Skip to content
2000
Volume 16, Issue 2
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Non-small Cell Lung Cancer (NSCLC) holds a significant position globally among cancer types. Alkaloids, which are natural compounds containing nitrogen atoms, are found in various plant sources and play a crucial role in anti-cancer activity, offering potential therapeutic applications. They are classified by their chemical structure into categories such as indole alkaloids, isoquinoline alkaloids, pyrrole and pyrrolizidine alkaloids, β-carboline and benzoquinolizidine alkaloids, quinazoline alkaloids, and diterpene alkaloids. Alkaloid-based treatments offer several advantages in drug design, including high bioavailability, lower toxicity, and effective therapeutic outcomes. Drugs like vinca alkaloids, camptothecin, and sanguinarine demonstrate high efficacy against lung cancer cells. Combination therapy involving alkaloids can prevent chemoresistance and exhibit high potency against cancer cells. This review highlights the importance of alkaloids in combating chemoresistance in lung cancer. The mechanisms by which alkaloids inhibit the EGFR/AKT/MAPK signaling pathways and induce apoptosis are discussed in detail. In the future, alkaloid-based therapeutics for NSCLC and other malignancies may be explored as advanced and effective treatment options.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155322306241021043330
2024-10-30
2025-12-17
Loading full text...

Full text loading...

References

  1. Chaitanya ThandraK. BarsoukA. SaginalaK. Sukumar AluruJ. BarsoukA. Epidemiology of lung cancer.Contemp. Oncol. (Pozn.)2021251455210.5114/wo.2021.10382933911981
    [Google Scholar]
  2. AraghiM. MannaniR.; Heidarnejad maleki, A.; Hamidi, A.; Rostami, S.; Safa, S.H.; Faramarzi, F.; Khorasani, S.; Alimohammadi, M.; Tahmasebi, S.; Akhavan-Sigari, R. Recent advances in non-small cell lung cancer targeted therapy; an update review.Cancer Cell Int.202323116210.1186/s12935‑023‑02990‑y37568193
    [Google Scholar]
  3. SathishkumarK. ChaturvediM. DasP. StephenS. MathurP. Cancer incidence estimates for 2022 & projection for 2025: Result from national cancer registry programme, India.Indian J. Med. Res.20221564&559860736510887
    [Google Scholar]
  4. HerbstR.S. Non-small cell lung cancer.2023Available from: [https://www.yalemedicine.org/]
    [Google Scholar]
  5. MathurP. NathA. SathishkumarK. DasP. SudarshanK.L. A clinicoepidemiological profile of lung cancers in India – Results from the national cancer registry programme.Indian J. Med. Res.2022155226427210.4103/ijmr.ijmr_1364_2135946203
    [Google Scholar]
  6. RasoM.G. WistubaI.I. Molecular pathogenesis of early-stage non-small cell lung cancer and a proposal for tissue banking to facilitate identification of new biomarkers.J. Thorac. Oncol.200727Suppl. 3S128S135
    [Google Scholar]
  7. VillalobosP. WistubaI.I. LungI. Cancer biomarkers.Hematol. Oncol. Clin. North Am.2017311132910.1016/j.hoc.2016.08.00627912828
    [Google Scholar]
  8. The ABCs and 123s of Cancer Stages. Lane Regional Medical Centre2020Available from:https://www.lanermc.org/community/ lane-health-blog/the-abcs-and-123s-of-cancer-stages
  9. WebbS.D. SherrattJ.A. FishR.G. Mathematical modelling of tumour acidity: Regulation of intracellular pH.J. Theor. Biol.1999196223725010.1006/jtbi.1998.08369990741
    [Google Scholar]
