Skip to content
2000
Volume 15, Issue 7
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Background

is a medicinal and vegetable plant used worldwide, representing a multi-purpose vegetable with applications in the pharmaceutical, food and cosmetic industries.

Objective

This study evaluated the antioxidant, antibacterial, antifungal, anti-inflammatory, and antidiabetic potential of fractional extracts from plant derived from Can Tho City, Vietnam.

Methods

Four fractional extracts were prepared using different polarity solvents (hexane, dichloromethane, ethyl acetate) and used to determine the best extract for each biological property. The fractions’ total alkaloid, phenolic, and flavonoid content were observed. The four extracts were evaluated for their potential bioactivities: antioxidant, antibacterial, antifungal, anti-inflammatory, and antidiabetic.

Results

Correspond with the hexane, dichloromethane, ethyl acetate, and aqueous fractions, the total content of alkaloids was determined to be 255 ± 23.8; 157 ± 14.0; 219 ± 6.55; 221 ± 6.23 (mg AE/g extract), the total phenolic content was 112 ± 3.34; 141 ± 1.77; 234 ± 29.5; 123 ± 5.04 (mg GAE/g extract), whereas the total content of flavonoids was 84.49 ± 4.53; 33.77 ± 1.26; 367.8 ± 3.37; 34.49 ± 4.53 (mg QE/g extract), respectively. The ethyl acetate fraction gave the best efficiency in DPPH, ABTS, iron reduction, and TAC methods (IC = 334 ± 2.10 µg/mL; 51.4 ± 0.41 µg/mL; 79.1 ± 0.40 µg/mL; and 83.0 ± 0.17 µg/mL, respectively). Antibacterial activity was investigated on 5 strains of , , , , ; the results showed that the extracts were resistant to 5 strains of bacteria, especially best resistant in 2 fractions of ethyl acetate and aqueous. The minimum inhibitory concentration (MIC) value ranged from 0.5 to 32 mg/mL, while the minimum bactericidal concentration (MBC) value ranged from 16 to 64 mg/mL. The best anti-inflammatory activity was ethyl acetate with an IC value of 216.7 ± 7.2 µg/mL, close to that of Diclofenac at 205.4 ± 0.5. The antidiabetic activity was investigated based on the ability to inhibit -amylase and -glucosidase enzymes. The results showed that the best -amylase inhibitors were hexane and dichloromethane (IC = 208.83 ± 2.41 and 191.60 ± 1.27 µg/mL, respectively), roughly equal to the acarbose (155.68 ± 2.59 µg/mL). The best -glucosidase inhibitory fraction was ethyl acetate (IC of 157.04 ± 0.23 µg/mL), close to that of acarbose (116.45 ± 0.21 µg/mL).

Conclusion

Fractional extracts from distributed in gardens of Can Tho City, Vietnam, contain potential antioxidant, antibacterial, antifungal, anti-inflammatory, and antidiabetic bioactive compounds.

Loading

Article metrics loading...

/content/journals/npj/10.2174/2210315514666230808153921
2025-02-03
2025-09-25
Loading full text...

Full text loading...

