Skip to content
2000
Volume 13, Issue 3
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Women are impacted by the extremely common cancer known as cervical cancer worldwide. Although preventive vaccines for cervical cancer are successful, treatment of cervical cancer is far less satisfactory because of multidrug resistance and side effects. There is an increasing need for alternative treatment modalities due to the rather aggressive and non-specific nature of conventional chemotherapeutics. With the advent of new technologies, scientists are working harder to create novel drug delivery strategies for chemotherapy of cervical cancer. Metal nanoparticles, and particularly silver nanoparticles, are a relatively new class with a lot of promise in the field of cancer biology. Nanoparticle therapeutics are attractive platforms for clinically relevant drug development because of their powerful anti-cancer properties, correspondingly attenuated side effects, and cancer-specific targeting. In this review, we provide an overview of the most recent uses of nanotechnology, particularly silver nanostructures, in the diagnosis and treatment of cervical cancer. The salient features of silver nanoparticle-based therapeutic concepts that are novel, viable, and attainable are emphasized in this review, along with those that pose a significant obstacle to their progress toward clinical application.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385335239240924061439
2024-09-27
2025-11-14
Loading full text...

Full text loading...

References

  1. FowlerJ.R. MaaniE.V. DuntonC.J. Cervical Cancer.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  2. SarkarS. HornG. MoultonK. OzaA. BylerS. KokolusS. LongacreM. Cancer development, progression, and therapy: An epigenetic overview.Int. J. Mol. Sci.20131410210872111310.3390/ijms14102108724152442
    [Google Scholar]
  3. AlmeidaC. BarryS. Cancer: Basic Science and Clinical Aspects.Hoboken, New JerseyWiley2011432
    [Google Scholar]
  4. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  5. DeVitaV.T.Jr RosenbergS.A. Two hundred years of cancer research.N. Engl. J. Med.2012366232207221410.1056/NEJMra120447922646510
    [Google Scholar]
  6. Méndez-LópezL.F. Revisiting epithelial carcinogenesis.Int. J. Mol. Sci.20222313743710.3390/ijms2313743735806442
    [Google Scholar]
  7. JohnE. Abeloff’s clinical Oncology.5th edPhiladelphia, PAElsevier2014
    [Google Scholar]
  8. SmallW.Jr BaconM.A. BajajA. ChuangL.T. FisherB.J. HarkenriderM.M. JhingranA. KitchenerH.C. MileshkinL.R. ViswanathanA.N. GaffneyD.K. Cervical cancer: A global health crisis.Cancer2017123132404241210.1002/cncr.3066728464289
    [Google Scholar]
  9. SteelmanL.S. ChappellW.H. AbramsS.L. KempfC.R. LongJ. LaidlerP. MijatovicS. Maksimovic-IvanicD. StivalaF. MazzarinoM.C. DoniaM. FagoneP. MalaponteG. NicolettiF. LibraM. MilellaM. TafuriA. BonatiA. BäseckeJ. CoccoL. EvangelistiC. MartelliA.M. MontaltoG. CervelloM. McCubreyJ.A. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging.Aging (Albany NY)20113319222210.18632/aging.10029621422497
    [Google Scholar]
  10. KudryavtsevaA.V. LipatovaA.V. ZaretskyA.R. MoskalevA.A. FedorovaM.S. RasskazovaA.S. ShibukhovaG.A. SnezhkinaA.V. KaprinA.D. AlekseevB.Y. DmitrievA.A. KrasnovG.S. Important molecular genetic markers of colorectal cancer.Oncotarget2016733539595398310.18632/oncotarget.979627276710
    [Google Scholar]
  11. YousefniaS. Seyed ForootanF. Seyed ForootanS. Nasr EsfahaniM.H. GureA.O. GhaediK. Mechanistic pathways of malignancy in breast cancer stem cells.Front. Oncol.20201045210.3389/fonc.2020.0045232426267
    [Google Scholar]