  10. ChenS. TangJ. LiuF. LiW. YanT. ShangguanD. YangN. LiaoD. Changes of tumor microenvironment in non-small cell lung cancer after TKI treatments.Front. Immunol.202314109476410.3389/fimmu.2023.109476436949948
    [Google Scholar]
  11. SainiN. GrewalA.S. LatherV. GahlawatS.K. Natural alkaloids targeting EGFR in non-small cell lung cancer: Molecular docking and ADMET predictions.Chem. Biol. Interact.202235810990110.1016/j.cbi.2022.10990135341731
    [Google Scholar]
  12. HuangS. HeT. YangS. ShengH. TangX. BaoF. WangY. LinX. YuW. ChengF. LvW. HuJ. Metformin reverses chemoresistance in non-small cell lung cancer via accelerating ubiquitination-mediated degradation of Nrf2.Transl. Lung Cancer Res.2020962337235510.21037/tlcr‑20‑107233489797
    [Google Scholar]
  13. NaiduS. GarofaloM. microRNAs: An emerging paradigm in lung cancer chemoresistance.Front. Med. (Lausanne)201527710.3389/fmed.2015.0007726583081
    [Google Scholar]
  14. DeyP. KunduA. KumarA. GuptaM. LeeB.M. Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids).Recent Adv. Nat. Prod. Anal2020505567
    [Google Scholar]
  15. HeinrichM. MahJ. AmirkiaV. Alkaloids used as medicines: Structural phytochemistry meets biodiversity—an update and forward look.Molecules2021267183610.3390/molecules2607183633805869
    [Google Scholar]
  16. Alkaloid | definition, structure, & classification2017Available from:https://www.britannica.com/science/alkaloid
  17. History of antimalarial drugs | medicines for malaria venture2017Available from:https://www.mmv.org/malaria-medicines/history-antimalarials-drugs
  18. TaurD.J. PatilR.Y. Some medicinal plants with antiasthmatic potential: A current status.Asian Pac. J. Trop. Biomed.20111541341810.1016/S2221‑1691(11)60091‑923569804
    [Google Scholar]
  19. IqbalJ. AbbasiB.A. MahmoodT. KanwalS. AliB. ShahS.A. KhalilA.T. Plant-derived anticancer agents: A green anticancer approach.Asian Pac. J. Trop. Biomed.20177121129115010.1016/j.apjtb.2017.10.016
    [Google Scholar]
  20. VardanyanR. HrubyV. Cholinomimetics. Synthesis of best-seller drugs.2016Available from:[https://www.sciencedirect.com/book/9780124114920/synthesis-of-best-seller-drugs]
    [Google Scholar]
  21. Luna-VázquezF. Ibarra-AlvaradoC. Rojas-MolinaA. Rojas-MolinaI. Zavala-SánchezM. Vasodilator compounds derived from plants and their mechanisms of action.Molecules20131855814585710.3390/molecules1805581423685938
    [Google Scholar]
  22. Tamargo, J,; Delpón E.Pharmacological Bases of Antiarrhythmic Therapy.Cardiac Electrophysiology: From Cell to Bedside: Seventh Edition2018513524
    [Google Scholar]
  23. JiangW. TangM. YangL. ZhaoX. GaoJ. JiaoY. LiT. TieC. GaoT. HanY. JiangJ.D. Analgesic alkaloids derived from traditional Chinese medicine in pain management.Front. Pharmacol.20221385150810.3389/fphar.2022.85150835620295
    [Google Scholar]
  24. MabhizaD. ChitemerereT. MukanganyamaS. Antibacterial properties of alkaloid extracts from Callistemon citrinus and Vernonia adoensis against Staphylococcus aureus and Pseudomonas aeruginosa.Int. J. Med. Chem.201620161710.1155/2016/630416326904285
    [Google Scholar]
  25. BehlT. GuptaA. AlbrattyM. NajmiA. MerayaA.M. AlhazmiH.A. AnwerM.K. BhatiaS. BungauS.G. Alkaloidal phytoconstituents for diabetes management: Exploring the unrevealed potential.Molecules20222718585110.3390/molecules2718585136144587
    [Google Scholar]