References

  1. RahmanT. HosenI. IslamM.T. ShekharH.U. Oxidative stress and human health.Adv. Biosci. Biotech.201277A10.4236/abb.2012.327123
    [Google Scholar]
  2. PickeringR.J. RosadoC.J. SharmaA. BukshS. TateM. de HaanJ.B. Recent novel approaches to limit oxidative stress and inflammation in diabetic complications.Clinical & translational immunology201874e1016
    [Google Scholar]
  3. SõukandR. PieroniA. BiróM. DénesA. DoganY. HajdariA. KalleR. ReadeB. MustafaB. NedelchevaA. QuaveC.L. ŁuczajŁ. An ethnobotanical perspective on traditional fermented plant foods and beverages in Eastern Europe.J. Ethnopharmacol.201517028429610.1016/j.jep.2015.05.018 25985766
    [Google Scholar]
  4. TungmunnithumD. ThongboonyouA. PholboonA. YangsabaiA. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview.Medicines2018539310.3390/medicines5030093 30149600
    [Google Scholar]
  5. GutierrezY.V. YamaguchiL.F. de MoraesM.M. JeffreyC.S. KatoM.J. Natural products from peperomia: Occurrence, biogenesis and bioactivity.Phytochem. Rev.20161561009103310.1007/s11101‑016‑9461‑5
    [Google Scholar]
  6. WankeS. SamainM.S. VanderschaeveL. MathieuG. GoetghebeurP. NeinhuisC. Phylogeny of the genus Peperomia (Piperaceae) inferred from the trnK/matK region (cpDNA).Plant Biol.2006819310210.1055/s‑2005‑873060 16435273
    [Google Scholar]
  7. CarricondeC. Little heart-Peperomia pellucida HBK.Back to the RootsOlinda: Northeastern Center for Popular Medicine: Olinda Brazil19971223
    [Google Scholar]
  8. KhanA. RahmanM. IslamM.S. Isolation and bioactivity of a xanthone glycoside from Peperomia pellucida.Life Sci. Med. Res.20102010110
    [Google Scholar]
  9. TablangJ.O. CamposR. JacobJ.K.S. Phytochemical screening and antibacterial properties of silverbush (Peperomia pellucida) against selected cultured bacteria.Global J. Med. Plant Res.20208116
    [Google Scholar]
  10. WangQ.W. YuD.H. LinM.G. ZhaoM. ZhuW.J. LuQ. LiG.X. WangC. YangY.F. QinX.M. FangC. ChenH.Z. YangG.H. Antiangiogenic polyketides from Peperomia dindygulensis Miq.Molecules20121744474448310.3390/molecules17044474 22504832
    [Google Scholar]
  11. PhongtongpasukS. PoadangS. Extraction of antioxidants from Peperomia pellucida L. Kunth.Science & Technology Asia20143843
    [Google Scholar]
  12. IdrisO. OlatunjiB. MaduforP. In vitro antibacterial activity of the extracts of Peperomia pellucida (L).Br. Microbiol. Res. J.20161141710.9734/BMRJ/2016/21421
    [Google Scholar]
  13. HastutiU.S. UmmahY.P.I. KhasanahH.N. Eds.; Antifungal activity of Piper aduncum and Peperomia pellucida leaf ethanol extract against Candida albicansAIP Conference ProceedingsAIP Publishing LLC20171844110.1063/1.4983417
    [Google Scholar]
  14. ZhangG.L. LiN. WangY.H. ZhengY.T. ZhangZ. WangM.W. Bioactive lignans from Peperomia heyneana.J. Nat. Prod.200770466266410.1021/np0605236 17291043
    [Google Scholar]
  15. MuteeA.F. SalhimiS.M. YamM.F. LimC.P. AbdullahG.Z. AmeerO.Z. AbdulkarimM.F. AsmawiM.Z. In vivo Anti-inflammatory and in vitro Antioxidant Activities of Peperomia pellucida.Int. J. Pharmacol.20106568669010.3923/ijp.2010.686.690
    [Google Scholar]
  16. SheikhH. SikderS. PaulS.K. HasanA.R. RahamanM. KunduS.P. Hypoglycemic, anti-inflammatory and analgesic activity of Peperomia pellucida (L.) HBK (piperaceae).Int. J. Pharm. Sci. Res.201341458463
    [Google Scholar]
  17. NguimbouR.M. BoudjekoT. NjintangN.Y. HimedaM. ScherJ. MbofungC.M.F. Mucilage chemical profile and antioxidant properties of giant swamp taro tubers.J. Food Sci. Technol.201451123559356710.1007/s13197‑012‑0906‑6 25477624
