN. YinX. GuC. DingD. BrinkerC.J. LiG. Controlled fabrication of functional capsules based on the synergistic interaction between polyphenols and MOFs under weak basic condition.ACS Appl. Mater. Interfaces2017916142581426410.1021/acsami.7b0178828398036
    [Google Scholar]
  139. RahimM.A. BjörnmalmM. Bertleff-ZieschangN. JuY. MettuS. LeemingM.G. CarusoF. Multiligand metal-phenolic assembly from green tea infusions.ACS Appl. Mater. Interfaces20181097632763910.1021/acsami.7b0923728722393
    [Google Scholar]
  140. CherepanovP.V. RahimM.A. Bertleff-ZieschangN. SayeedM.A. O’MullaneA.P. MoultonS.E. CarusoF. Electrochemical behavior and redox-dependent disassembly of gallic acid/Fe III metal-phenolic networks.ACS Appl. Mater. Interfaces20181065828583410.1021/acsami.7b1932229381320
    [Google Scholar]
  141. GaoY. YangS.C. ZhuM.H. ZhuX.D. LuanX. LiuX.L. LaiX. YuanY. LuQ. SunP. LovellJ.F. ChenH.Z. FangC. Metal phenolic network‐integrated multistage nanosystem for enhanced drug delivery to solid tumors.Small20211729210078910.1002/smll.20210078934142432
    [Google Scholar]
  142. LiuZ. LeZ. LuL. ZhuY. YangC. ZhaoP. WangZ. ShenJ. LiuL. ChenY. Scalable fabrication of metal-phenolic nanoparticles by coordination-driven flash nanocomplexation for cancer theranostics.Nanoscale201911199410942110.1039/C9NR02185J31038500
    [Google Scholar]
  143. LiY. RodriguesJ. TomásH. Injectable and biodegradable hydrogels: Gelation, biodegradation and biomedical applications.Chem. Soc. Rev.20124162193222110.1039/C1CS15203C22116474
    [Google Scholar]
  144. QiuY. ParkK. Environment-sensitive hydrogels for drug delivery.Adv. Drug Deliv. Rev.200153332133910.1016/S0169‑409X(01)00203‑411744175
    [Google Scholar]
  145. AhmedE.M. Hydrogel: Preparation, characterization, and applications: A review.J. Adv. Res.20156210512110.1016/j.jare.2013.07.006
    [Google Scholar]
  146. GuoJ. SunW. KimJ.P. LuX. LiQ. LinM. MrowczynskiO. RizkE.B. ChengJ. QianG. YangJ. Development of tannin-inspired antimicrobial bioadhesives.Acta Biomater.201872354410.1016/j.actbio.2018.03.00829555464
    [Google Scholar]
  147. LuX. ShiS. LiH. GerhardE. LuZ. TanX. LiW. RahnK.M. XieD. XuG. ZouF. BaiX. GuoJ. YangJ. Magnesium oxide-crosslinked low-swelling citrate-based mussel-inspired tissue adhesives.Biomaterials202023211971910.1016/j.biomaterials.2019.11971931901688
    [Google Scholar]
  148. BjörnmalmM. WongL.M. WojciechowskiJ.P. PendersJ. HorganC.C. BoothM.A. MartinN.G. SattlerS. StevensM.M. In vivo biocompatibility and immunogenicity of metal-phenolic gelation.Chem. Sci.20191043101791019410.1039/C9SC03325D
    [Google Scholar]
  149. NieS. HsiaoW.L. PanW. YangZ. Thermoreversible Pluronic F127-based hydrogel containing liposomes for the controlled delivery of paclitaxel: In vitro drug release, cell cytotoxicity, and uptake studies.Int. J. Nanomedicine2011615116621499415
    [Google Scholar]
  150. LiuY. LuW.L. WangJ.C. ZhangX. ZhangH. WangX.Q. ZhouT.Y. ZhangQ. Controlled delivery of recombinant hirudin based on thermo-sensitive Pluronic® F127 hydrogel for subcutaneous administration: In vitro and in vivo characterization.J. Control. Release2007117338739510.1016/j.jconrel.2006.11.024
    [Google Scholar]
  151. WahidF. HuX.H. ChuL.Q. JiaS.R. XieY.Y. ZhongC. Development of bacterial cellulose/chitosan based semi-interpenetrating hydrogels with improved mechanical and antibacterial properties.Int. J. Biol. Macromol.201912238038710.1016/j.ijbiomac.2018.10.10530342151
    [Google Scholar]
  152. YueY. WangX. HanJ. YuL. ChenJ. WuQ. JiangJ. Effects of nanocellulose on sodium alginate/polyacrylamide hydrogel: Mechanical properties and adsorption-desorption capacities.Carbohydr. Polym.201920628930110.1016/j.carbpol.2018.10.10530553324
    [Google Scholar]
  153. ChenY. ZhengK. NiuL. ZhangY. LiuY. WangC. ChuF. Highly mechanical properties nanocomposite hydrogels with biorenewable lignin nanoparticles.Int. J. Biol. Macromol.201912841442010.1016/j.ijbiomac.2019.01.09930682469