  26. KalixP. The pharmacology of psychoactive alkaloids from ephedra and catha.J. Ethnopharmacol.1991321-320120810.1016/0378‑8741(91)90119‑X1881158
    [Google Scholar]
  27. KaurK. Alkaloids-important therapeutic secondary metabolites of plant origin.J Crit Rev20152318
    [Google Scholar]
  28. LichmanB.R. The scaffold-forming steps of plant alkaloid biosynthesis.Nat. Prod. Rep.202138110312910.1039/D0NP00031K32745157
    [Google Scholar]
  29. Castejón-VegaB. RubioA. Pérez-PulidoA.J. QuilesJ.L. LaneJ.D. Fernández-DomínguezB. Cachón-GonzálezM.B. Martín-RuizC. SanzA. CoxT.M. Alcocer-GómezE. CorderoM.D. L-arginine ameliorates defective autophagy in GM2 gangliosidoses by mTOR modulation.Cells20211011312210.3390/cells1011312234831346
    [Google Scholar]
  30. AdibahK. Plant toxins: Alkaloids and their toxicities.GSC Biol. Pharm. Sci.2019622129
    [Google Scholar]
  31. RowinskyEric. The Vinca Alkaloids, microtubule-targetting natural products.In:Holland-Frei Cancer Medicine.6th editionNCBI Bookshelf2023
    [Google Scholar]
  32. LiF. JiangT. LiQ. LingX. Camptothecin (CPT) and its derivatives are known to target topoisomerase I (Top1) as their mechanism of action: Did we miss something in CPT analogue molecular targets for treating human disease such as cancer?Am. J. Cancer Res.20177122350239429312794
    [Google Scholar]
  33. MollicaA. LocatelliM. StefanucciA. PinnenF. Synthesis and bioactivity of secondary metabolites from marine sponges containing dibrominated indolic systems.Molecules20121756083609910.3390/molecules1705608322614862
    [Google Scholar]
  34. ReyesF. FernándezR. RodríguezA. FranceschA. TaboadaS. ÁvilaC. CuevasC. Aplicyanins A–F, new cytotoxic bromoindole derivatives from the marine tunicate Aplidium cyaneum.Tetrahedron200864225119512310.1016/j.tet.2008.03.060
    [Google Scholar]
  35. PrabhuK.S. BhatA.A. SiveenK.S. KuttikrishnanS. RazaS.S. RaheedT. JochebethA. KhanA.Q. ChawdheryM.Z. HarisM. KulinskiM. DermimeS. SteinhoffM. UddinS. Sanguinarine mediated apoptosis in non-small cell lung cancer via generation of reactive oxygen species and suppression of JAK/STAT pathway.Biomed. Pharmacother.2021144112358
    [Google Scholar]
  36. LiL. XuY. WangB. Liriodenine induces the apoptosis of human laryngocarcinoma cells via the upregulation of p53 expression.Oncol. Lett.2015931121112710.3892/ol.2014.283425663867
    [Google Scholar]
  37. LuanF. HeX. ZengN. Tetrandrine: A review of its anticancer potentials, clinical settings, pharmacokinetics and drug delivery systems.J. Pharm. Pharmacol.202072111491151210.1111/jphp.1333932696989
    [Google Scholar]
  38. AchiI.T. SarbadhikaryP. GeorgeB.P. AbrahamseH. Multi-target potential of berberine as an antineoplastic and antimetastatic agent: A special focus on lung cancer treatment.Cells20221121343310.3390/cells1121343336359829
    [Google Scholar]
  39. LiuW. QiY. LiuL. TangY. WeiJ. ZhouL. Suppression of tumor cell proliferation by quinine via the inhibition of the tumor necrosis factor receptor-associated factor 6-AKT interaction.Mol. Med. Rep.20161432171217910.3892/mmr.2016.549227430155
    [Google Scholar]
  40. KrishnamoorthiS. KasinathanG.N. ParamasivamG. RathS.N. PrakashJ. Selective targeting of lung cancer cells with methylparaben-tethered-quinidine cocrystals in 3D spheroid models.ACS Omega2023849466284663910.1021/acsomega.3c0561738107962
    [Google Scholar]
