Skip to content
2000
Volume 15, Issue 7
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Endophytes are an appealing source of natural products with unique structures that can aid in the treatment of life-altering disorders because of the complexity and structural variety of the secondary metabolites they produce. The genus , which belongs to family Cladosporiaceae, class Dothideomycetes has received more attention due to the isolation of various classes of compounds with unique structures mainly alkaloids, azaphilones, benzofluoranthenones, coumarins, isocumarins, lactones, naphthalenones, macrolides, perylenequinones and steroids that exhibited diverse biological activities as: Antiviral, antimicrobial, anti-inflammatory, antidiabetic, phytotoxicity and anti-Alzheimer, whereas anticancer compounds predominated. This review focuses on the isolated secondary metabolites from genus specifically, and due to their exquisite bioactivity, the source of the strains, the culture media, the biological potential of isolated secondary metabolites and covers the literature from 2000 to 2023.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155328257241021033118
2024-10-30
2025-09-25
Loading full text...

Full text loading...

References

  1. RedeckerD. KodnerR. GrahamL.E. Glomalean fungi from the Ordovician. Science200028954861920192110.1126/science.289.5486.1920 10988069
    [Google Scholar]
  2. ShuklaS. HabbuP. KulkarniV. JagadishK. PandeyA. SutariyaV. Endophytic microbes: A novel source for biologically/pharmacologically active secondary metabolites.Asian J. Pharmacol. Toxicol2014216
    [Google Scholar]
  3. AliL. KhanA.L. HussainJ. Al-HarrasiA. WaqasM. KangS.M. Al-RawahiA. LeeI.J. Sorokiniol: A new enzymes inhibitory metabolite from fungal endophyte Bipolaris sorokiniana LK12.BMC Microbiol.201616110310.1186/s12866‑016‑0722‑7 27277006
    [Google Scholar]
  4. BenschK. GroenewaldJ.Z. MeijerM. DijksterhuisJ. JurjevićŽ. AndersenB. HoubrakenJ. CrousP.W. SamsonR.A. Cladosporium species in indoor environments.Stud. Mycol.201889117730110.1016/j.simyco.2018.03.002 29681671
    [Google Scholar]
  5. De HoogG. GuarroJ. GeneJ. FiguerasM. Atlas of clinical fungi, Centraalbureau voor Schimmelcultures.2nd edNetherlandsURV2000
    [Google Scholar]
  6. DomschK.H. Compendium of soil fungi.IHW-Verlag.19931630643
    [Google Scholar]
  7. DuganF.M. BraunU. GroenewaldJ.Z. CrousP.W. Morphological plasticity in Cladosporium sphaerospermum. Persoonia200821191610.3767/003158508X334389 20396574
    [Google Scholar]
  8. ZalarP. de HoogG.S. SchroersH.J. CrousP.W. GroenewaldJ.Z. Gunde-CimermanN. Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments.Stud. Mycol.200758115718310.3114/sim.2007.58.06 18490999
    [Google Scholar]
  9. BenschK. BraunU. GroenewaldJ.Z. CrousP.W. The genus Cladosporium. Stud. Mycol.2012721140110.3114/sim0003 22815589
    [Google Scholar]
  10. ShakerN. AhmedG. El-SawyM. IbrahimH. IsmailH. Isolation, characterization and insecticidal activity of methylene chloride extract of cladosporium cladosporioides secondary metabolites against Aphis gossypii (Glov.). J. Plant Protec. Patho.201910211511910.21608/jppp.2019.40896
