Skip to content
2000
Volume 16, Issue 2
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Ulcerative colitis (UC) is a nonspecific, prolonged, and recurrent autoimmune disease characterized by diarrhea, mucopurulent stools, and abdominal pain. Modern medicine believes that the disease is related to infectious, genetic, psychiatric, allergic and especially autoimmune factors, but the exact cause is unknown. Given that the disease is recurrent, aggravating and persistent, and has a certain cancer rate, it is increasingly urgent to find effective treatments. It has been proved that UC is related to the abnormal regulation of signaling pathways in the body, dysregulation of intestinal ecology, and intestinal immune disorders, and natural products active ingredients for the treatment of UC have the advantage of long-term efficacy and less toxic side effects compared to existing drugs. This paper reviews the pharmacological mechanisms associated with UC to gain insight into the therapeutic mechanisms of natural products active ingredients for UC and to better understand the advantages and potential of natural products active ingredients in the treatment of UC. This will provide guidance for the development of new therapeutic strategies and drugs, and offer new hope for improving the quality of life of patients with UC.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155348415241119073736
2025-01-03
2025-12-16
Loading full text...

Full text loading...

References

  1. GajendranM. LoganathanP. JimenezG. CatinellaA.P. NgN. UmapathyC. ZiadeN. HashashJ.G. A comprehensive review and update on ulcerative colitis.Dis. Mon.2019651210085110.1016/j.disamonth.2019.02.00430837080
    [Google Scholar]
  2. LiuY. LiB.G. SuY.H. ZhaoR.X. SongP. LiH. CuiX.H. GaoH.M. ZhaiR.X. FuX.J. RenX. Potential activity of traditional chinese medicine against ulcerative colitis: A review.J. Ethnopharmacol.202228911508410.1016/j.jep.2022.11508435134488
    [Google Scholar]
  3. SilvaB.C. LyraA.C. RochaR. SantanaG.O. Epidemiology, demographic characteristics and prognostic predictors of ulcerative colitis.World J. Gastroenterol.201420289458946710.3748/wjg.v20.i28.945825071340
    [Google Scholar]
  4. Le BerreC. HonapS. Peyrin-BirouletL. Ulcerative colitis.Lancet20234021040157158410.1016/S0140‑6736(23)00966‑237573077
    [Google Scholar]
  5. XueJ.C. YuanS. MengH. HouX.T. LiJ. ZhangH.M. ChenL.L. ZhangC.H. ZhangQ.G. The role and mechanism of flavonoid herbal natural products in ulcerative colitis.Biomed. Pharmacother.202315811408610.1016/j.biopha.2022.11408636502751
    [Google Scholar]
  6. SalasA. Hernandez-RochaC. DuijvesteinM. FaubionW. McGovernD. VermeireS. VetranoS. Vande CasteeleN. JAK–STAT pathway targeting for the treatment of inflammatory bowel disease.Nat. Rev. Gastroenterol. Hepatol.202017632333710.1038/s41575‑020‑0273‑032203403
    [Google Scholar]
  7. KakiuchiN. YoshidaK. UchinoM. KiharaT. AkakiK. InoueY. KawadaK. NagayamaS. YokoyamaA. YamamotoS. MatsuuraM. HorimatsuT. HiranoT. GotoN. TakeuchiY. OchiY. ShiozawaY. KogureY. WatataniY. FujiiY. KimS.K. KonA. KataokaK. YoshizatoT. NakagawaM.M. YodaA. NanyaY. MakishimaH. ShiraishiY. ChibaK. TanakaH. SanadaM. SugiharaE. SatoT. MaruyamaT. MiyoshiH. TaketoM.M. OishiJ. InagakiR. UedaY. OkamotoS. OkajimaH. SakaiY. SakuraiT. HagaH. HirotaS. IkeuchiH. NakaseH. MarusawaH. ChibaT. TakeuchiO. MiyanoS. SenoH. OgawaS. Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis.Nature202057726010.1038/s41586‑019‑1856‑1
    [Google Scholar]