  41. WangH. ShiY. MaD. CaoM. SunY. JiangX. XuZ. WangY. YangY. ShiY. WangK. Cinchonine exerts anti-tumor and immunotherapy sensitizing effects in lung cancer by impairing autophagic-lysosomal degradation.Biomed. Pharmacother.2023164114980
    [Google Scholar]
  42. RodillaA.M. Korrodi-GregórioL. HernandoE. Manuel-ManresaP. QuesadaR. Pérez-TomásR. Soto-CerratoV. Synthetic tambjamine analogues induce mitochondrial swelling and lysosomal dysfunction leading to autophagy blockade and necrotic cell death in lung cancer.Biochem. Pharmacol.2017126233310.1016/j.bcp.2016.11.02227890727
    [Google Scholar]
  43. YuQ. LuoJ. ZhangJ. ChenY. ChenK. LinJ. SunS. LinX. Oxymatrine inhibits the development of non-small cell lung cancer through miR-367-3p upregulation and target gene SGK3 downregulation.Am. J. Transl. Res.20201295538555033042436
    [Google Scholar]
  44. AhmadI. KhanH. Usman AminM. KhalidS. BehlT. Ur RahmanN. An overview on the anticancer potential of punarnavine: prediction of drug-like properties.Oncologie202123332133310.32604/Oncologie.2021.018296
    [Google Scholar]
  45. ZhuG. YinF. DengX. Effect of NF-kappaB on inhibition of non-small cell lung cancer cell cyclooxygenase-2 by brucine.Zhongguo Zhongyao Zazhi20123791269127322803374
    [Google Scholar]
  46. DoM.T. KimH.G. ChoiJ.H. KhanalT. ParkB.H. TranT.P. JeongT.C. JeongH.G. Antitumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells.Food Chem.201314132591259910.1016/j.foodchem.2013.04.12523870999
    [Google Scholar]
  47. YeoW.L. RielyG.J. YeapB.Y. LauM.W. WarnerJ.L. BodioK. HubermanM.S. KrisM.G. TenenD.G. PaoW. KobayashiS. CostaD.B. Erlotinib at a dose of 25 mg daily for non-small cell lung cancers with EGFR mutations.J. Thorac. Oncol.20105710481053
    [Google Scholar]
  48. PaclitaxelAvailable from: https://go.drugbank.com/drugs/DB01229
  49. MoudiM. GoR. YienC.Y. NazreM. Vinca alkaloids.Int. J. Prev. Med.20134111231123524404355
    [Google Scholar]
  50. SM,S.; Naveen, N.R.; Rao, G.K.; Gopan, G.; Chopra, H.; Park, M.N.; Alshahrani, M.M.; Jose, J.; Emran, T.B.; Kim, B. A spotlight on alkaloid nanoformulations for the treatment of lung cancer.Front. Oncol.202212994155
    [Google Scholar]
  51. ZhangY.W. KongX.Y. WangJ.H. DuG.H. Vinblastine and Vincristine.Natural Small Molecule Drugs from Plants2018551562
    [Google Scholar]
  52. Cisplatin + Vinblastine + Radiation2017Available from: https://www.chemoexperts.com/cisplatin-vinblastine-radiation-nsclc.html#:~:text=Cisplatin%20and%20vinblastine%20are%20chemotherapy,the%20effects%20of%20the%20radiation
  53. Radiation therapy plus chemotherapy in treating patients with nonsmall cell lung cancerPatent NCT011348612017
    [Google Scholar]
  54. Surgery with or without preoperative chemotherapy in treating patients with resectable non-small cell lung cancerPatent NCT000031592017
    [Google Scholar]
  55. RosellR. Combination chemotherapy compared with no treatment following surgery in treating patients with non-small cell lung cancer.2023Available from:[https://clinicaltrials.gov/]
    [Google Scholar]
  56. JaferianS. SoleymaninejadM. DaraeeH. Verapamil (VER) enhances the cytotoxic effects of docetaxel and vinblastine combined therapy against non-small cell lung cancer cell lines.Drug Res. (Stuttg.)201868314615210.1055/s‑0043‑11789529132176
    [Google Scholar]
  57. ZhouC. ZhuY. LuB. ZhaoW. ZhaoX. Survivin expression modulates the sensitivity of A549 lung cancer cells resistance to vincristine.Oncol. Lett.20181645466547210.3892/ol.2018.927730250619