    [Google Scholar]
  11. BaiM. ZhengC.J. TangD.Q. ZhangF. WangH.Y. ChenG.Y. Two new secondary metabolites from a mangrove-derived fungus Cladosporium sp. JS1-2.J. Antibiot. (Tokyo)2019721077978210.1038/s41429‑019‑0206‑8 31267010
    [Google Scholar]
  12. YeY.H. ZhuH.L. SongY.C. LiuJ.Y. TanR.X. Structural revision of aspernigrin A, reisolated from Cladosporium herbarum IFB-E002.J. Nat. Prod.20056871106110810.1021/np050059p 16038560
    [Google Scholar]
  13. WuG. SunX. YuG. WangW. ZhuT. GuQ. LiD. Cladosins A-E, hybrid polyketides from a deep-sea-derived fungus, Cladosporium sphaerospermum. J. Nat. Prod.201477227027510.1021/np400833x 24499327
    [Google Scholar]
  14. TieQ. WangM. HuangX. ChenY. LiuY. YangB. LiY. A new indole alkaloid from Cladosporium sp. SCSIO41205.Nat. Prod. Res.2023251410.1080/14786419.2023.2261610 37746840
    [Google Scholar]
  15. YehiaR.S. OsmanG.H. AssaggafH. SalemR. MohamedM.S.M. Isolation of potential antimicrobial metabolites from endophytic fungus Cladosporium cladosporioides from endemic plant Zygophyllum mandavillei. S. Afr. J. Bot.202013429630210.1016/j.sajb.2020.02.033
    [Google Scholar]
  16. HanX. BaoX.F. WangC.X. XieJ. SongX.J. DaiP. ChenG.D. HuD. YaoX.S. GaoH. Cladosporine A, a new indole diterpenoid alkaloid with antimicrobial activities from Cladosporium sp.Nat. Prod. Res.20213571115112110.1080/14786419.2019.1641807 31307232
    [Google Scholar]
  17. FanZ. SunZ.H. LiuH.X. ChenY.C. LiH.H. ZhangW.M. Perangustols A and B, a pair of new azaphilone epimers from a marine sediment-derived fungus Cladosporium perangustm FS62.J. Asian Nat. Prod. Res.201618111024102910.1080/10286020.2016.1181623 27240037
    [Google Scholar]
  18. LuY. LiS. ShaoM. XiaoX. KongL. JiangD. ZhangY. Isolation, identification, derivatization and phytotoxic activity of secondary metabolites produced by Cladosporium oxysporum DH14, a locust-associated fungus.J. Integr. Agric.201615483283910.1016/S2095‑3119(15)61145‑5
    [Google Scholar]
  19. WangC.N. LuH.M. GaoC.H. GuoL. ZhanZ.Y. WangJ.J. LiuY.H. XiangS.T. WangJ. LuoX.W. Cytotoxic benzopyranone and xanthone derivatives from a coral symbiotic fungus Cladosporium halotolerans GXIMD 02502.Nat. Prod. Res.202135245596560310.1080/14786419.2020.1799363 32713199
    [Google Scholar]
  20. LiuY. KurtánT. Yun WangC. Han LinW. OrfaliR. MüllerW.E.G. DaletosG. ProkschP. Cladosporinone, a new viriditoxin derivative from the hypersaline lake derived fungus Cladosporium cladosporioides. J. Antibiot. (Tokyo)201669970270610.1038/ja.2016.11 26905758
    [Google Scholar]
  21. ZhangF.Z. LiX.M. LiX. YangS.Q. MengL.H. WangB.G. Polyketides from the mangrove-derived endophytic fungus Cladosporium cladosporioides. Mar. Drugs201917529610.3390/md17050296 31108946
    [Google Scholar]
  22. ZhuM. GaoH. WuC. ZhuT. CheQ. GuQ. GuoP. LiD. Lipid-lowering polyketides from a soft coral-derived fungus Cladosporium sp. TZP29.Bioorg. Med. Chem. Lett.201525173606360910.1016/j.bmcl.2015.06.072 26169125