  8. PiotrowskaM. SwierczynskiM. FichnaJ. Piechota-PolanczykA. The Nrf2 in the pathophysiology of the intestine: Molecular mechanisms and therapeutic implications for inflammatory bowel diseases.Pharmacol. Res.202116310524310.1016/j.phrs.2020.10524333080322
    [Google Scholar]
  9. SaberS. KhalilR.M. AbdoW.S. NassifD. El-AhwanyE. Olmesartan ameliorates chemically-induced ulcerative colitis in rats via modulating NFκB and Nrf-2/HO-1 signaling crosstalk.Toxicol. Appl. Pharmacol.201936412013210.1016/j.taap.2018.12.02030594690
    [Google Scholar]
  10. ZhangZ. CaoH. ShenP. LiuJ. CaoY. ZhangN. Ping weisan alleviates chronic colitis in mice by regulating intestinal microbiota composition.J. Ethnopharmacol.202025511271510.1016/j.jep.2020.11271532114163
    [Google Scholar]
  11. ShenZ.H. ZhuC.X. QuanY.S. YangZ.Y. WuS. LuoW.W. TanB. WangX.Y. Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical application of probiotics and fecal microbiota transplantation.World J. Gastroenterol.201824151410.3748/wjg.v24.i1.529358877
    [Google Scholar]
  12. DonohoeD.R. CollinsL.B. WaliA. BiglerR. SunW. BultmanS.J. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation.Mol. Cell201248461262610.1016/j.molcel.2012.08.03323063526
    [Google Scholar]
  13. Parada VenegasD. De la FuenteM.K. LandskronG. GonzálezM.J. QueraR. DijkstraG. HarmsenH.J.M. FaberK.N. HermosoM.A. Short chain fatty acids (SCFAs)-Mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases.Front. Immunol.20191027710.3389/fimmu.2019.0027730915065
    [Google Scholar]
  14. NeurathM.F. LeppkesM. Resolution of ulcerative colitis.Semin. Immunopathol.201941674775610.1007/s00281‑019‑00751‑631278430
    [Google Scholar]
  15. de SouzaH.S.P. FiocchiC. Immunopathogenesis of IBD: Current state of the art.Nat. Rev. Gastroenterol. Hepatol.2016131132710.1038/nrgastro.2015.18626627550
    [Google Scholar]
  16. KanwalN. RasulA. HussainG. AnwarH. ShahM.A. SarfrazI. RiazA. BatoolR. ShahbazM. HussainA. SelamogluZ. Oleandrin: A bioactive phytochemical and potential cancer killer via multiple cellular signaling pathways.Food Chem. Toxicol.202014311157010.1016/j.fct.2020.11157032640345
    [Google Scholar]
  17. AbdallaY. AbdallaA. HamzaA.A. AminA. Safranal prevents liver cancer through inhibiting oxidative stress and alleviating inflammation.Front. Pharmacol.20221277750010.3389/fphar.2021.77750035177980
    [Google Scholar]
  18. MuraliC. MudgilP. GanC.Y. TaraziH. El-AwadyR. AbdallaY. AminA. MaqsoodS. Camel whey protein hydrolysates induced G2/M cellcycle arrest in human colorectal carcinoma.Sci. Rep.2021111706210.1038/s41598‑021‑86391‑z33782460
    [Google Scholar]
  19. VarolA. SezenS. EvcimenD. ZarepourA. UlusG. ZarrabiA. BadrG. DaştanS.D. OrbayoğluA.G. SelamoğluZ. VarolM. Cellular targets and molecular activity mechanisms of bee venom in cancer: Recent trends and developments.Toxin Rev.20224141382139510.1080/15569543.2021.2024576
    [Google Scholar]
  20. LuoH. JiX. ZhangM. RenY. TanR. JiangH. WuX. Aloe-emodin: Progress in pharmacological activity, safety, and pharmaceutical formulation applications.Mini Rev. Med. Chem.202424191784179810.2174/011389557529836424040906483338639277
    [Google Scholar]
  21. RehmanM.F. AkhterS. BatoolA.I. SelamogluZ. SevindikM. EmanR. MustaqeemM. AkramM.S. KanwalF. LuC. AslamM. Effectiveness of natural antioxidants against SARS-CoV-2? Insights from the in silico world.Antibiotics2021108101110.3390/antibiotics1008101134439061
    [Google Scholar]