    [Google Scholar]
  154. ChenC. LiD. YanoH. AbeK. Insect cuticle-mimetic hydrogels with high mechanical properties achieved via the combination of chitin nanofiber and gelatin.J. Agric. Food Chem.201967195571557810.1021/acs.jafc.9b0098431034225
    [Google Scholar]
  155. ItagakiH. KurokawaT. FurukawaH. NakajimaT. KatsumotoY. GongJ.P. Water-induced brittle-ductile transition of double network hydrogels.Macromolecules201043229495950010.1021/ma101413j
    [Google Scholar]
  156. NakajimaT. FurukawaH. TanakaY. KurokawaT. OsadaY. GongJ.P. True chemical structure of double network hydrogels.Macromolecules20094262184218910.1021/ma802148p
    [Google Scholar]
  157. YanX. YangJ. ChenF. ZhuL. TangZ. QinG. ChenQ. ChenG. Mechanical properties of gelatin/polyacrylamide/graphene oxide nanocomposite double-network hydrogels.Compos. Sci. Technol.2018163818810.1016/j.compscitech.2018.05.011
    [Google Scholar]
  158. LiX. QinH. ZhangX. GuoZ. Triple-network hydrogels with high strength, low friction and self-healing by chemical-physical crosslinking.J. Colloid Interface Sci.201955654955610.1016/j.jcis.2019.08.10031476487
    [Google Scholar]
  159. MredhaM.T.I. PathakS.K. TranV.T. CuiJ. JeonI. Hydrogels with superior mechanical properties from the synergistic effect in hydrophobic-hydrophilic copolymers.Chem. Eng. J.201936232533810.1016/j.cej.2018.12.023
    [Google Scholar]
  160. LiX. ZhaoY. LiD. ZhangG. LongS. WangH. Hybrid dual crosslinked polyacrylic acid hydrogels with ultrahigh mechanical strength, toughness and self-healing properties via soaking salt solution.Polymer2017121556310.1016/j.polymer.2017.05.070
    [Google Scholar]
  161. LiP. ZhaoJ. ChenY. ChengB. YuZ. ZhaoY. YanX. TongZ. JinS. Preparation and characterization of chitosan physical hydrogels with enhanced mechanical and antibacterial properties.Carbohydr. Polym.20171571383139210.1016/j.carbpol.2016.11.01627987847
    [Google Scholar]
  162. RodellC.B. DusajN.N. HighleyC.B. BurdickJ.A. Injectable and cytocompatible tough double‐network hydrogels through tandem supramolecular and covalent crosslinking.Adv. Mater.201628388419842410.1002/adma.20160226827479881
    [Google Scholar]
  163. ZhouY. DamascenoP.F. SomashekarB.S. EngelM. TianF. ZhuJ. HuangR. JohnsonK. McIntyreC. SunK. YangM. GreenP.F. RamamoorthyA. GlotzerS.C. KotovN.A. Unusual multiscale mechanics of biomimetic nanoparticle hydrogels.Nat. Commun.20189118110.1038/s41467‑017‑02579‑w29330415
    [Google Scholar]
  164. HuangT. XuH.G. JiaoK.X. ZhuL.P. BrownH.R. WangH.L. A novel hydrogel with high mechanical strength: A macro- molecular microsphere composite hydrogel.Adv. Mater.200719121622162610.1002/adma.200602533
    [Google Scholar]
  165. SunT.L. KurokawaT. KurodaS. IhsanA.B. AkasakiT. SatoK. HaqueM.A. NakajimaT. GongJ.P. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity.Nat. Mater.2013121093293710.1038/nmat371323892784
    [Google Scholar]
  166. SarkarD. J. Singh, pH-triggered release of boron and thiamethoxam from boric acid crosslinked carboxymethyl cellulose hydrogel based formulations.Polym. Plast. Technol. Eng.20185818396
    [Google Scholar]
  167. YukH. ZhangT. ParadaG.A. LiuX. ZhaoX. Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures.Nat. Commun.2016711202810.1038/ncomms1202827345380
    [Google Scholar]
  168. OunA.A. RhimJ-W. Carrageenan-based hydrogels and films: Effect of ZnO and CuO nanoparticles on the physical, mechanical, and antimicrobial properties Biodegradable films with addition of antimicrobial and antioxidant activity View project Isolation of nanocellulose using.Elsevier2017
    [Google Scholar]
  169. WuT. HuangJ. JiangY. HuY. YeX. LiuD. ChenJ. Formation of hydrogels based on chitosan/alginate for the delivery of lysozyme and their antibacterial activity.Food Chem.201824036136910.1016/j.foodchem.2017.07.05228946284