    [Google Scholar]
  23. SinghB. SharmaP. KumarA. ChadhaP. KaurR. KaurA. Antioxidant and in vivo genoprotective effects of phenolic compounds identified from an endophytic Cladosporium velox and their relationship with its host plant Tinospora cordifolia. J. Ethnopharmacol.201619445045610.1016/j.jep.2016.10.018 27721051
    [Google Scholar]
  24. AminM. ZhangX.Y. XuX.Y. QiS.H. New citrinin derivatives from the deep-sea-derived fungus Cladosporium sp. SCSIO z015.Nat. Prod. Res.20203491219122610.1080/14786419.2018.1556266 30663375
    [Google Scholar]
  25. HeZ.H. ZhangG. YanQ.X. ZouZ.P. XiaoH.X. XieC.L. TangX.X. LuoL.Z. YangX.W. Cladosporactone A, a unique polyketide with 7‐Methylisochromen‐3‐one Skeleton from the deep‐sea‐derived fungus Cladosporium cladosporioides.Chem. Biodivers.2020176158162
    [Google Scholar]
  26. WangX. RadwanM.M. TaráwnehA.H. GaoJ. WedgeD.E. RosaL.H. CutlerH.G. CutlerS.J. Antifungal activity against plant pathogens of metabolites from the endophytic fungus Cladosporium cladosporioides. J. Agric. Food Chem.201361194551455510.1021/jf400212y 23651409
    [Google Scholar]
  27. ZhangB. WuJ.T. ZhengC.J. ZhouX.M. YuZ.X. LiW.S. ChenG.Y. ZhuG.Y. Bioactive cyclohexene derivatives from a mangrove-derived fungus Cladosporium sp. JJM22.Fitoterapia202114910482310.1016/j.fitote.2020.104823 33387642
    [Google Scholar]
  28. de MedeirosL.S. MurguM. de SouzaA.Q.L. Rodrigues-FoE. Antimicrobial depsides produced by Cladosporium uredinicola, an endophytic fungus isolated from Psidium guajava fruits.Helv. Chim. Acta20119461077108410.1002/hlca.201000387
    [Google Scholar]
  29. RotinsuluH. YamazakiH. SugaiS. IwakuraN. WewengkangD.S. SumilatD.A. NamikoshiM. Cladosporamide A, a new protein tyrosine phosphatase 1B inhibitor, produced by an Indonesian marine sponge-derived Cladosporium sp.J. Nat. Med.201872377978310.1007/s11418‑018‑1193‑y 29508256
    [Google Scholar]
  30. HamayunM. Afzal KhanS. AhmadN. TangD.S. KangS.M. NaC.I. SohnE.Y. HwangY.H. ShinD.H. LeeB.H. KimJ-G. LeeI-J. Cladosporium sphaerospermum as a new plant growth-promoting endophyte from the roots of Glycine max (L.) Merr.World J. Microbiol. Biotechnol.200925462763210.1007/s11274‑009‑9982‑9
    [Google Scholar]
  31. JadulcoR. BrauersG. EdradaR.A. EbelR. WrayV. SudarsonoS. ProkschP. New metabolites from sponge-derived fungi Curvularia lunata and Cladosporium herbarum. J. Nat. Prod.200265573073310.1021/np010390i 12027752
    [Google Scholar]
  32. LiC.P. SongY.P. LiangX.R. JiN.Y. Four dodecanoic acid derivatives from the cold-seep-derived fungus Cladosporium cladosporioides 8-1.Nat. Prod. Res.20231716 37194666
    [Google Scholar]
  33. ZhangF.Z. LiX.M. YangS.Q. MengL.H. WangB.G. Thiocladospolides A–D, 12-membered macrolides from the mangrove-derived endophytic fungus Cladosporium cladosporioides MA-299 and structure revision of pandangolide 3.J. Nat. Prod.20198261535154110.1021/acs.jnatprod.8b01091 31038952
    [Google Scholar]