  22. SevindikM. AkgulH. SelamogluZ. BraidyN. Antioxidant and antigenotoxic potential of Infundibulicybe geotropa Mushroom collected from Northwestern Turkey.Oxid. Med. Cell. Longev.202020201810.1155/2020/562048432148651
    [Google Scholar]
  23. SelamogluZ. DusgunC. AkgulH. GulhanM.F. In-vitro antioxidant activities of the ethanolic extracts of some contained-allantoin plants.Iran. J. Pharm. Res.201716Suppl.9298[PMID: 29844780
    [Google Scholar]
  24. RanaS.V. SharmaS. PrasadK.K. SinhaS.K. SinghK. Role of oxidative stress & antioxidant defence in ulcerative colitis patients from north India.Indian J. Med. Res.20141394568571[PMID: 24927343
    [Google Scholar]
  25. ZafarS. SarfrazI. RasulA. ShahM.A. HussainG. ZahoorM.K. ShafiqN. RiazA. SelamogluZ. SarkerS.D. Osthole: A multifunctional natural compound with potential anticancer, antioxidant and anti-inflammatory Activities.Mini Rev. Med. Chem.202121182747276310.2174/18755607MTA4nMDMiw32646359
    [Google Scholar]
  26. LiC. AiG. WangY. LuQ. LuoC. TanL. LinG. LiuY. LiY. ZengH. ChenJ. LinZ. XianY. HuangX. XieJ. SuZ. Oxyberberine, a novel gut microbiota-mediated metabolite of berberine, possesses superior anti-colitis effect: Impact on intestinal epithelial barrier, gut microbiota profile and TLR4-MyD88-NF-κB pathway.Pharmacol. Res.202015210460310.1016/j.phrs.2019.10460331863867
    [Google Scholar]
  27. FuY.P. PengX. ZhangC.W. JiangQ.X. LiC.Y. PaulsenB.S. RiseF. HuangC. FengB. LiL.X. ChenX.F. JiaR.Y. LiY.P. ZhaoX.H. YeG. TangH.Q. LiangX.X. LvC. TianM.L. YinZ.Q. ZouY.F. Salvia miltiorrhiza polysaccharide and its related metabolite 5-methoxyindole-3-carboxaldehyde ameliorate experimental colitis by regulating Nrf2/Keap1 signaling pathway.Carbohydr. Polym.202330612062610.1016/j.carbpol.2023.12062636746576
    [Google Scholar]
  28. LiF. YanH. JiangL. ZhaoJ. LeiX. MingJ. Cherry polyphenol extract ameliorated dextran sodium sulfate-induced ulcerative colitis in mice by suppressing Wnt/β-Catenin signaling pathway.Foods20211114910.3390/foods1101004935010176
    [Google Scholar]
  29. LiW. ZhangL. XuQ. YangW. ZhaoJ. RenY. YuZ. MaL. Taxifolin alleviates DSS-induced ulcerative colitis by acting on gut microbiome to produce butyric acid.Nutrients2022145106910.3390/nu1405106935268045
    [Google Scholar]
  30. ZhengK. JiaJ. YanS. ShenH. ZhuP. YuJ. Paeoniflorin ameliorates ulcerative colitis by modulating the dendritic cell-mediated TH17/Treg balance.Inflammopharmacology20202861705171610.1007/s10787‑020‑00722‑632472435
    [Google Scholar]
  31. ZhuangH. LvQ. ZhongC. CuiY. HeL. ZhangC. YuJ. Tiliroside ameliorates ulcerative colitis by restoring the M1/M2 macrophage balance via the HIF-1α/glycolysis pathway.Front. Immunol.20211264946310.3389/fimmu.2021.64946333868286
    [Google Scholar]
  32. BotrosS.R. MatoukA.I. AminA. HeebaG.H. Comparative effects of incretin-based therapy on doxorubicin-induced nephrotoxicity in rats: The role of SIRT1/Nrf2/NF-κB/TNF-α signaling pathways.Front. Pharmacol.202415135302910.3389/fphar.2024.135302938440177
    [Google Scholar]
  33. AbduS. JuaidN. AminA. MoulayM. MiledN. Effects of sorafenib and quercetin alone or in combination in treating hepatocellular carcinoma: In Vitro and In Vivo approaches.Molecules2022272210.3390/molecules27228082
    [Google Scholar]
  34. Abdel-latifR. HeebaG.H. HassaninS.O. WazS. AminA. TLRs-JNK/ NF-κB pathway underlies the protective effect of the sulfide salt against liver toxicity.Front. Pharmacol.20221385006610.3389/fphar.2022.85006635517830
    [Google Scholar]