    [Google Scholar]
  18. ZhishenJ. MengchengT. JianmingW. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals.Food Chem.199964455555910.1016/S0308‑8146(98)00102‑2
    [Google Scholar]
  19. TabasumS. KhareS. JainK. Spectrophotometric quantification of total phenolic, flavonoid, and alkaloid contents of Abrus precatorius L. seeds.Asian J. Pharm. Clin. Res.201692371374
    [Google Scholar]
  20. SharmaO.P. BhatT.K. DPPH antioxidant assay revisited.Food Chem.200911341202120510.1016/j.foodchem.2008.08.008
    [Google Scholar]
  21. ShahP. ModiH. Comparative study of DPPH, ABTS and FRAP assays for determination of antioxidant activity.Int. J. Res. Appl. Sci. Eng. Technol.201536636641
    [Google Scholar]
  22. ChavesN. SantiagoA. AlíasJ.C. Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used.Antioxidants2020917610.3390/antiox9010076 31952329
    [Google Scholar]
  23. NazirS. JanH. TungmunnithumD. DrouetS. ZiaM. HanoC. AbbasiB.H. Callus culture of Thai basil is an effective biological system for the production of antioxidants.Molecules20202520485910.3390/molecules25204859 33096885
    [Google Scholar]
  24. NganL.T.M. MoonJ.K. KimJ.H. ShibamotoT. AhnY.J. Growth-inhibiting effects of Paeonia lactiflora root steam distillate constituents and structurally related compounds on human intestinal bacteria.World J. Microbiol. Biotechnol.20122841575158310.1007/s11274‑011‑0961‑6 22805939
    [Google Scholar]
  25. JorgensenJ.H. PfallerM.A. Introduction to the 11th Edition of the Manual of Clinical Microbiology.Manual of Clinical MicrobiologyWiley201514
    [Google Scholar]
  26. ShahM. ParveenZ. KhanM.R. Evaluation of antioxidant, anti-inflammatory, analgesic and antipyretic activities of the stem bark of Sapindus mukorossi.BMC Complement. Altern. Med.201717152610.1186/s12906‑017‑2042‑3 29221478
    [Google Scholar]
  27. MogoleL. OmwoyoW. MtunziF. Phytochemical screening, anti-oxidant activity and α-amylase inhibition study using different extracts of loquat (Eriobotrya japonica) leaves.Heliyon202068e0473610.1016/j.heliyon.2020.e04736 32904229
    [Google Scholar]
  28. ShaiL. MaganoS. LebeloS. MogaleA. Inhibitory effects of five medicinal plants on rat alpha-glucosidase: Comparison with their effects on yeast alpha-glucosidase.J. Med. Plants Res.201151328632867
    [Google Scholar]
  29. BalasundramN. SundramK. SammanS. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses.Food Chem.200699119120310.1016/j.foodchem.2005.07.042
    [Google Scholar]
  30. FattahiS. JameiR. Antioxidant and antiradical activities of Rosa canina and Rosa pimpinellifolia fruits from West Azerbaijan.Urmia, IranBiology Department, Faculty of Science, Urmia University2012
    [Google Scholar]
  31. WenzigE.M. WidowitzU. KunertO. ChrubasikS. BucarF. KnauderE. BauerR. Phytochemical composition and in vitro pharmacological activity of two rose hip (Rosa canina L.) preparations.Phytomedicine2008151082683510.1016/j.phymed.2008.06.012 18707854
    [Google Scholar]
  32. MetodiewaD. KochmanA. KarolczakS. Evidence for antiradical and antioxidant properties of four biologically active N,N-diethylaminoethyl ethers of flavanone oximes: A comparison with natural polyphenolic flavonoid (rutin) action.Biochem. Mol. Biol. Int.199741510671075 9137839
    [Google Scholar]
  33. XiaoJ. CapanogluE. JassbiA.R. MironA. Advance on the flavonoid C-glycosides and health benefits.Critical reviews in food science and nutrition2016561S29S45
    [Google Scholar]
  34. BhambhaniS. KondhareK.R. GiriA.P. Diversity in chemical structures and biological properties of plant alkaloids.Molecules20212611337410.3390/molecules26113374 34204857