  34. ZhangF.Z. LiX.M. MengL.H. WangB.G. Cladocladosin A, an unusual macrolide with bicyclo 5/9 ring system, and two thiomacrolides from the marine mangrove-derived endophytic fungus, Cladosporium cladosporioides MA-299.Bioorg. Chem.202010110395010.1016/j.bioorg.2020.103950 32474178
    [Google Scholar]
  35. LiuH.X. TanH.B. LiS.N. ChenY.C. LiH.H. QiuS.X. ZhangW.M. Two new 12-membered macrolides from the endophytic fungal strain Cladosprium colocasiae A801 of Callistemon viminalis. J. Asian Nat. Prod. Res.201921769670110.1080/10286020.2018.1471067 29741104
    [Google Scholar]
  36. SalvatoreM.M. AndolfiA. NicolettiR. The genus Cladosporium: A rich source of diverse and bioactive natural compounds.Molecules20212613395910.3390/molecules26133959 34203561
    [Google Scholar]
  37. DaiH.Q. KangQ.J. LiG.H. ShenY.M. Three new polyketide metabolites from the endophytic fungal strain Cladosporium tenuissimum LR463 of Maytenus hookeri.Helv. Chim. Acta200689352753110.1002/hlca.200690055
    [Google Scholar]
  38. Wuringege; Guo, Z-K.; Wei, W.; Jiao, R-H.; Yan, T.; Zang, L-Y.; Jiang, R.; Tan, R-X.; Ge, H-M. Polyketides from the plant endophytic fungus Cladosporium sp. IFB3lp-2.J. Asian Nat. Prod. Res.201315992893310.1080/10286020.2013.817389
    [Google Scholar]
  39. WangW. FengH. SunC. CheQ. ZhangG. ZhuT. LiD. Thiocladospolides F-J, antibacterial sulfur containing 12-membered macrolides from the mangrove endophytic fungus Cladosporium oxysporum HDN13-314.Phytochemistry202017811246210.1016/j.phytochem.2020.112462 32888671
    [Google Scholar]
  40. GesnerS. CohenN. IlanM. YardenO. CarmeliS. Pandangolide 1a, a metabolite of the sponge-associated fungus Cladosporiumsp., and the absolute stereochemistry of pandangolide 1 and iso-cladospolide B.J. Nat. Prod.20056891350135310.1021/np0501583 16180812
    [Google Scholar]
  41. ShigemoriH. KasaiY. KomatsuK. TsudaM. MikamiY. KobayashiJ. Sporiolides A and B, new cytotoxic twelve-membered macrolides from a marine-derived fungus Cladosporium species.Mar. Drugs20042416416910.3390/md204164
    [Google Scholar]
  42. HuangC. ChenT. YanZ. GuoH. HouX. JiangL. LongY. Thiocladospolide E and cladospamide A, novel 12-membered macrolide and macrolide lactam from mangrove endophytic fungus Cladosporium sp. SCNU-F0001.Fitoterapia201913710424610.1016/j.fitote.2019.104246 31226284
    [Google Scholar]
  43. GhaffariF. EbadiM. MollaeiS. Isolation and molecular identification of endophytic fungi associated with Ziziphora tenuior L. and their biological potential.S. Afr. J. Bot.202316135836410.1016/j.sajb.2023.08.024
    [Google Scholar]
  44. JadulcoR. ProkschP. WrayV. Sudarsono; Berg, A.; Gräfe, U. New macrolides and furan carboxylic acid derivative from the sponge-derived fungus Cladosporium herbarum. J. Nat. Prod.200164452753010.1021/np000401s 11325242
    [Google Scholar]
  45. MaR.Z. ZhengC.J. ZhangB. YangJ.Y. ZhouX.M. SongX.M. Two New naphthalene-chroman coupled derivatives from the mangrove-derived fungus Cladosporium sp. JJM22.Phytochem. Lett.20214311411610.1016/j.phytol.2021.03.014
    [Google Scholar]