    [Google Scholar]
  58. SamadiN. GhanbariP. MohseniM. TabasinezhadM. SharifiS. NazemiehH. RashidiM. Combination therapy increases the efficacy of docetaxel, vinblastine and tamoxifen in cancer cells.J. Cancer Res. Ther.201410371572110.4103/0973‑1482.13915225313766
    [Google Scholar]
  59. KangD.H. ParkD.I. ChungC. MoonJ.Y. ParkH.S. JungS.S. KimJ.O. LeeJ.E. Efficacy of weekly vinorelbine monotherapy in patients with lung adenocarcinoma.J. Clin. Oncol.20183615Suppl.e2115710.1200/JCO.2018.36.15_suppl.e21157
    [Google Scholar]
  60. LiH. SunL. LiH. LvX. SemukunziH. LiR. YuJ. YuanS. LinS. DT-13 synergistically enhanced vinorelbine-mediated mitotic arrest through inhibition of FOXM1-BICD2 axis in non-small-cell lung cancer cells.Cell Death Dis.201785e281010.1038/cddis.2017.21828542137
    [Google Scholar]
  61. KaburakiK. IsobeK. KobayashiH. YoshizawaT. TakaiY. HommaS. A feasibility study of bevacizumab and vinorelbine in patients with previously treated advanced non-squamous non-small-cell lung cancer.Mol. Clin. Oncol.20176451051410.3892/mco.2017.118728413657
    [Google Scholar]
  62. GenovaC. AlamaA. CocoS. RijavecE. Dal BelloM.G. VanniI. BielloF. BarlettaG. RossiG. GrossiF. Vinflunine for the treatment of non-small cell lung cancer.Expert Opin. Investig. Drugs201625121447145510.1080/13543784.2016.125233127771969
    [Google Scholar]
  63. YamazakiY. UranoA. SudoH. KitajimaM. TakayamaH. YamazakiM. AimiN. SaitoK. Metabolite profiling of alkaloids and strictosidine synthase activity in camptothecin producing plants.Phytochemistry200362346147010.1016/S0031‑9422(02)00543‑512620359
    [Google Scholar]
  64. ChiuY.H. HsuS.H. HsuH.W. HuangK.C. LiuW. WuC.Y. HuangW.P. ChenJ. ChenB.H. ChiuC.C. Human non small cell lung cancer cells can be sensitized to camptothecin by modulating autophagy.Int. J. Oncol.20185351967197910.3892/ijo.2018.452330106130
    [Google Scholar]
  65. RajA. ThomasR.K. VidyaL. AparnaV.M. NeelimaS. SudarsanakumarC. Exploring the cytotoxicity on human lung cancer cells and DNA binding stratagem of camptothecin functionalised silver nanoparticles through multi-spectroscopic, and calorimetric approach.Sci. Rep.2023131904510.1038/s41598‑023‑34997‑w37270606
    [Google Scholar]
  66. XieJ. WangH. HuangQ. LinJ. WenH. MiaoY. LvL. RuanD. YuX. QinL. ZhouY. Enhanced cytotoxicity to lung cancer cells by mitochondrial delivery of camptothecin.Eur. J. Pharm. Sci.2023189106561
    [Google Scholar]
  67. DaiX. WuG. ZhangY. ZhangX. YinR. QiX. LiJ. JiangT. Design, synthesis, and in vitro/in vivo anti-cancer activities of novel (20S)-10,11-methylenedioxy-camptothecin heterocyclic derivatives.Int. J. Mol. Sci.20202122849510.3390/ijms2122849533187360
    [Google Scholar]
  68. PandaM. BiswalS. BiswalB.K. Evodiamine potentiates cisplatin-induced cell death and overcomes cisplatin resistance in non-small-cell lung cancer by targeting SOX9-β‐catenin axis.Mol. Biol. Rep.202451152310.1007/s11033‑024‑09477‑738630183
    [Google Scholar]
  69. FengG. HeJ. LiQ. BaiM. LiuK. LiuX. YiX. LiuY. LuoL. GaoC. New alkaloids and steroids from hydranth of goniopora columna corals and their inhibiting lung cancer cell activities.Chem. Biodivers.2024214e20230199310.1002/cbdv.20230199338342755
    [Google Scholar]
  70. IslamZ. IslamS.M.R. HossenF. Mahtab-ul-IslamK. HasanM.R. KarimR. Moringa oleifera is a prominent source of nutrients with potential health benefits.Int. J. Food Sci.2021202111110.1155/2021/662726534423026