  35. OthmanE.M. HabibH.A. ZahranM.E. AminA. HeebaG.H. Mechanistic protective effect of cilostazol in cisplatin-induced testicular damage via regulation of oxidative stress and TNF-α/NF-κB/Caspase-3 pathways.Int. J. Mol. Sci.202324161265110.3390/ijms24161265137628836
    [Google Scholar]
  36. HamzaA.A. HeebaG.H. HassaninS.O. ElwyH.M. BekhitA.A. AminA. Hibiscus-cisplatin combination treatment decreases liver toxicity in rats while increasing toxicity in lung cancer cells via oxidative stress- apoptosis pathway.Biomed. Pharmacother.202316511514810.1016/j.biopha.2023.11514837450997
    [Google Scholar]
  37. HassaninS.O. HegabA.M.M. MekkyR.H. SaidM.A. KhalilM.G. HamzaA.A. AminA. Combining In Vitro, In Vivo and network pharmacology assays to identify targets and molecular mechanisms of spirulina-derived biomolecules against breast cancer.Mar. Drugs202422732810.3390/md2207032839057437
    [Google Scholar]
  38. ChristianF. SmithE. CarmodyR. The regulation of NF-κB subunits by phosphorylation.Cells2016511210.3390/cells501001226999213
    [Google Scholar]
  39. HoffmannA. NatoliG. GhoshG. Transcriptional regulation via the NF-κB signaling module.Oncogene200625516706671610.1038/sj.onc.120993317072323
    [Google Scholar]
  40. RazaniB. ReichardtA.D. ChengG. Non‐canonical NF‐κB signaling activation and regulation: Principles and perspectives.Immunol. Rev.20112441445410.1111/j.1600‑065X.2011.01059.x22017430
    [Google Scholar]
  41. KarinM. Ben-NeriahY. Phosphorylation meets ubiquitination: The control of NF-[kappa]B activity.Annu. Rev. Immunol.200018162166310.1146/annurev.immunol.18.1.62110837071
    [Google Scholar]
  42. ZinatizadehM.R. SchockB. ChalbataniG.M. ZarandiP.K. JalaliS.A. MiriS.R. The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases.Genes Dis.20218328729710.1016/j.gendis.2020.06.00533997176
    [Google Scholar]
  43. NapetschnigJ. WuH. Molecular basis of NF-κB signaling.Annu. Rev. Biophys.201342144346810.1146/annurev‑biophys‑083012‑13033823495970
    [Google Scholar]
  44. SunJ. XuG. WangZ. LiQ. CuiY. XieL. ZhangR. The Effect of NF-κB signalling pathway on expression and regulation of nacrein in pearl oyster, pinctada fucata.PLoS One2015107e013171110.1371/journal.pone.013171126158525
    [Google Scholar]
  45. MelgarS. YeungM.M-W. BasA. ForsbergG. SuhrO. ÖbergÅ. HammarströmS. DanielssonÅ. HammarströmM-L. Over-expression of interleukin 10 in mucosal T cells of patients with active ulcerative colitis.Clin. Exp. Immunol.2003134112713710.1046/j.1365‑2249.2003.02268.x12974765
    [Google Scholar]
  46. JeonY.D. LeeJ.H. LeeY.M. KimD.K. Puerarin inhibits inflammation and oxidative stress in dextran sulfate sodium-induced colitis mice model.Biomed. Pharmacother.202012410984710.1016/j.biopha.2020.10984731981944
    [Google Scholar]
  47. Ismail Abo El-FadlH.M. MohamedM.F.A. Targeting endoplasmic reticulum stress, Nrf-2/HO-1, and NF-κB by myristicin and its role in attenuation of ulcerative colitis in rats.Life Sci2022311(PtB)12118710.1016/j.lfs.2022.12118736403646
    [Google Scholar]
  48. TonelliC. ChioI.I.C. TuvesonD.A. Transcriptional regulation by Nrf2.Antioxid. Redox Signal.201829171727174510.1089/ars.2017.734228899199
    [Google Scholar]
  49. CuadradoA. MandaG. HassanA. AlcarazM.J. BarbasC. DaiberA. GhezziP. LeónR. LópezM.G. OlivaB. PajaresM. RojoA.I. Robledinos-AntónN. ValverdeA.M. GuneyE. SchmidtH.H.H.W. Transcription factor Nrf2 as a therapeutic target for chronic diseases: A systems medicine approach.Pharmacol. Rev.201870234838310.1124/pr.117.01475329507103
    [Google Scholar]