    [Google Scholar]
  170. MohammadZ. Application of nanocomposite polymer hydrogels for ultra-sensitive fluorescence detection of proteins in gel electrophoresis.TrAC Trends Analyt. Chem.201793
    [Google Scholar]
  171. AzevedoS. CostaA.M.S. AndersenA. ChoiI.S. BirkedalH. ManoJ.F. Bioinspired ultratough hydrogel with fast recovery, self‐healing, injectability and cytocompatibility.Adv. Mater.20172928170075910.1002/adma.20170075928523744
    [Google Scholar]
  172. LiS. DongS. XuW. TuS. YanL. ZhaoC. DingJ. ChenX. Antibacterial hydrogels.Adv. Sci.201855170052710.1002/advs.20170052729876202
    [Google Scholar]
  173. LuY. MeiY. DrechslerM. BallauffM. Thermosensitive core-shell particles as carriers for ag nanoparticles: Modulating the catalytic activity by a phase transition in networks.Angew. Chem. Int. Ed.200645581381610.1002/anie.20050273116365840
    [Google Scholar]
  174. YangK. HanQ. ChenB. ZhengY. ZhangK. LiQ. WangJ. Antimicrobial hydrogels: Promising materials for medical application.Int. J. Nanomedicine2018132217226310.2147/IJN.S15474829695904
    [Google Scholar]
  175. AlisonM.R. Stem cells in pathobiology and regenerative medicine.J. Pathol.2009217214114310.1002/path.249719089908
    [Google Scholar]
  176. MorrisonS.J. SpradlingA.C. Stem cells and niches: Mechanisms that promote stem cell maintenance throughout life.Cell2008132459861110.1016/j.cell.2008.01.03818295578
    [Google Scholar]
  177. HuK. ZhouN. LiY. MaS. GuoZ. CaoM. ZhangQ. SunJ. ZhangT. GuN. Sliced magnetic polyacrylamide hydrogel with cell-adhesive microarray interface: A novel multicellular spheroid culturing platform.ACS Appl. Mater. Interfaces2016824151131511910.1021/acsami.6b0411227258682
    [Google Scholar]
  178. DvirT. TimkoB.P. BrighamM.D. NaikS.R. KarajanagiS.S. LevyO. JinH. ParkerK.K. LangerR. KohaneD.S. Nanowired three-dimensional cardiac patches.Nat. Nanotechnol.201161172072510.1038/nnano.2011.16021946708
    [Google Scholar]
  179. TalebianS. MehraliM. TaebniaN. PennisiC.P. KadumudiF.B. ForoughiJ. HasanyM. NikkhahM. AkbariM. OriveG. Dolatshahi-PirouzA. Self‐healing hydrogels: The next paradigm shift in tissue engineering?Adv. Sci.2019616180166410.1002/advs.20180166431453048
    [Google Scholar]
  180. PalantökenS. BethkeK. ZivanovicV. KalinkaG. KneippJ. RademannK. Cellulose hydrogels physically crosslinked by glycine: Synthesis, characterization, thermal and mechanical properties.J. Appl. Polym. Sci.202013774838010.1002/app.48380
    [Google Scholar]
  181. RavishankarK. VenkatesanM. DesinghR.P. MahalingamA. SadhasivamB. SubramaniyamR. DhamodharanR. Biocompatible hydrogels of chitosan-alkali lignin for potential wound healing applications.Mater. Sci. Eng. C201910244745710.1016/j.msec.2019.04.03831147015
    [Google Scholar]
  182. DaiW. GuoH. GaoB. RuanM. XuL. WuJ. Brett KirkT. XuJ. MaD. XueW. Double network shape memory hydrogels activated by near-infrared with high mechanical toughness, nontoxicity, and 3D printability.Chem. Eng. J.201935693494910.1016/j.cej.2018.09.078
    [Google Scholar]
  183. GaoB. ChenL. ZhaoY. YanX. WangX. ZhouC. ShiY. XueW. Methods to prepare dopamine/polydopamine modified alginate hydrogels and their special improved properties for drug delivery.Eur. Polym. J.201911019220110.1016/j.eurpolymj.2018.11.025
    [Google Scholar]
  184. RenY. FengJ. Skin-inspired multifunctional luminescent hydrogel containing layered rare-earth hydroxide with 3D printability for human motion sensing.ACS Appl. Mater. Interfaces20201266797680510.1021/acsami.9b1737131955579
    [Google Scholar]
  185. GuoY. BaeJ. ZhaoF. YuG. Functional hydrogels for next-generation batteries and supercapacitors.Trends Cogn. Sci.201913335348
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385274576240209054652
Loading
/content/journals/pnt/10.2174/0122117385274576240209054652
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test