  12. Sanchez-VegaF. MinaM. ArmeniaJ. ChatilaW.K. LunaA. LaK.C. DimitriadoyS. LiuD.L. KanthetiH.S. SaghafiniaS. ChakravartyD. DaianF. GaoQ. BaileyM.H. LiangW.W. FoltzS.M. ShmulevichI. DingL. HeinsZ. OchoaA. GrossB. GaoJ. ZhangH. KundraR. KandothC. BahceciI. DervishiL. DogrusozU. ZhouW. ShenH. LairdP.W. WayG.P. GreeneC.S. LiangH. XiaoY. WangC. IavaroneA. BergerA.H. BivonaT.G. LazarA.J. HammerG.D. GiordanoT. KwongL.N. McArthurG. HuangC. TwardA.D. FrederickM.J. McCormickF. MeyersonM. Van AllenE.M. CherniackA.D. CirielloG. SanderC. SchultzN. Caesar-JohnsonS.J. DemchokJ.A. FelauI. KasapiM. FergusonM.L. HutterC.M. SofiaH.J. TarnuzzerR. WangZ. YangL. ZenklusenJ.C. ZhangJ.J. ChudamaniS. LiuJ. LollaL. NareshR. PihlT. SunQ. WanY. WuY. ChoJ. DeFreitasT. FrazerS. GehlenborgN. GetzG. HeimanD.I. KimJ. LawrenceM.S. LinP. MeierS. NobleM.S. SaksenaG. VoetD. ZhangH. BernardB. ChambweN. DhankaniV. KnijnenburgT. KramerR. LeinonenK. LiuY. MillerM. ReynoldsS. ShmulevichI. ThorssonV. ZhangW. AkbaniR. BroomB.M. HegdeA.M. JuZ. KanchiR.S. KorkutA. LiJ. LiangH. LingS. LiuW. LuY. MillsG.B. NgK-S. RaoA. RyanM. WangJ. WeinsteinJ.N. ZhangJ. AbeshouseA. ArmeniaJ. ChakravartyD. ChatilaW.K. de BruijnI. GaoJ. GrossB.E. HeinsZ.J. KundraR. LaK. LadanyiM. LunaA. NissanM.G. OchoaA. PhillipsS.M. ReznikE. Sanchez-VegaF. SanderC. SchultzN. SheridanR. SumerS.O. SunY. TaylorB.S. WangJ. ZhangH. AnurP. PetoM. SpellmanP. BenzC. StuartJ.M. WongC.K. YauC. HayesD.N. ParkerJ.S. WilkersonM.D. AllyA. BalasundaramM. BowlbyR. BrooksD. CarlsenR. ChuahE. DhallaN. HoltR. JonesS.J.M. KasaianK. LeeD. MaY. MarraM.A. MayoM. MooreR.A. MungallA.J. MungallK. RobertsonA.G. SadeghiS. ScheinJ.E. SipahimalaniP. TamA. ThiessenN. TseK. WongT. BergerA.C. BeroukhimR. CherniackA.D. CibulskisC. GabrielS.B. GaoG.F. HaG. MeyersonM. SchumacherS.E. ShihJ. KucherlapatiM.H. KucherlapatiR.S. BaylinS. CopeL. DanilovaL. BootwallaM.S. LaiP.H. MaglinteD.T. Van Den BergD.J. WeisenbergerD.J. AumanJ.T. BaluS. BodenheimerT. FanC. HoadleyK.A. HoyleA.P. JefferysS.R. JonesC.D. MengS. MieczkowskiP.A. MoseL.E. PerouA.H. PerouC.M. RoachJ. ShiY. SimonsJ.V. SkellyT. SolowayM.G. TanD. VeluvoluU. FanH. HinoueT. LairdP.W. ShenH. ZhouW. BellairM. ChangK. CovingtonK. CreightonC.J. DinhH. DoddapaneniH.V. DonehowerL.A. DrummondJ. GibbsR.A. GlennR. HaleW. HanY. HuJ. KorchinaV. LeeS. LewisL. LiW. LiuX. MorganM. MortonD. MuznyD. SantibanezJ. ShethM. ShinbrotE. WangL. WangM. WheelerD.A. XiL. ZhaoF. HessJ. AppelbaumE.L. BaileyM. CordesM.G. DingL. FronickC.C. FultonL.A. FultonR.S. KandothC. MardisE.R. McLellanM.D. MillerC.A. SchmidtH.K. WilsonR.K. CrainD. CurleyE. GardnerJ. LauK. MalleryD. MorrisS. PaulauskisJ. PennyR. SheltonC. SheltonT. ShermanM. ThompsonE. YenaP. BowenJ. Gastier-FosterJ.M. GerkenM. LeraasK.M. LichtenbergT.M. RamirezN.C. WiseL. ZmudaE. CorcoranN. CostelloT. HovensC. CarvalhoA.L. de CarvalhoA.C. FregnaniJ.H. Longatto-FilhoA. ReisR.M. Scapulatempo-NetoC. SilveiraH.C.S. VidalD.O. BurnetteA. EschbacherJ. HermesB. NossA. SinghR. AndersonM.L. CastroP.D. IttmannM. HuntsmanD. KohlB. LeX. ThorpR. AndryC. DuffyE.R. LyadovV. PaklinaO. SetdikovaG. ShabuninA. TavobilovM. McPhersonC. WarnickR. BerkowitzR. CramerD. FeltmateC. HorowitzN. KibelA. MutoM. RautC.P. MalykhA. Barnholtz-SloanJ.S. BarrettW. DevineK. FulopJ. OstromQ.T. ShimmelK. WolinskyY. SloanA.E. De RoseA. GiulianteF. GoodmanM. KarlanB.Y. HagedornC.H. EckmanJ. HarrJ. MyersJ. TuckerK. ZachL.A. DeyarminB. HuH. KvecherL. LarsonC. MuralR.J. SomiariS. VichaA. ZelinkaT. BennettJ. IacoccaM. RabenoB. SwansonP. LatourM. LacombeL. TêtuB. BergeronA. McGrawM. StaugaitisS.M. ChabotJ. HibshooshH. SepulvedaA. SuT. WangT. PotapovaO. VoroninaO. DesjardinsL. MarianiO. Roman-RomanS. SastreX. SternM-H. ChengF. SignorettiS. BerchuckA. BignerD. LippE. MarksJ. McCallS. McLendonR. SecordA. SharpA. BeheraM. BratD.J. ChenA. DelmanK. ForceS. KhuriF. MaglioccaK. MaithelS. OlsonJ.J. OwonikokoT. PickensA. RamalingamS. ShinD.M. SicaG. Van MeirE.G. ZhangH. EijckenboomW. GillisA. KorpershoekE. LooijengaL. OosterhuisW. StoopH. van KesselK.E. ZwarthoffE.C. CalatozzoloC. CuppiniL. CuzzubboS. DiMecoF. FinocchiaroG. MatteiL. PerinA. PolloB. ChenC. HouckJ. LohavanichbutrP. HartmannA. StoehrC. StoehrR. TaubertH. WachS. WullichB. KyclerW. MurawaD. WiznerowiczM. ChungK. EdenfieldW.J. MartinJ. BaudinE. BubleyG. BuenoR. De RienzoA. RichardsW.G. KalkanisS. MikkelsenT. NoushmehrH. ScarpaceL. GirardN. AymerichM. CampoE. GinéE. GuillermoA.L. Van