  50. UlasovA.V. RosenkranzA.A. GeorgievG.P. SobolevA.S. Nrf2/Keap1/ARE signaling: Towards specific regulation.Life Sci.202229112011110.1016/j.lfs.2021.12011134732330
    [Google Scholar]
  51. PompiliS. SferraR. GaudioE. ViscidoA. FrieriG. VetuschiA. LatellaG. Can Nrf2 modulate the development of intestinal fibrosis and cancer in inflammatory bowel disease?Int. J. Mol. Sci.20192016406110.3390/ijms2016406131434263
    [Google Scholar]
  52. NitureS.K. KhatriR. JaiswalA.K. Regulation of Nrf2—an update.Free Radic. Biol. Med.201466364410.1016/j.freeradbiomed.2013.02.00823434765
    [Google Scholar]
  53. WenZ. LiuW. LiX. ChenW. LiuZ. WenJ. LiuZ. A protective role of the NRF2-Keap1 pathway in maintaining intestinal barrier function.Oxid. Med. Cell. Longev.201920191710.1155/2019/175914931346356
    [Google Scholar]
  54. KhodirA.E. AtefH. SaidE. ElKashefH.A. SalemH.A. Implication of Nrf2/HO-1 pathway in the coloprotective effect of coenzyme Q10 against experimentally induced ulcerative colitis.Inflammopharmacology201725111913510.1007/s10787‑016‑0305‑028050757
    [Google Scholar]
  55. ZhouY. DouF. SongH. LiuT. Anti‐ulcerative effects of wogonin on ulcerative colitis induced by dextran sulfate sodium via Nrf2/ TLR4 / NF‐κB signaling pathway in BALB /c mice.Environ. Toxicol.202237495496310.1002/tox.2345735044701
    [Google Scholar]
  56. LiH.X. ZhaoW. ShiY. LiY.N. ZhangL.S. ZhangH.Q. WangD. Retinoic acid amide inhibits JAK/STAT pathway in lung cancer which leads to apoptosis.Tumour Biol.201536118671867810.1007/s13277‑015‑3534‑826044560
    [Google Scholar]
  57. BanerjeeS. BiehlA. GadinaM. HasniS. SchwartzD.M. JAK–STAT signaling as a target for inflammatory and autoimmune diseases: Current and future prospects.Drugs201777552154610.1007/s40265‑017‑0701‑928255960
    [Google Scholar]
  58. GulubovaM.V. ChonovD.C. IvanovaK.V. HristovaM.K. Krasimirova-IgnatovaM.M. VlaykovaT.I. Intratumoural expression of IL-6/STAT3, IL-17 and FOXP3 immune cells in the immunosuppressive tumour microenvironment of colorectal cancer Immune cells-positive for IL-6, STAT3, IL-17 and FOXP3 and colorectal cancer development.Biotechnol. Biotechnol. Equip.202236132733810.1080/13102818.2022.2072765
    [Google Scholar]
  59. Xuan-qingC.H.E.N. Xiang-yuL.V. Shi-jiaL.I.U. Baitouweng decoction alleviates dextran sulfate sodium-induced ulcerative colitis by regulating intestinal microbiota and the IL-6/STAT3 signaling pathway.J. Ethnopharmacol.202126511335710.1016/j.jep.2020.11335732891820
    [Google Scholar]
  60. MorrisR. KershawN.J. BabonJ.J. The molecular details of cytokine signaling via the JAK/STAT pathway.Protein Sci.201827121984200910.1002/pro.351930267440
    [Google Scholar]
  61. HuX. li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT signaling pathway: From bench to clinic.Signal Transduct. Target. Ther.20216140210.1038/s41392‑021‑00791‑134824210
    [Google Scholar]
  62. XinP. XuX. DengC. LiuS. WangY. ZhouX. MaH. WeiD. SunS. The role of JAK/STAT signaling pathway and its inhibitors in diseases.Int. Immunopharmacol.20208010621010.1016/j.intimp.2020.10621031972425
    [Google Scholar]
  63. VirtanenA.T. HaikarainenT. RaivolaJ. SilvennoinenO. Selective JAKinibs: Prospects in inflammatory and autoimmune diseases.BioDrugs2019331153210.1007/s40259‑019‑00333‑w30701418
    [Google Scholar]
  64. O’SheaJ.J. SchwartzD.M. VillarinoA.V. GadinaM. McInnesI.B. LaurenceA. The JAK-STAT pathway: Impact on human disease and therapeutic intervention.Annu. Rev. Med.201566131132810.1146/annurev‑med‑051113‑02453725587654
    [Google Scholar]