  46. WuJ.T. ZhengC.J. ZhangB. ZhouX.M. ZhouQ. ChenG.Y. ZengZ.E. XieJ.L. HanC.R. LyuJ.X. Two new secondary metabolites from a mangrove-derived fungus Cladosporium sp. JJM22.Nat. Prod. Res.2019331344010.1080/14786419.2018.1431634 29388439
    [Google Scholar]
  47. ZhangZ. HeX. LiuC. CheQ. ZhuT. GuQ. LiD. Clindanones A and B and cladosporols F and G, polyketides from the deep-sea derived fungus Cladosporium cladosporioides HDN14-342.RSC Advances2016680764987650410.1039/C6RA14640F
    [Google Scholar]
  48. NaseerS. BhatK.A. QadriM. Riyaz-Ul-HassanS. MalikF.A. KhurooM.A. Bioactivity‐guided isolation, antimicrobial and cytotoxic evaluation of secondary metabolites from Cladosporium tenuissimum associated with Pinus wallichiana. ChemistrySelect2017231311131410.1002/slct.201601942
    [Google Scholar]
  49. ZhangF. ZhouL. KongF. MaQ. XieQ. LiJ. DaiH. GuoL. ZhaoY. Altertoxins with quorum sensing inhibitory activities from the marine-derived fungus Cladosporium sp. KFD33.Mar. Drugs20201816710.3390/md18010067 31963874
    [Google Scholar]
  50. LiH.L. LiX.M. MándiA. AntusS. LiX. ZhangP. LiuY. KurtánT. WangB.G. Characterization of cladosporols from the marine algal-derived endophytic fungus Cladosporium cladosporioides EN-399 and configurational revision of the previously reported cladosporol derivatives. Wang.J. Org. Chem.201782199946995410.1021/acs.joc.7b01277 28853887
    [Google Scholar]
  51. NasiniG. ArnoneA. AssanteG. BavaA. MoriccaS. RagazziA. Secondary mould metabolites of Cladosporium tenuissimum, a hyperparasite of rust fungi.Phytochemistry200465142107211110.1016/j.phytochem.2004.03.013 15279980
    [Google Scholar]
  52. AiW. LinX. WangZ. LuX. MangaladossF. YangX. ZhouX. TuZ. LiuY. Cladosporone A, a new dimeric tetralone from fungus Cladosporium sp. KcFL6′ derived of mangrove plant Kandelia candel.J. Antibiot. (Tokyo)201568321321510.1038/ja.2014.126 25248726
    [Google Scholar]
  53. VenkateswaruluN. ShameerS. BramhachariP.V. BashaS.K.T. NagarajuC. VijayaT. Isolation and characterization of plumbagin (5- hydroxyl- 2- methylnaptalene-1,4-dione) producing endophytic fungi Cladosporium delicatulum from endemic medicinal plants.Biotechnol. Rep. (Amst.)201820e0028210.1016/j.btre.2018.e00282 30294561
    [Google Scholar]
  54. KhanM.I.H. SohrabM.H. RonyS.R. TareqF.S. HasanC.M. MazidM.A. Cytotoxic and antibacterial naphthoquinones from an endophytic fungus, Cladosporium sp.Toxicol. Rep.2016386186510.1016/j.toxrep.2016.10.005 28959613
    [Google Scholar]
  55. SoK.K. ChunJ. KimD.H. Antimicrobial and antitumor photodynamic effects of phleichrome from the phytopathogenic fungus Cladosporium Phlei. Mycobiology201846444845110.1080/12298093.2018.1551599 30637154
    [Google Scholar]
  56. LiX. ChenY. LiuZ. LiS. LiuH. WangY. ZhangW. YanH. Cytotoxic pyrone derivatives from the deep-sea-derived fungus Cladosporium halotolerans FS702.Nat. Prod. Res.202317 36938638
    [Google Scholar]
  57. AbdulrahmanM.S. MansyM.S. MekaweyA.A. AminB.H. Antimicrobial Activities of Secondary Metabolites from Airborne Cladosporium Species Isolated in Cairo.EgyptRes. Sq202210.21203/rs.3.rs‑1605219/v1
    [Google Scholar]