    [Google Scholar]
  71. BhadreshaK. ThakoreV. BrahmbhattJ. UpadhyayV. JainN. RawalR. Anticancer effect of Moringa oleifera leaves extract against lung cancer cell line via induction of apoptosis.Adv. Cancer Biol. Metastasis2022610007210.1016/j.adcanc.2022.100072
    [Google Scholar]
  72. MakarevićJ. RutzJ. JuengelE. KaulfussS. ReiterM. TsaurI. BartschG. HaferkampA. BlahetaR.A. Amygdalin blocks bladder cancer cell growth in vitro by diminishing cyclin A and cdk2.PLoS One201498e10559010.1371/journal.pone.010559025136960
    [Google Scholar]
  73. QianL. XieB. WangY. QianJ. Amygdalin-mediated inhibition of non-small cell lung cancer cell invasion in vitro.Int. J. Clin. Exp. Pathol.2015855363537026191238
    [Google Scholar]
  74. BissetN.G. Plants as a source of isoquinoline alkaloids.The Chemistry and Biology of Isoquinoline Alkaloids.Proceedings in Life SciencesBerlin, Heidelberg198512210.1007/978‑3‑642‑70128‑3_1
    [Google Scholar]
  75. BasuP. KumarG.S. Sanguinarine and its role in chronic diseases.Adv. Exp. Med. Biol.201692815517210.1007/978‑3‑319‑41334‑1_727671816
    [Google Scholar]
  76. YangJ. WangX. GaoY. FangC. YeF. HuangB. LiL. Inhibition of PI3K-AKT signaling blocks PGE2-induced COX-2 expression in lung adenocarcinoma.OncoTargets Ther.2020138197820810.2147/OTT.S26397732904445
    [Google Scholar]
  77. XuR. WuJ. LuoY. WangY. TianJ. TengW. ZhangB. FangZ. LiY. Sanguinarine represses the growth and metastasis of non-small cell lung cancer by facilitating ferroptosis.Curr. Pharm. Des.202228976076810.2174/138161282866622021712454235176976
    [Google Scholar]
  78. LiB. LuoY. ZhouY. WuJ. FangZ. LiY. Role of sanguinarine in regulating immunosuppression in a lewis lung cancer mouse model.Int. Immunopharmacol.202211010896410.1016/j.intimp.2022.10896435728305
    [Google Scholar]
  79. GuS. YangX.C. XiangX.Y. WuY. ZhangY. YanX.Y. XueY.N. SunL.K. ShaoG.G. Sanguinarine-induced apoptosis in lung adenocarcinoma cells is dependent on reactive oxygen species production and endoplasmic reticulum stress.Oncol. Rep.201534291391910.3892/or.2015.405426081590
    [Google Scholar]
  80. ChangH.C. ChangF.R. WuY.C. LaiY.H. Anti-cancer effect of liriodenine on human lung cancer cells.Kaohsiung J. Med. Sci.200420836537110.1016/S1607‑551X(09)70172‑X15473647
    [Google Scholar]
  81. LanJ. WangN. HuangL. LiuY. MaX. LouH. ChenC. FengY. PanW. Design and synthesis of novel tetrandrine derivatives as potential anti-tumor agents against human hepatocellular carcinoma.Eur. J. Med. Chem.201712755456610.1016/j.ejmech.2017.01.00828109948
    [Google Scholar]
  82. GuoJ. GuX. MaiY. ZhaoY. GouG. YangJ. Preparation and characterisation of tetrandrine nanosuspensions and in vitro estimate antitumour activity on A549 lung cancer cell line.J. Microencapsul.202037538439310.1080/02652048.2020.176190532349635
    [Google Scholar]
  83. ChenZ. ZhaoL. ZhaoF. YangG. WangJ. Tetrandrine suppresses lung cancer growth and induces apoptosis, potentially via the VEGF/HIF-1α/ICAM-1 signaling pathway.Oncol. Lett.20181557433743710.3892/ol.2018.819029849794
    [Google Scholar]
  84. WangC. YangJ. GuoY. ShenJ. PeiX. Anticancer activity of tetrandrine by inducing apoptosis in human breast cancer cell line MDA‐MB‐231 in vivo.Evid. Based Complement. Alternat. Med.202020201682352010.1155/2020/682352032714412
    [Google Scholar]