  65. WeiT. WuL. JiX. GaoY. XiaoG. Ursolic acid protects sodium dodecyl sulfate-induced Drosophila ulcerative colitis model by inhibiting the JNK signaling.Antioxidants202211242610.3390/antiox1102042635204308
    [Google Scholar]
  66. ShidanC. Effect of astragalus polysaccharide on intestinal inflammation responses and colonic mucosal JAK/STAT pathway in rats with ulcerative colitis induced by tnbs.Acta Med. Mediter.201941855185910.19193/0393‑6384_2019_4_289
    [Google Scholar]
  67. FuJ. ZangY. ZhouY. ChenC. ShaoS. ShiG. WuL. ZhuG. SunT. ZhangD. ZhangT. Exploring a novel triptolide derivative possess anti-colitis effect via regulating T cell differentiation.Int. Immunopharmacol.20219410747210.1016/j.intimp.2021.10747233611058
    [Google Scholar]
  68. ZhangM. ZhangS. Mitogen‐activated protein kinase cascades in plant signaling.J. Integr. Plant Biol.202264230134110.1111/jipb.1321534984829
    [Google Scholar]
  69. PlotnikovA. FloresK. Maik-RachlineG. ZehoraiE. Kapri-PardesE. BertiD.A. HanochT. BesserM.J. SegerR. The nuclear translocation of ERK1/2 as an anticancer target.Nat. Commun.201561668510.1038/ncomms768525819065
    [Google Scholar]
  70. PuaL.J.W. MaiC.W. ChungF.F.L. KhooA.S.B. LeongC.O. LimW.M. HiiL.W. Functional roles of JNK and p38 MAPK signaling in nasopharyngeal carcinoma.Int. J. Mol. Sci.2022233110810.3390/ijms2303110835163030
    [Google Scholar]
  71. XuC. LiuR. ZhangQ. ChenX. QianY. FangW. The diversification of evolutionarily conserved MAPK cascades correlates with the evolution of fungal species and development of lifestyles.Genome Biol. Evol.2016evw05110.1093/gbe/evw05126957028
    [Google Scholar]
  72. ZhangW. LiuH.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells.Cell Res.200212191810.1038/sj.cr.729010511942415
    [Google Scholar]
  73. PatonE.L. TurnerJ.A. SchlaepferI.R. Overcoming resistance to therapies targeting the MAPK pathway in BRAF-mutated tumours.J. Oncol.2020202011410.1155/2020/107982732411231
    [Google Scholar]
  74. LinH. WangM. ChenY. NomuraK. HuiS. GuiJ. ZhangX. WuY. LiuJ. LiQ. DengY. LiL. YuanM. WangS. HeS.Y. HeZ. An MKP-MAPK protein phosphorylation cascade controls vascular immunity in plants.Sci. Adv.2022810eabg872310.1126/sciadv.abg872335263144
    [Google Scholar]
  75. Piechota-PolanczykA. FichnaJ. Review article: The role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases.Naunyn Schmiedebergs Arch. Pharmacol.2014387760562010.1007/s00210‑014‑0985‑124798211
    [Google Scholar]
  76. WangJ. LuoL. ZhaoX. XueX. LiaoL. DengY. ZhouM. PengC. LiY. Forsythiae fructuse extracts alleviates LPS-induced acute lung injury in mice by regulating PPAR-γ/RXR-α in lungs and colons.J. Ethnopharmacol.202229311532210.1016/j.jep.2022.11532235483561
    [Google Scholar]
  77. LiD. XieT. GuoT. HuZ. LiM. TangY. WuQ. LuoF. LinQ. WangH. Sialic acid exerts anti-inflammatory effect through inhibiting MAPK-NF-κB/AP-1 pathway and apoptosis in ulcerative colitis.J. Funct. Foods202310110541610.1016/j.jff.2023.105416
    [Google Scholar]
  78. JiW. LiuW. HuoY. HuC. ZhangY. Banxia Xiexin decoction ameliorates dextran sulfate sodium (DSS)-induced ulcerative colitis via inhibiting serine-threonine protein kinase (Akt)/Mitogen-activated protein kinase (MAPK) signaling pathway.Appl. Biochem. Biotechnol.202370401530154210.1002/bab.2451
    [Google Scholar]
  79. ZhangJ. XuX. LiN. CaoL. SunY. WangJ. HeS. SiJ. QingD. Licoflavone B, an isoprene flavonoid derived from licorice residue, relieves dextran sodium sulfate-induced ulcerative colitis by rebuilding the gut barrier and regulating intestinal microflora.Eur. J. Pharmacol.202291617473010.1016/j.ejphar.2021.17473034968462