BangN. HanhP.T. PhuB.D. TangY. ColmanH. EvasonK. DottinoP.R. MartignettiJ.A. GabraH. JuhlH. AkeredoluT. StepaS. HoonD. AhnK. KangK.J. BeuschleinF. BreggiaA. BirrerM. BellD. BoradM. BryceA.H. CastleE. ChandanV. ChevilleJ. CoplandJ.A. FarnellM. FlotteT. GiamaN. HoT. KendrickM. KocherJ-P. KoppK. MoserC. NagorneyD. O’BrienD. O’NeillB.P. PatelT. PetersenG. QueF. RiveraM. RobertsL. SmallridgeR. SmyrkT. StantonM. ThompsonR.H. TorbensonM. YangJ.D. ZhangL. BrimoF. AjaniJ.A. GonzalezA.M.A. BehrensC. BondarukJ. BroaddusR. CzerniakB. EsmaeliB. FujimotoJ. GershenwaldJ. GuoC. LazarA.J. LogothetisC. Meric-BernstamF. MoranC. RamondettaL. RiceD. SoodA. TamboliP. ThompsonT. TroncosoP. TsaoA. WistubaI. CarterC. HayduL. HerseyP. JakrotV. KakavandH. KeffordR. LeeK. LongG. MannG. QuinnM. SawR. ScolyerR. ShannonK. SpillaneA. StretchJ. SynottM. ThompsonJ. WilmottJ. Al-AhmadieH. ChanT.A. GhosseinR. GopalanA. LevineD.A. ReuterV. SingerS. SinghB. TienN.V. BroudyT. MirsaidiC. NairP. DrwiegaP. MillerJ. SmithJ. ZarenH. ParkJ-W. HungN.P. KebebewE. LinehanW.M. MetwalliA.R. PacakK. PintoP.A. SchiffmanM. SchmidtL.S. VockeC.D. WentzensenN. WorrellR. YangH. MoncrieffM. GoparajuC. MelamedJ. PassH. BotnariucN. CaramanI. CernatM. ChemencedjiI. ClipcaA. DorucS. GorincioiG. MuraS. PirtacM. StanculI. TcaciucD. AlbertM. AlexopoulouI. ArnaoutA. BartlettJ. EngelJ. GilbertS. ParfittJ. SekhonH. ThomasG. RasslD.M. RintoulR.C. BifulcoC. TamakawaR. UrbaW. HaywardN. TimmersH. AntenucciA. FaccioloF. GraziG. MarinoM. MerolaR. de KrijgerR. Gimenez-RoqueploA-P. PichéA. ChevalierS. McKercherG. BirsoyK. BarnettG. BrewerC. FarverC. NaskaT. PennellN.A. RaymondD. SchileroC. SmolenskiK. WilliamsF. MorrisonC. BorgiaJ.A. LiptayM.J. PoolM. SederC.W. JunkerK. OmbergL. DinkinM. ManikhasG. AlvaroD. BragazziM.C. CardinaleV. CarpinoG. GaudioE. CheslaD. CottinghamS. DubinaM. MoiseenkoF. DhanasekaranR. BeckerK-F. JanssenK-P. Slotta-HuspeninaJ. Abdel-RahmanM.H. AzizD. BellS. CebullaC.M. DavisA. DuellR. ElderJ.B. HiltyJ. KumarB. LangJ. LehmanN.L. MandtR. NguyenP. PilarskiR. RaiK. SchoenfieldL. SenecalK. WakelyP. HansenP. LechanR. PowersJ. TischlerA. GrizzleW.E. SextonK.C. KastlA. HendersonJ. PortenS. WaldmannJ. FassnachtM. AsaS.L. SchadendorfD. CouceM. GraefenM. HulandH. SauterG. SchlommT. SimonR. TennstedtP. OlabodeO. NelsonM. BatheO. CarrollP.R. ChanJ.M. DisaiaP. GlennP. KelleyR.K. LandenC.N. PhillipsJ. PradosM. SimkoJ. Smith-McCuneK. VandenBergS. RogginK. FehrenbachA. KendlerA. SifriS. SteeleR. JimenoA. CareyF. ForgieI. MannelliM. CarneyM. HernandezB. CamposB. Herold-MendeC. JungkC. UnterbergA. von DeimlingA. BosslerA. GalbraithJ. JacobusL. KnudsonM. KnutsonT. MaD. MilhemM. SigmundR. GodwinA.K. MadanR. RosenthalH.G. AdebamowoC. AdebamowoS.N. BoussioutasA. BeerD. GiordanoT. Mes-MassonA-M. SaadF. BocklageT. LandrumL. MannelR. MooreK. MoxleyK. PostierR. WalkerJ. ZunaR. FeldmanM. ValdiviesoF. DhirR. LuketichJ. PineroE.M.M. Quintero-AguiloM. CarlottiC.G.Jr Dos SantosJ.S. KempR. SankarankutyA. TirapelliD. CattoJ. AgnewK. SwisherE. CreaneyJ. RobinsonB. ShelleyC.S. GodwinE.M. KendallS. ShipmanC. BradfordC. CareyT. HaddadA. MoyerJ. PetersonL. PrinceM. RozekL. WolfG. BowmanR. FongK.M. YangI. KorstR. RathmellW.K. Fantacone-CampbellJ.L. HookeJ.A. KovatichA.J. ShriverC.D. DiPersioJ. DrakeB. GovindanR. HeathS. LeyT. Van TineB. WesterveltP. RubinM.A. LeeJ.I. AredesN.D. MariamidzeA. Oncogenic signaling pathways in the Cancer Genome Atlas.Cell20181732321337.e1010.1016/j.cell.2018.03.03529625050
    [Google Scholar]
  13. BedellS.L. GoldsteinL.S. GoldsteinA.R. GoldsteinA.T. Cervical cancer screening: Past, present, and future.Sex. Med. Rev.202081283710.1016/j.sxmr.2019.09.00531791846
    [Google Scholar]
  14. ShuklaS. PatelH. ChenS. SunR. WeiL. ChenZ.-S. Dostarlimab in the treatment of mismatch repair deficient recurrent or advanced endometrial cancer.Cancer Pathog Ther.202423135141
    [Google Scholar]
  15. WalboomersJ.M. JacobsM.V. ManosM.M. BoschF.X. KummerJ.A. ShahK.V. SnijdersP.J. PetoJ. MeijerC.J. MuñozN. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide.J. Pathol.19991891121910.1002/(SICI)1096‑9896(199909)189:1<12::AID‑PATH431>3.0.CO;2‑F10451482