  58. XieM.M. JiangJ.Y. ZouZ.B. XuL. ZhangY. WangC.F. LiuC.B. YanQ.X. LiuZ. YangX.W. Chemical constituents of the deep‐sea‐derived fungus Cladosporium oxysporum 170103 and their antibacterial effects.Chem. Biodivers.20221912e20220096310.1002/cbdv.202200963 36436828
    [Google Scholar]
  59. LeeS.R. KangH. YooM.J. YiS-A. ChristineB. LeeJ. KimK.H. LeeJ. KimK.H. Anti-adipogenic pregnane steroid from a Hydractinia-associated fungus, Cladosporium sphaerospermum SW67.Nat. Prod. Sci.202026323023510.20307/nps.2020.26.3.230
    [Google Scholar]
  60. HosoeT. OkamotoS. NozawaK. KawaiK.I. OkadaK. TakakiG.M.D.C. FukushimaK. MiyajiM. New pentanorlanostane derivatives, cladosporide B-D, as characteristic antifungal agents against Aspergillus fumigatus, isolated from Cladosporium sp.J. Antibiot. (Tokyo)200154974775010.7164/antibiotics.54.747 11714232
    [Google Scholar]
  61. HosoeT. OkadaH. ItabashiT. NozawaK. OkadaK. Campos TakakiG.M. FukushimaK. MiyajiM. KawaiK. A new pentanorlanostane derivative, cladosporide A, as a characteristic antifungal agent against Aspergillus fumigatus, isolated from Cladosporium sp.Chem. Pharm. Bull. (Tokyo)200048101422142610.1248/cpb.48.1422 11045443
    [Google Scholar]
  62. PangX. LinX. WangJ. LiangR. TianY. SalendraL. LuoX. ZhouX. YangB. TuZ. LiuY. Three new highly oxygenated sterols and one new dihydroisocoumarin from the marine sponge-derived fungus Cladosporium sp. SCSIO41007.Steroids2018129414610.1016/j.steroids.2017.12.001 29223616
    [Google Scholar]
  63. PanF. El-KashefD.H. KalscheuerR. MüllerW.E.G. LeeJ. FeldbrüggeM. MándiA. KurtánT. LiuZ. WuW. ProkschP. Cladosins L-O, new hybrid polyketides from the endophytic fungus Cladosporium sphaerospermum WBS017.Eur. J. Med. Chem.202019111215910.1016/j.ejmech.2020.112159 32101782
    [Google Scholar]
  64. LiangX. HuangZ.H. MaX. QiS.H. Qi, S.-H Unstable tetramic acid derivatives from the deep-sea-derived fungus Cladosporium sphaerospermum EIODSF 008.Mar. Drugs2018161144810.3390/md16110448 30445739
    [Google Scholar]
  65. HuangZ. NongX. LiangX. QiS. New tetramic acid derivatives from the deep-sea-derived fungus Cladosporium sp. SCSIO z0025.Tetrahedron201874212620262610.1016/j.tet.2018.04.010
    [Google Scholar]
  66. YuG.H. WuG.W. ZhuT.J. GuQ.Q. LiD.H. Cladosins F and G, two new hybrid polyketides from the deep-sea-derived Cladosporium sphaerospermum 2005-01-E3.J. Asian Nat. Prod. Res.201517212012410.1080/10286020.2014.940330 25081023
    [Google Scholar]
  67. ZhangZ. HeX. WuG. LiuC. LuC. GuQ. CheQ. ZhuT. ZhangG. LiD. Aniline-tetramic acids from the deep-sea-derived fungus Cladosporium sphaerospermum L3P3 cultured with the HDAC inhibitor SAHA.J. Nat. Prod.20188171651165710.1021/acs.jnatprod.8b00289 29985604
    [Google Scholar]
  68. RischerM. LeeS.R. EomH.J. ParkH.B. VollmersJ. KasterA.K. ShinY.H. OhD.C. KimK.H. BeemelmannsC. Spirocyclic cladosporicin A and cladosporiumins I and J from a Hydractinia -associated Cladosporium sphaerospermum SW67.Org. Chem. Front.2019681084109310.1039/C8QO01104D
    [Google Scholar]