    [Google Scholar]
  80. WuH. TuS. ZhuoZ. JiangR. ZengR. YangQ. LianQ. ShaW. ChenH. Investigating the mechanisms of bisdemethoxycurcumin in ulcerative colitis: Network pharmacology and experimental verification.Molecules20222816810.3390/molecules2801006836615264
    [Google Scholar]
  81. KotipalliR.S.S. TirunavalliS.K. PoteA.B. SahuB.D. KunchaM. JeraldM.K. SistlaR. AndugulapatiS.B. Sinigrin attenuates the dextran sulfate sodium-induced colitis in mice by modulating the MAPK pathway.Inflammation202346378780710.1007/s10753‑022‑01780‑436622573
    [Google Scholar]
  82. LinX. GuoX. QuL. TuJ. LiS. CaoG. LiuY. Preventive effect of Atractylodis Rhizoma extract on DSS-induced acute ulcerative colitis through the regulation of the MAPK/NF-κB signals in vivo and in vitro.J. Ethnopharmacol.202229211521110.1016/j.jep.2022.11521135331877
    [Google Scholar]
  83. ChengX. XuX. ChenD. ZhaoF. WangW. Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer.Biomed. Pharmacother.201911047348110.1016/j.biopha.2018.11.08230530050
    [Google Scholar]
  84. JungY.S. ParkJ.I. Wnt signaling in cancer: Therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex.Exp. Mol. Med.52189191
    [Google Scholar]
  85. ZhangY. WangX. Targeting the Wnt/β-catenin signaling pathway in cancer.J. Hematol. Oncol.202013116510.1186/s13045‑020‑00990‑333276800
    [Google Scholar]
  86. ZhongZ. VirshupD.M. Wnt signaling and drug resistance in cancer.Mol. Pharmacol.2020972728910.1124/mol.119.11797831787618
    [Google Scholar]
  87. StewartD.J. Wnt signaling pathway in non-small cell lung cancer.J. Natl. Cancer Inst.20141061djt35610.1093/jnci/djt35624309006
    [Google Scholar]
  88. MacDonaldB.T. TamaiK. HeX. Wnt/β-catenin signaling: Components, mechanisms, and diseases.Dev. Cell200917192610.1016/j.devcel.2009.06.01619619488
    [Google Scholar]
  89. HuangP. YanR. ZhangX. WangL. KeX. QuY. Activating Wnt/β-catenin signaling pathway for disease therapy: Challenges and opportunities.Pharmacol. Ther.2019196799010.1016/j.pharmthera.2018.11.00830468742
    [Google Scholar]
  90. KuhnertF. DavisC.R. WangH.T. ChuP. LeeM. YuanJ. NusseR. KuoC.J. Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1.Proc. Natl. Acad. Sci. USA2004101126627110.1073/pnas.253680010014695885
    [Google Scholar]
  91. DongY. FanH. ZhangZ. JiangF. LiM. ZhouH. GuoW. ZhangZ. KangZ. GuiY. ShouZ. LiJ. ZhuR. FuY. SarapultsevA. WangH. LuoS. ZhangG. HuD. Berberine ameliorates DSS-induced intestinal mucosal barrier dysfunction through microbiota-dependence and Wnt/β-catenin pathway.Int. J. Biol. Sci.20221841381139710.7150/ijbs.6547635280677
    [Google Scholar]
  92. ZhouJ. WuH. HouJ. WangJ. WangJ. LiM. YaoX. GaoJ. ZhangQ. Daurisoline alleviated experimental colitis in vivo and in vitro Involvement of NF-κB and Wnt/β-Catenin pathway.Int. Immunopharmacol.202210810871410.1016/j.intimp.2022.10871435366641
    [Google Scholar]
  93. BlumbergR. PowrieF. Microbiota, disease, and back to health: A metastable journey.Sci. Transl. Med.20124137137rv710.1126/scitranslmed.300418422674557
    [Google Scholar]
  94. ZhengJ. LiH. ZhangP. YueS. ZhaiB. ZouJ. ChengJ. ZhaoC. GuoD. WangJ. Paeonol Ameliorates ulcerative colitis in mice by modulating the gut microbiota and metabolites.Metabolites2022121095610.3390/metabo1210095636295858
    [Google Scholar]