    [Google Scholar]
  16. zur HausenH. Papillomaviruses in anogenital cancer as a model to understand the role of viruses in human cancers.Cancer Res.19894917467746812547512
    [Google Scholar]
  17. ShahD.D. ChorawalaM.R. MansuriM.K.A. ParekhP.S. SinghS. PrajapatiB.G. Biogenic metallic nanoparticles: From green synthesis to clinical translation.Naunyn Schmiedebergs Arch. Pharmacol.2024202403236-y10.1007/s00210‑024‑03236‑y38935128
    [Google Scholar]
  18. SongB. DingC. ChenW. SunH. ZhangM. ChenW. Incidence and mortality of cervical cancer in China, 2013.Chin. J. Cancer Res.201729647147610.21147/j.issn.1000‑9604.2017.06.0129353969
    [Google Scholar]
  19. GarlandS.M. GiulianoA. BrothertonJ.M.L. MoscickiA.B. StanleyM. KaufmannA.M. BhatlaN. SankaranarayananR. PalefskyJ.M. de SanjoseS. IPVS statement moving towards elimination of cervical cancer as a public health problem.Papillomavirus Res.20185878810.1016/j.pvr.2018.02.00329499389
    [Google Scholar]
  20. MattiuzziC. LippiG. Cancer statistics: A comparison between World Health Organization (WHO) and Global Burden of Disease (GBD).Eur. J. Public Health20203051026102710.1093/eurpub/ckz21631764976
    [Google Scholar]
  21. HerreroR. Eliminación del cáncer de cérvix en América Latina.Salud Publica Mex.201860662162310.21149/1017030699266
    [Google Scholar]
  22. CohenP.A. JhingranA. OakninA. DennyL. Cervical cancer.Lancet20193931016716918210.1016/S0140‑6736(18)32470‑X30638582
    [Google Scholar]
  23. VaccarellaS. LaversanneM. FerlayJ. BrayF. Cervical cancer in A frica, L atin A merica and the C aribbean and A sia: Regional inequalities and changing trends.Int. J. Cancer2017141101997200110.1002/ijc.3090128734013
    [Google Scholar]
  24. Ibrahim KhalilA. MpungaT. WeiF. BaussanoI. de MartelC. BrayF. StelzleD. Dryden-PetersonS. JaquetA. HornerM.J. AwoludeO.A. TrejoM.J. MudiniW. SolimanA.S. Sengayi-MuchengetiM. CoghillA.E. van AardtM.C. De VuystH. HawesS.E. BroutetN. DalalS. CliffordG.M. Age-specific burden of cervical cancer associated with HIV : A global analysis with a focus on sub‐Saharan Africa.Int. J. Cancer2022150576177210.1002/ijc.3384134626498
    [Google Scholar]
  25. ZhangS. XuH. ZhangL. QiaoY. Cervical cancer: Epidemiology, risk factors and screening.Chin. J. Cancer Res.202032672072810.21147/j.issn.1000‑9604.2020.06.0533446995
    [Google Scholar]
  26. BurdE.M. Human papillomavirus and cervical cancer.Clin. Microbiol. Rev.200316111710.1128/CMR.16.1.1‑17.200312525422
    [Google Scholar]
  27. AnderssonS. RylanderE. LarssonB. StrandA. SilfversvärdC. WilanderE. The role of human papillomavirus in cervical adenocarcinoma carcinogenesis.Eur. J. Cancer200137224625010.1016/S0959‑8049(00)00376‑211166153
    [Google Scholar]
  28. JiC. LiuS. WangC. ChenJ. WangJ. ZhangX. MaJ. CaiM. Relationship between visceral obesity and prognosis in patients with stage IVB cervical cancer receiving radiotherapy and chemotherapy.Cancer Pathog. Ther.202323180186
    [Google Scholar]
  29. LiH. WuX. ChengX. Advances in diagnosis and treatment of metastatic cervical cancer.J. Gynecol. Oncol.2016274e4310.3802/jgo.2016.27.e4327171673
    [Google Scholar]
  30. MonkB.J. TewariK.S. Evidence-based therapy for recurrent cervical cancer.J. Clin. Oncol.201432252687269010.1200/JCO.2014.56.873325071120
    [Google Scholar]
  31. BaydaS. AdeelM. TuccinardiT. CordaniM. RizzolioF. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine.Molecules201925111210.3390/molecules2501011231892180
    [Google Scholar]
  32. RiehemannK. SchneiderS.W. LugerT.A. GodinB. FerrariM. FuchsH. Nanomedicine--challenge and perspectives.Angew. Chem. Int. Ed.200948587289710.1002/anie.20080258519142939
    [Google Scholar]
  33. AstrucD. Introduction to Nanomedicine.Molecules2015211410.3390/molecules2101000426791291
    [Google Scholar]
  34. KlemmD. CranstonE.D. FischerD. GamaM. KedziorS.A. KralischD. KramerF. KondoT. LindströmT. NietzscheS. Petzold-WelckeK. RauchfußF. Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state.Mater. Today201821772074810.1016/j.mattod.2018.02.001