  69. SilberJ. OhlendorfB. LabesA. Wenzel-StorjohannA. NätherC. ImhoffJ.F. Malettinin E, an antibacterial and antifungal tropolone produced by a marine Cladosporium strain.Front. Mar. Sci.201413510.3389/fmars.2014.00035
    [Google Scholar]
  70. PaulD. ParkK. Identification of volatiles produced by Cladosporium cladosporioides CL-1, a fungal biocontrol agent that promotes plant growth.Sensors20131310139691397710.3390/s131013969 24135990
    [Google Scholar]
  71. ZhangY. LuoL. ZhuS. NiuS. ZhangY. ZhangY. Cladoxanthones C–G, xanthone derivatives from Cladosporium sp.RSC Advances20231332219542196110.1039/D3RA04012G 37483674
    [Google Scholar]
  72. ZhuG. KongF. WangY. FuP. ZhuW. Cladodionen, a cytotoxic hybrid polyketide from the marine-derived Cladosporium sp. OUCMDZ-1635.Mar. Drugs20181627110.3390/md16020071 29470403
    [Google Scholar]
  73. SallamA. El-MetwallyM. SabryM.A. ElsbaeyM. Cladamide: A new ceramide from the endophytic fungus Cladosporium cladosporioides. Nat. Prod. Res.20233771082109110.1080/14786419.2021.1986709 34622719
    [Google Scholar]
  74. LiuD.R. YanQ.X. ZouZ.B. XieC.L. YangX.W. JiaA.Q. Cladosporium sphaerospermum extract inhibits quorum sensing associated virulence factors of Serratia marcescens. Biofilm2023610014610.1016/j.bioflm.2023.100146 37560185
    [Google Scholar]
  75. WangN. ZhangS. LiY.J. SongY.Q. LeiC.Y. PengY.Y. WangJ.J. LouB.H. JiangH.B. Novel isolate of Cladosporium subuliforme and its potential to control Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae).Egypt. J. Biol. Pest Control20233313710.1186/s41938‑023‑00685‑0
    [Google Scholar]
  76. AmeenF. Al-HomaidanA.A. Al-SabriA. AlmansobA. AlNAdhari, S. Anti-oxidant, anti-fungal and cytotoxic effects of silver nanoparticles synthesized using marine fungus Cladosporium halotolerans. Appl. Nanosci.202313162363110.1007/s13204‑021‑01874‑9
    [Google Scholar]
  77. AdhikariP. JoshiK. PandeyA. Taxus associated fungal endophytes: Anticancerous to other biological activities.Fungal Biol. Rev.20234510030810.1016/j.fbr.2023.100308
    [Google Scholar]
  78. GovindappaM. LavanyaM. AishwaryaP. PaiK. LunkedP. HemashekharB. ArpithaB.M. RamachandraY.L. RaghavendraV.B. Synthesis and characterization of endophytic fungi, Cladosporium perangustum mediated silver nanoparticles and their antioxidant, anticancer and nano-toxicological study.Bionanoscience202010492894110.1007/s12668‑020‑00719‑z
    [Google Scholar]
  79. LeeS.R. LeeD. EomH.J. RischerM. KoY.J. KangK.S. KimC.S. BeemelmannsC. KimK.H. Hybrid polyketides from a hydractinia-associated Cladosporium sphaerospermum SW67 and their putative biosynthetic origin.Mar. Drugs2019171160610.3390/md17110606 31653089
    [Google Scholar]
  80. ZhuJ. WangZ. SongL. FuW. LiuL. Anti-Alzheimer’s natural products derived from plant endophytic fungi.Molecules2023285225910.3390/molecules28052259 36903506
    [Google Scholar]
/content/journals/npj/10.2174/0122103155328257241021033118
Loading
/content/journals/npj/10.2174/0122103155328257241021033118
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test