    [Google Scholar]
  35. KongY.R. TayK.C. SuY.X. WongC.K. TanW.N. KhawK.Y. Potential of naturally derived alkaloids as multi-targeted therapeutic agents for neurodegenerative diseases.Molecules202126372810.3390/molecules26030728 33573300
    [Google Scholar]
  36. ChuY.H. ChangC.L. HsuH.F. Flavonoid content of several vegetables and their antioxidant activity.J. Sci. Food Agric.200080556156610.1002/(SICI)1097‑0010(200004)80:5<561:AID‑JSFA574>3.0.CO;2‑#
    [Google Scholar]
  37. JafaarH.J. IsbilenO. VolkanE. SariyarG. Alkaloid profiling and antimicrobial activities of Papaver glaucum and P. decaisnei.BMC Res. Notes202114134810.1186/s13104‑021‑05762‑x 34496958
    [Google Scholar]
  38. WengN. WanS. WangH. ZhangS. ZhuG. LiuJ. CaiD. YangY. Insight into unresolved complex mixtures of aromatic hydrocarbons in heavy oil via two-dimensional gas chromatography coupled with time-of-flight mass spectrometry analysis.J. Chromatogr. A201513989410710.1016/j.chroma.2015.03.057 25939738
    [Google Scholar]
  39. IsmailN.I.M. ChuaL.S. Solvent Partition for Terpenoid Rich Fraction From Crude Extract of Eurycoma longifolia. Proceedings of the Third International Conference on Separation Technology 2020 (ICoST 2020)202030 December 202010.2991/aer.k.201229.009
    [Google Scholar]
  40. AhmadI. MaryonoM. Mun’imA. Kadar total alkaloid, fenolat, dan flavonoid dari ekstrak etil asetat herba Suruhan (Peperomia pellucida [L] Kunth). Ibn Sina Scientific Journal (JIIS).Pharmaceutical and Health Sciences20194226527510.36387/jiis.v4i2.261
    [Google Scholar]
  41. ZlatićN. JakovljevićD. StankovićM. Temporal, plant part, and interpopulation variability of secondary metabolites and antioxidant activity of Inula helenium L.Plants20198617910.3390/plants8060179 31213017
    [Google Scholar]
  42. MichielsJ.A. KeversC. PincemailJ. DefraigneJ.O. DommesJ. Extraction conditions can greatly influence antioxidant capacity assays in plant food matrices.Food Chem.2012130498699310.1016/j.foodchem.2011.07.117
    [Google Scholar]
  43. SrinivasanS. WankharW. RathinasamyS. RajanR. Free radical scavenging potential and HPTLC analysis of Indigofera tinctoria linn (Fabaceae).J. Pharm. Anal.20166212513110.1016/j.jpha.2015.04.003 29403972
    [Google Scholar]
  44. NgZ.X. SamsuriS.N. YongP.H. The antioxidant index and chemometric analysis of tannin, flavonoid, and total phenolic extracted from medicinal plant foods with the solvents of different polarities.J. Food Process. Preserv.2020449e1468010.1111/jfpp.14680
    [Google Scholar]
  45. AmirahS. ZainH.H.M. HusniI. KassimN.K. AminI. In vitro Antioxidant Capacity of Peperomia pellucida (L.) Kunth Plant from two different locations in Malaysia using different Solvents Extraction.Res. J. Pharm. Tech.20201341767177310.5958/0974‑360X.2020.00319.4
    [Google Scholar]
  46. OloyedeG.K. OnochaP.A. OlaniranB.B. Phytochemical, toxicity, antimicrobial and antioxidant screening of leaf extracts of Peperomia pellucida from Nigeria.Adv. Environ. Biol.201151237003709
    [Google Scholar]
  47. AbereT.A. AgoreyoF.O. EzeG.I. Phytochemical, antimicrobial and toxiicological evaluation of the leaves of Peperomia pellucida (L.) HBK (Piperaceae).J Pharm Allied Sci20129316371652
    [Google Scholar]
  48. ZubairK. SamiyaJ. JalalU. MostafizurR. In vitro investigation of antdiarrhoeal, antimicrobial and thrombolytic activities of aerial parts of Peperomia pellucida.Pharmacologyonline20153513
    [Google Scholar]