    [Google Scholar]
  35. YaoY. ZhouY. LiuL. XuY. ChenQ. WangY. WuS. DengY. ZhangJ. ShaoA. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.0019332974385
    [Google Scholar]
  36. ChamundeeswariMunusamy JeslinJohn VermaMadan Lal Nanocarriers for drug delivery applications.Environ. Chem. Lett.20191784986510.1007/s10311‑018‑00841‑1
    [Google Scholar]
  37. SinghR. SrinivasS.P. KumawatM. DaimaH.K. Ligand-based surface engineering of nanomaterials: Trends, challenges, and biomedical perspectives.Open Nano.202415100194
    [Google Scholar]
  38. BertrandN. WuJ. XuX. KamalyN. FarokhzadO.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology.Adv. Drug Deliv. Rev.20146622510.1016/j.addr.2013.11.00924270007
    [Google Scholar]
  39. YouX. KangY. HollettG. ChenX. ZhaoW. GuZ. WuJ. Polymeric nanoparticles for colon cancer therapy: Overview and perspectives.J. Mater. Chem. B Mater. Biol. Med.20164487779779210.1039/C6TB01925K32263770
    [Google Scholar]
  40. AlphandéryE. Natural Metallic Nanoparticles for Application in Nano-Oncology.Int. J. Mol. Sci.20202112441210.3390/ijms2112441232575884
    [Google Scholar]
  41. KratošováG. HolišováV. KonvičkováZ. IngleA.P. GaikwadS. ŠkrlováK. ProkopA. RaiM. PlacháD. From biotechnology principles to functional and low-cost metallic bionanocatalysts.Biotechnol. Adv.201937115417610.1016/j.biotechadv.2018.11.01230481544
    [Google Scholar]
  42. KhanS MansoorS RafiZ KumariB ShoaibA SaeedM AlshehriS GhoneimMM RahamathullaM HaniU ShakeelF A review on nanotechnology: Properties, applications, and mechanistic insights of cellular uptake mechanisms.J Mol Liquids.202234801677322
    [Google Scholar]
  43. AltammarK.A. A review on nanoparticles: Characteristics, synthesis, applications, and challenges.Front. Microbiol.202314115562210.3389/fmicb.2023.115562237180257
    [Google Scholar]
  44. BenelmekkiM. An introduction to nanoparticles and nanotechnology.Designing Hybrid NanoparticlesBristol, EnglandIOP Publishing Ltd.202410.1088/978‑1‑6270‑5469‑0ch1
    [Google Scholar]
  45. KumarR. AshfaqM. VermaN. Synthesis of novel PVA–starch formulation-supported Cu–Zn nanoparticle carrying carbon nanofibers as a nanofertilizer: Controlled release of micronutrients.J. Mater. Sci.201853107150716410.1007/s10853‑018‑2107‑9
    [Google Scholar]
  46. KumarH. VenkateshN. BhowmikH. KuilaA. Metallic nanoparticle: A review.Biomed. J. Sci. Tech. Res.20182018225741241
    [Google Scholar]
  47. ParamasivamG. PalemV.V. SundaramT. SundaramV. KishoreS.C. BellucciS. Nanomaterials: Synthesis and Applications in Theranostics.Nanomaterials (Basel)20211112322810.3390/nano1112322834947577
    [Google Scholar]
  48. ZhangD. MaX. GuY. HuangH. ZhangG. RETRACTED: Green synthesis of metallic nanoparticles and their potential applications to treat cancer.Front Chem.2020879910.3389/fchem.2020.0079933195027
    [Google Scholar]
  49. MoradH. JounakiK. AnsariM. Sadeghian-AbadiS. VahidiH. BarabadiH. Bioengineered Metallic Nanomaterials for Nanoscale Drug Delivery Systems.Pharmaceutical Nanobiotechnology for Targeted Therapy. Nanotechnology in the Life Sciences. BarabadiH. MostafaviE. SaravananM. ChamSpringer202210.1007/978‑3‑031‑12658‑1_7
    [Google Scholar]
  50. SauT.K. RogachA.L. JäckelF. KlarT.A. FeldmannJ. Properties and applications of colloidal nonspherical noble metal nanoparticles.Adv. Mater.201022161805182510.1002/adma.20090255720512954
    [Google Scholar]
  51. AhmedS. AhmadM. SwamiB.L. IkramS. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise.J. Adv. Res.201671172810.1016/j.jare.2015.02.00726843966
    [Google Scholar]
  52. MeyersM.A. MishraA. BensonD.J. Mechanical properties of nanocrystalline materials.Prog. Mater. Sci.200651442755610.1016/j.pmatsci.2005.08.003
    [Google Scholar]
  53. ChavaliM.S. NikolovaM.P. Metal oxide nanoparticles and their applications in nanotechnology.SN Appl. Sci.20191660710.1007/s42452‑019‑0592‑3
    [Google Scholar]
  54. AlaqadK. SalehT.A. Gold and silver nanoparticles: Synthesis methods, characterization routes and applications towards drugs.J. Environ. Anal. Toxicol.20166438410.4172/2161‑0525.1000384