  85. ImenshahidiM. HosseinzadehH. Berberis vulgaris and berberine: An update review.Phytother. Res.201630111745176410.1002/ptr.569327528198
    [Google Scholar]
  86. LiuQ. XuX. ZhaoM. WeiZ. LiX. ZhangX. LiuZ. GongY. ShaoC. Berberine induces senescence of human glioblastoma cells by downregulating the EGFR-MEK-ERK signaling pathway.Mol. Cancer Ther.201514235536310.1158/1535‑7163.MCT‑14‑063425504754
    [Google Scholar]
  87. ChenQ. ShiJ. DingZ. XiaQ. ZhengT. RenY. LiM. FanL. Berberine induces apoptosis in non-small-cell lung cancer cells by upregulating miR-19a targeting tissue factor.Cancer Manag. Res.2019119005901510.2147/CMAR.S20767731695492
    [Google Scholar]
  88. FusiA. FestinoL. BottiG. MasucciG. MeleroI. LoriganP. AsciertoP.A. PD-L1 expression as a potential predictive biomarker.Lancet Oncol.201516131285128710.1016/S1470‑2045(15)00307‑126433815
    [Google Scholar]
  89. LiuY. LiuX. ZhangN. YinM. DongJ. ZengQ. MaoG. SongD. LiuL. DengH. Berberine diminishes cancer cell PD-L1 expression and facilitates antitumor immunity via inhibiting the deubiquitination activity of CSN5.Acta Pharm. Sin. B202010122299231210.1016/j.apsb.2020.06.01433354502
    [Google Scholar]
  90. PrajapatiS.M. PatelK.D. VekariyaR.H. PanchalS.N. PatelH.D. Recent advances in the synthesis of quinolines: A review.RSC Advances2014447244632447610.1039/C4RA01814A
    [Google Scholar]
  91. QuinidineM. Encyclopedia of Toxicology.Elsevier20141618
    [Google Scholar]
  92. QiY. PradiptaA.R. LiM. ZhaoX. LuL. FuX. WeiJ. HsungR.P. TanakaK. ZhouL. Cinchonine induces apoptosis of HeLa and A549 cells through targeting TRAF6.J. Exp. Clin. Cancer Res.201736135
    [Google Scholar]
  93. JayawickremeK. ŚwistakD. OzimekE. ReszczyńskaE. RysiakA. Makuch-KockaA. HanakaA. Pyrrolizidine alkaloids—pros and cons for pharmaceutical and medical applications.Int. J. Mol. Sci.202324231697210.3390/ijms24231697238069294
    [Google Scholar]
  94. CaoR. PengW. WangZ. XuA. beta-Carboline alkaloids: Biochemical and pharmacological functions.Curr. Med. Chem.200714447950010.2174/09298670777994099817305548
    [Google Scholar]
  95. TangJ. CaoY. ZhangH. WangR. Oxymatrine inhibits the development of radioresistance in NSCLC cells by reversing EMT through the DcR3/AKT/GSK-3β pathway.Arch. Med. Sci.2023205
    [Google Scholar]
  96. LiuH. ZouM. LiP. WangH. LinX. YeJ. Oxymatrine mediated maturation of dendritic cells leads to activation of FOXP3+/CD4+ Treg cells and reversal of cisplatin resistance in lung cancer cells.Mol. Med. Rep.20191954081409010.3892/mmr.2019.1006430896871
    [Google Scholar]
  97. ManuK.A. KuttanG. Anti-metastatic potential of punarnavine, an alkaloid from Boerhaavia diffusa Linn.Immunobiology2009214424525510.1016/j.imbio.2008.10.00219171408
    [Google Scholar]
  98. SaraswatiS. AlhaiderA.A. AgrawalS.S. Punarnavine, an alkaloid from Boerhaavia diffusa exhibits anti-angiogenic activity via downregulation of VEGF in vitro and in vivo.Chem. Biol. Interact.20132062204213
    [Google Scholar]
  99. ZhengL. WangX. LuoW. ZhanY. ZhangY. Brucine, an effective natural compound derived from nux-vomica, induces G1 phase arrest and apoptosis in LoVo cells.Food Chem. Toxicol.20135833233910.1016/j.fct.2013.05.01123688861
    [Google Scholar]
  100. LiM. LiP. ZhangM. MaF. SuL. [Brucine inhibits the proliferation of human lung cancer cell line PC-9 via arresting cell cycle]Zhongguo Fei Ai Za Zhi201417644445024949683
    [Google Scholar]