  49. MendesL. MacielK. VieiraA. MendonçaL. SilvaR. NetoP.R. Antimicrobial activity of ethanolic extracts of Peperomia pellucida and Portulaca pilosa.Rev. Cienc. Farm. Basica Apl.2011321
    [Google Scholar]
  50. WeiL.S. WeeW. SiongJ.Y.F. SyamsumirD.F. Characterization of anticancer, antimicrobial, antioxidant properties and chemical compositions of Peperomia pellucida leaf extract.Acta Med. Iran.20114910670674 22071643
    [Google Scholar]
  51. OkohS. IwerieborB. OkohO. OkohA. Bioactive constituents, radical scavenging, and antibacterial properties of the leaves and stem essential oils from Peperomia pellucida (L.) kunth.Pharmacogn. Mag.20171351)(339210.4103/pm.pm_106_17 29142389
    [Google Scholar]
  52. GaestelM. KotlyarovA. KrachtM. Targeting innate immunity protein kinase signalling in inflammation.Nat. Rev. Drug Discov.20098648049910.1038/nrd2829 19483709
    [Google Scholar]
  53. FernandoI.P.S. NahJ.W. JeonY.J. Potential anti-inflammatory natural products from marine algae.Environ. Toxicol. Pharmacol.201648223010.1016/j.etap.2016.09.023 27716532
    [Google Scholar]
  54. PereraM. PapaN. ChristidisD. WetherellD. HofmanM.S. MurphyD.G. BoltonD. LawrentschukN. Sensitivity, specificity, and predictors of positive 68Ga–prostate-specific membrane antigen positron emission tomography in advanced prostate cancer: A systematic review and meta-analysis.Eur. Urol.201670692693710.1016/j.eururo.2016.06.021 27363387
    [Google Scholar]
  55. HoK.L. TanC.G. YongP.H. WangC.W. LimS.H. KuppusamyU.R. NgoC.T. MassaweF. NgZ.X. Extraction of phytochemicals with health benefit from Peperomia pellucida (L.) Kunth through liquid-liquid partitioning.J. Appl. Res. Med. Aromat. Plants20223010039210.1016/j.jarmap.2022.100392
    [Google Scholar]
  56. SalesP.M. SouzaP.M. SimeoniL.A. MagalhãesP.O. SilveiraD. α-Amylase inhibitors: A review of raw material and isolated compounds from plant source.J. Pharm. Pharm. Sci.201215114118310.18433/J35S3K 22365095
    [Google Scholar]
  57. HidayatiS. MayasariS.S. SetyaningrumL. WardaniA.D. AiniQ. In vitro antidiabetic activity of Peperomia pellucida extract and fraction by alpha-amylase inhibition pathway.Pharmaciana202210.12928/pharmaciana.v12i2.21874
    [Google Scholar]
  58. HossainU. DasA.K. GhoshS. SilP.C. An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications.Food Chem. Toxicol.202014511173810.1016/j.fct.2020.111738 32916220
    [Google Scholar]
  59. TerunaH.Y. HendraR. AlmurdaniM. IAI special edition: α-Glucosidase inhibitory activities of Loranthus ferrugineus and Peperomia pellucida extractsPharmacy Education202222258
    [Google Scholar]
  60. OliveiraA.P. FerreiraJ.G. RiboiraS. AndradeP.B. ValentãoP. Bioactive natural products from piper betle l. leaves and their α-glucosidase inhibitory potential.Rec. Nat. Prod.2016106771
    [Google Scholar]
  61. KaurN. KumarV. NayakS.K. WadhwaP. KaurP. SahuS.K. Alpha‐amylase as molecular target for treatment of diabetes mellitus: A comprehensive review.Chem. Biol. Drug Des.202198453956010.1111/cbdd.13909 34173346
    [Google Scholar]
  62. UnuofinJ.O. LebeloS.L. Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of type 2 diabetes: An updated review.Oxid. Med. Cell. Longev.20202020135689310.1155/2020/1356893
    [Google Scholar]
  63. TabishS.A. Is diabetes becoming the biggest epidemic of the twenty-first century?Int. J. Health Sci.200712VVIII 21475425
    [Google Scholar]
/content/journals/npj/10.2174/2210315514666230808153921
Loading
/content/journals/npj/10.2174/2210315514666230808153921
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test