    [Google Scholar]
  55. AslanB. OzpolatB. SoodA.K. Lopez-BeresteinG. Nanotechnology in cancer therapy.J. Drug Target.2013211090491310.3109/1061186X.2013.83746924079419
    [Google Scholar]
  56. SultanaA. ZareM. ThomasV. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects.Med. Drug Disc.20221510013410.1016/j.medidd.2022.100134
    [Google Scholar]
  57. LiJ. WangQ. XiaG. AdilijiangN. LiY. HouZ. FanZ. LiJ. Recent advances in targeted drug delivery strategy for enhancing oncotherapy.Pharmaceutics2023159223310.3390/pharmaceutics1509223337765202
    [Google Scholar]
  58. PrabaharK. AlanaziZ. QushawyM. Targeted drug delivery system: Advantages, carriers and strategies.Indian J. Pharmaceut. Edu. Res.202155234635310.5530/ijper.55.2.72
    [Google Scholar]
  59. Inside TxA comprehensive review of passive and active nanoparticle targeting technics.2024Available From: https://insidetx.com/review/a-comprehensive-review-of-passive-and-active-nanoparticle-targeting-technics/
  60. SkoetzN. WillA. MonsefI. BrillantC. EngertA. von TresckowB. Comparison of first-line chemotherapy including escalated BEACOPP versus chemotherapy including ABVD for people with early unfavourable or advanced stage Hodgkin lymphoma.Cochrane Libr.201720175CD00794110.1002/14651858.CD007941.pub328541603
    [Google Scholar]
  61. FarzinA. EtesamiS.A. QuintJ. MemicA. TamayolA. Magnetic nanoparticles in cancer therapy and diagnosis.Adv. Healthc. Mater.202099190105810.1002/adhm.20190105832196144
    [Google Scholar]
  62. GaoR. HaoY. ZhangL. CuiX. LiuD. ZhangM. TangY. ZhengY. A facile method for protein imprinting on directly carboxyl-functionalized magnetic nanoparticles using non-covalent template immobilization strategy.Chem. Eng. J.201628413914810.1016/j.cej.2015.08.123
    [Google Scholar]
  63. BidkarA.P. SanpuiP. GhoshS.S. Efficient induction of apoptosis in cancer cells by paclitaxel-loaded selenium nanoparticles.Nanomedicine (Lond.)201712212641265110.2217/nnm‑2017‑018929043926
    [Google Scholar]
  64. XuJ.J. ZhangW.C. GuoY.W. ChenX.Y. ZhangY.N. Metal nanoparticles as a promising technology in targeted cancer treatment.Drug Deliv.202229166467810.1080/10717544.2022.203980435209786
    [Google Scholar]
  65. AliA. ZafarH. ZiaM. ul HaqI. PhullA.R. AliJ.S. HussainA. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles.Nanotechnol. Sci. Appl.20169496710.2147/NSA.S9998627578966
    [Google Scholar]
  66. MuelaA. MuñozD. Martín-RodríguezR. OrueI. GaraioE. Abad Díaz de CerioA. AlonsoJ. GarcíaJ.Á. Fdez-GubiedaM.L. Optimal parameters for hyperthermia treatment using biomineralized magnetite nanoparticles: Theoretical and experimental approach.J. Phys. Chem. C201612042244372444810.1021/acs.jpcc.6b07321
    [Google Scholar]
  67. MurrayI.R. BailyJ.E. ChenW.C.W. DarA. GonzalezZ.N. JensenA.R. PetriglianoF.A. DebA. HendersonN.C. Skeletal and cardiac muscle pericytes: Functions and therapeutic potential.Pharmacol. Ther.2017171657410.1016/j.pharmthera.2016.09.00527595928
    [Google Scholar]
  68. DavoudiM. JadidiY. MoayediK. FarrokhiV. AfrishamR. Ameliorative impacts of polymeric and metallic nanoparticles on cisplatin-induced nephrotoxicity: A 2011–2022 review.J. Nanobiotechnol.202220150410.1186/s12951‑022‑01718‑w36457031
    [Google Scholar]
  69. LiuB. XiangW. LiuJ. TangJ. WangJ. LiuB. LongZ. WangL. YinG. LiuJ. The regulatory role of antisense lncRNAs in cancer.Cancer Cell Int.202121145910.1186/s12935‑021‑02168‑434461912
    [Google Scholar]
  70. BalivadaS. RachakatlaR.S. WangH. SamarakoonT.N. DaniR.K. PyleM. KrohF.O. WalkerB. LeaymX. KoperO.B. TamuraM. ChikanV. BossmannS.H. TroyerD.L. A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: A mouse study.BMC Cancer201010111910.1186/1471‑2407‑10‑11920350328
    [Google Scholar]
  71. BrunaT. Maldonado-BravoF. JaraP. CaroN. Silver nanoparticles and their antibacterial applications.Int. J. Mol. Sci.20212213720210.3390/ijms2213720234281254
    [Google Scholar]