  101. RatherR.A. BhagatM. Cancer chemoprevention and piperine: Molecular mechanisms and therapeutic opportunities.Front. Cell Dev. Biol.2018661010.3389/fcell.2018.0001029497610
    [Google Scholar]
  102. Marques da FonsecaL. Jacques da SilvaL.R. Santos dos ReisJ. Rodrigues da Costa SantosM.A. de Sousa ChavesV. Monteiro da CostaK. Sa-DinizJ.N. Freire de LimaC.G. MorrotA. Nunes FranklimT. de Alcântara-PintoD.C. Freire de LimaM.E. PreviatoJ.O. Mendonça-PreviatoL. Freire-de-LimaL. Piperine inhibits TGF-β signaling pathways and disrupts emt-related events in human lung adenocarcinoma cells.Medicines (Basel)2020741910.3390/medicines704001932276474
    [Google Scholar]
  103. JeongJ.H. RyuJ.H. LeeH.J. In vitro inhibition of Piper nigrum and piperine on growth, migration, and invasion of PANC-1 human pancreatic cancer cells.Natural. Product. Communications2021161110.1177/1934578X211057694
    [Google Scholar]
  104. ZhengJ. ZhouY. LiY. XuD.P. LiS. LiH.B. Spices for prevention and treatment of cancers.Nutrients20168849510.3390/nu808049527529277
    [Google Scholar]
  105. Sunil KumarA. KudvaJ. LahtinenM. PeuronenA. SadashivaR. NaralD. Synthesis, characterization, crystal structures and biological screening of 4-amino quinazoline sulfonamide derivatives.J. Mol. Struct.20191190293610.1016/j.molstruc.2019.04.050
    [Google Scholar]
  106. KnightL.A. Di NicolantonioF. WhitehouseP. MercerS. SharmaS. GlaysherS. JohnsonP. CreeI.A. The in vitro effect of gefitinib (‘Iressa’) alone and in combination with cytotoxic chemotherapy on human solid tumours.BMC Cancer2004418310.1186/1471‑2407‑4‑8315560844
    [Google Scholar]
  107. CostanzoR. PiccirilloM.C. SandomenicoC. CarillioG. MontaninoA. DanieleG. GiordanoP. BryceJ. De FeoG. Di MaioM. RoccoG. NormannoN. PerroneF. MorabitoA. Gefitinib in non small cell lung cancer.J. Biomed. Biotechnol.2011201181526921660144
    [Google Scholar]
  108. SunC. GaoW. LiuJ. ChengH. HaoJ. FGL1 regulates acquired resistance to Gefitinib by inhibiting apoptosis in non-small cell lung cancer.Respir. Res.202021121010.1186/s12931‑020‑01477‑y32778129
    [Google Scholar]
  109. LiT. QianY. ZhangC. UchinoJ. ProvencioM. WangY. ShiX. ZhangY. ZhangX. Anlotinib combined with gefitinib can significantly improve the proliferation of epidermal growth factor receptor-mutant advanced non-small cell lung cancer in vitro and in vivo.Transl. Lung Cancer Res.20211041873188810.21037/tlcr‑21‑19234012799
    [Google Scholar]
  110. OkitaR. ShimizuK. NojimaY. YukawaT. MaedaA. SaishoS. NakataM. Lapatinib enhances trastuzumab-mediated antibody-dependent cellular cytotoxicity via upregulation of HER2 in malignant mesothelioma cells.Oncol. Rep.20153462864287010.3892/or.2015.431426503698
    [Google Scholar]
  111. NelsonV. ZiehrJ. AgulnikM. JohnsonM. Afatinib: Emerging next-generation tyrosine kinase inhibitor for NSCLC.OncoTargets Ther.2013613514323493883
    [Google Scholar]
  112. LeeS.H. LeeJ.K. AhnM.J. KimD.W. SunJ.M. KeamB. KimT.M. HeoD.S. AhnJ.S. ChoiY.L. MinH.S. JeonY.K. ParkK. Vandetanib in pretreated patients with advanced non-small cell lung cancer-harboring RET rearrangement: A phase II clinical trial.Ann. Oncol.201728229229710.1093/annonc/mdw55927803005
    [Google Scholar]
/content/journals/npj/10.2174/0122103155322306241021043330
Loading
/content/journals/npj/10.2174/0122103155322306241021043330
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test