  72. KabirS.R. BarabadiH. KarimiE. SenF. Editorial: Application of the biogenic silver nanoparticles as antimicrobial and anticancer agents.Front Chem.202311118002710.3389/fchem.2023.118002736970411
    [Google Scholar]
  73. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnol.20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  74. DevasenaT. IffathB. Renjith KumarR. MuninathanN. BaskaranK. SrinivasanT. JohnS.T. Insights on the dynamics and toxicity of nanoparticles in environmental matrices.Bioinorg. Chem. Appl.202220221434814910.1155/2022/434814935959228
    [Google Scholar]
  75. SinghS. NwaborO.F. SukriD.M. WunnooS. DumjunK. LethongkamS. KusolphatP. HemtanonN. KlinprathumK. SunghanJ. DejyongK. LertwittayanonK. PisuchpenS. VoravuthikunchaiS.P. Poly (vinyl alcohol) copolymerized with xanthan gum/hypromellose/sodium carboxymethyl cellulose dermal dressings functionalized with biogenic nanostructured materials for antibacterial and wound healing application.Int. J. Biol. Macromol.202221623525010.1016/j.ijbiomac.2022.06.17235780920
    [Google Scholar]
  76. NwaborO.F. Valorization of wastepaper through antimicrobial functionalization with biogenic silver nanoparticles, a sustainable packaging composite.Waste Biomass Valorizat.2020123287330110.1007/s12649‑020‑01237‑5
    [Google Scholar]
  77. SyukriD.M. SinghS. NwaborO.F. OntongJ.C. DejyongK. SunghanJ. DejyongK. LethongkamS. VoravuthikunchaiS.P. Prevention of Post-operative Bacterial Colonization on Mice Buccal Mucosa Using Biogenic Silver Nanoparticles-Coated Nylon Sutures.Regen. Eng. Transl. Med.202410229430810.1007/s40883‑024‑00335‑3
    [Google Scholar]
  78. BalewskiŁ. SzultaS. JalińskaA. KornickaA. A mini-review: Recent advances in coumarin-metal complexes with biological properties.Front Chem.2021978177910.3389/fchem.2021.78177934926402
    [Google Scholar]
  79. MandalN. MitraR. PramanickB. Bio-synthesized silver nanoparticle modified glassy carbon electrode as electrochemical biosensor for prostate specific antigen detection.Carbon Trends20231310031510.1016/j.cartre.2023.100315
    [Google Scholar]
  80. BarabadiH. VahidiH. Damavandi KamaliK. RashediM. SaravananM. Antineoplastic biogenic silver nanomaterials to combat cervical cancer: A novel approach in cancer therapeutics.J. Cluster Sci.202031465967210.1007/s10876‑019‑01697‑3
    [Google Scholar]
  81. GomesH.I.O. MartinsC.S.M. PriorJ.A.V. Silver nanoparticles as carriers of anticancer drugs for efficient target treatment of cancer cells.Nanomaterials (Basel)202111496410.3390/nano1104096433918740
    [Google Scholar]
  82. BasakD. ArrighiS. DarwicheY. DebS. Comparison of anticancer drug toxicities: Paradigm shift in adverse effect profile.Life (Basel)20211214810.3390/life1201004835054441
    [Google Scholar]
  83. NayakD. ChopraH. ChakrabarttyI. Opportunities and challenges for bioengineered metallic nanoparticles as future nanomedicine.Bioengineered Nanomaterials for Wound Healing and Infection ControlSawston, United KingdomWoodhead Publishing202351754010.1016/B978‑0‑323‑95376‑4.00012‑5
    [Google Scholar]
  84. LimE.K. KimT. PaikS. HaamS. HuhY.M. LeeK. Nanomaterials for theranostics: Recent advances and future challenges.Chem. Rev.2015115132739410.1021/cr300213b25423180
    [Google Scholar]
  85. ZhenX. ZhangJ. HuangJ. XieC. MiaoQ. PuK. Macrotheranostic probe with disease‐activated near‐infrared fluorescence, photoacoustic, and photothermal signals for imaging‐guided therapy.Angew. Chem. Int. Ed.201857267804780810.1002/anie.20180332129665259
    [Google Scholar]
  86. ZhangJ. NingL. HuangJ. ZhangC. PuK. Activatable molecular agents for cancer theranostics.Chem. Sci. (Camb.)202011361863010.1039/C9SC05460J34123034
    [Google Scholar]
  87. TangL. DongC. RenJ. Highly sensitive homogenous immunoassay of cancer biomarker using silver nanoparticles enhanced fluorescence correlation spectroscopy.Talanta2010814-51560156710.1016/j.talanta.2010.03.00220441939
    [Google Scholar]
  88. TakáčP. MichalkováR. ČižmárikováM. BedlovičováZ. BalážováĽ. TakáčováG. The role of silver nanoparticles in the diagnosis and treatment of cancer: Are there any perspectives for the future?Life (Basel)202313246610.3390/life1302046636836823
    [Google Scholar]
  89. JunB.H. NohM.S. KimJ. KimG. KangH. KimM.S. SeoY.T. BaekJ. KimJ.H. ParkJ. KimS. KimY.K. HyeonT. ChoM.H. JeongD.H. LeeY.S. Multifunctional silver-embedded magnetic nanoparticles as SERS nanoprobes and their applications.Small20106111912510.1002/smll.20090145919904763
    [Google Scholar]
  90. LiaoC. LiY. TjongS.C. Bactericidal and cytotoxic properties of silver nanoparticles.Int. J. Mol. Sci.201920244910.3390/ijms2002044930669621
    [Google Scholar]
  91. HusseinH.S. NgugiC. ToloF.M. MainaE.N. Anticancer potential of silver nanoparticles biosynthesized using Catharanthus roseus leaves extract on cervical (HeLa229) cancer cell line.Sci. Am.202425e0226810.1016/j.sciaf.2024.e02268
    [Google Scholar]
  92. OntongJ.C. SinghS. NwaborO.F. ChusriS. VoravuthikunchaiS.P. Potential of antimicrobial topical gel with synthesized biogenic silver nanoparticle using Rhodomyrtus tomentosa leaf extract and silk sericin.Biotechnol. Lett.202042122653266410.1007/s10529‑020‑02971‑532683522
    [Google Scholar]
  93. PuriA. MohiteP. PatilS. ChidrawarV.R. UshirY.V. DodiyaR. SinghS. Facile green synthesis and characterization of Terminalia arjuna bark phenolic–selenium nanogel: A biocompatible and green nano-biomaterial for multifaceted biological applications.Front Chem.202311127336010.3389/fchem.2023.127336037810585
    [Google Scholar]
  94. JayeoyeT.J. EzeF.N. OlatundeO.O. SinghS. ZuoJ. OlatunjiO.J. Multifarious biological applications and toxic hg2+ sensing potentiality of biogenic silver nanoparticles based on Securidaca inappendiculata hassk stem extract.Int. J. Nanomedicine2021167557757410.2147/IJN.S32599634803379
    [Google Scholar]
  95. XuZ. FengQ. WangM. ZhaoH. LinY. ZhouS. Green biosynthesized silver nanoparticles with aqueous extracts of Ginkgo Biloba induce apoptosis via mitochondrial pathway in cervical cancer cells.Front. Oncol.20201057541510.3389/fonc.2020.57541533194686
    [Google Scholar]
  96. YadollahpourA. HosseiniS.A. Magnetic nanoparticle based hyperthermia: A review of the physiochemical properties and synthesis methods.Int J Pharm Res Allied Sci201652242246
    [Google Scholar]
  97. AdedimejiA. AjehR. PierzA. NkengR. NdenkehJ. FuhngwaN. NsameD. NjiM. DzudieA. AnastosK.M. CastleP.E. Challenges and opportunities associated with cervical cancer screening programs in a low income, high HIV prevalence context.BMC Womens Health20212117410.1186/s12905‑021‑01211‑w33602194
    [Google Scholar]
  98. KaurS. SharmaL.M. MishraV. GoyalM.G.B. SwastiS. TaleleA. ParikhP.M. Challenges in cervical cancer prevention: Real-world scenario in India.South Asian J. Cancer202312100901610.1055/s‑0043‑176422236851931
    [Google Scholar]
  99. GavasS. QuaziS. KarpińskiT.M. Nanoparticles for cancer therapy: Current progress and challenges.Nanoscale Res. Lett.202116117310.1186/s11671‑021‑03628‑634866166
    [Google Scholar]
  100. JiaG HanY AnY DingY HeC WangX TangQ NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo.Biomaterials2018178302316
    [Google Scholar]
  101. RasoolM. MalikA. WaquarS. AroojM. ZahidS. AsifM. ShaheenS. HussainA. UllahH. GanS.H. New challenges in the use of nanomedicine in cancer therapy.Bioengineered202213175977310.1080/21655979.2021.201290734856849
    [Google Scholar]
  102. DanaiL. RolbandL.A. PerdomoV.A. SkellyE. KimT. AfoninK.A. Optical, structural and antibacterial properties of silver nanoparticles and DNA-templated silver nanoclusters.Nanomedicine (Lond.)202318976978210.2217/nnm‑2023‑008237345552
    [Google Scholar]
  103. NelsonN. PortJ. PandeyM. Use of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) via multiple imaging modalities and modifications to reduce cytotoxicity: An educational review.J. Nanotheranostics20201110513510.3390/jnt1010008
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385335239240924061439
Loading
/content/journals/pnt/10.2174/0122117385335239240924061439
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test