  95. HeX. LiuJ. LongG. XiaX.H. LiuM. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside, a major bioactive component from Polygoni multiflori Radix (Heshouwu) suppresses DSS induced acute colitis in BALb/c mice by modulating gut microbiota.Biomed. Pharmacother.202113711142010.1016/j.biopha.2021.11142033761623
    [Google Scholar]
  96. DalileB. Van OudenhoveL. VervlietB. VerbekeK. The role of short-chain fatty acids in microbiota–gut–brain communication.Nat. Rev. Gastroenterol. Hepatol.201916846147810.1038/s41575‑019‑0157‑331123355
    [Google Scholar]
  97. Corrêa-OliveiraR. FachiJ.L. VieiraA. SatoF.T. VinoloM.A.R. Regulation of immune cell function by short‐chain fatty acids.Clin. Transl. Immunology201654e7310.1038/cti.2016.1727195116
    [Google Scholar]
  98. WengY.J. GanH.Y. LiX. HuangY. LiZ.C. DengH.M. ChenS.Z. ZhouY. WangL.S. HanY.P. TanY.F. SongY.J. DuZ.M. LiuY.Y. WangY. QinN. BaiY. YangR.F. BiY.J. ZhiF.C. Correlation of diet, microbiota and metabolite networks in inflammatory bowel disease.J. Dig. Dis.201920944745910.1111/1751‑2980.1279531240835
    [Google Scholar]
  99. Sánchez de MedinaF. Romero-CalvoI. MascaraqueC. Martínez-AugustinO. Intestinal inflammation and mucosal barrier function.Inflamm. Bowel Dis.201420122394240410.1097/MIB.000000000000020425222662
    [Google Scholar]
  100. TianB. GengY. WangP. CaiM. NengJ. HuJ. XiaD. CaoW. YangK. SunP. Ferulic acid improves intestinal barrier function through altering gut microbiota composition in high-fat diet-induced mice.Eur. J. Nutr.20226173767378310.1007/s00394‑022‑02927‑735732902
    [Google Scholar]
  101. KraehenbuhlJ-P. PringaultE. NeutraM.R. Review article: Intestinal epithelia and barrier functions.Aliment. Pharmacol. Ther.199711s3Suppl. 3.3910.1111/j.1365‑2036.1997.tb00803.x
    [Google Scholar]
  102. CheQ. LuoT. ShiJ. HeY. XuD.L. Mechanisms by which traditional Chinese medicines influence the intestinal flora and intestinal barrier.Front. Cell. Infect. Microbiol.20221286377910.3389/fcimb.2022.86377935573786
    [Google Scholar]
  103. PetersonL.W. ArtisD. Intestinal epithelial cells: Regulators of barrier function and immune homeostasis.Nat. Rev. Immunol.201414314115310.1038/nri360824566914
    [Google Scholar]
  104. ChenG. BeiB. FengY. LiX. JiangZ. SiJ.Y. QingD.G. ZhangJ. LiN. Glycyrrhetinic acid maintains intestinal homeostasis via HuR.Front. Pharmacol.20191053510.3389/fphar.2019.0053531156441
    [Google Scholar]
  105. BuckleyA. TurnerJ.R. Cell biology of tight junction barrier regulation and mucosal disease.Cold Spring Harb. Perspect. Biol.2018101a02931410.1101/cshperspect.a02931428507021
    [Google Scholar]
  106. El-AkabawyG. El-SherifN.M. Zeaxanthin exerts protective effects on acetic acid-induced colitis in rats via modulation of pro-inflammatory cytokines and oxidative stress.Biomed. Pharmacother.201911184185110.1016/j.biopha.2019.01.00130616083
    [Google Scholar]
  107. ChelakkotC. GhimJ. RyuS.H. Mechanisms regulating intestinal barrier integrity and its pathological implications.Exp. Mol. Med.20185081910.1038/s12276‑018‑0126‑x30115904
    [Google Scholar]
  108. AnJ. LiuY. WangY. FanR. HuX. ZhangF. YangJ. ChenJ. The role of intestinal mucosal barrier in autoimmune disease: A potential target.Front. Immunol.20221387171310.3389/fimmu.2022.87171335844539
    [Google Scholar]
  109. LiJ. MaY. LiX. WangY. HuoZ. LinY. LiJ. YangH. ZhangZ. YangP. ZhangC. Fermented Astragalus and its metabolites regulate inflammatory status and gut microbiota to repair intestinal barrier damage in dextran sulfate sodium-induced ulcerative colitis.Front. Nutr.20229103591210.3389/fnut.2022.103591236451737
    [Google Scholar]
  110. SchroederB.O. Fight them or feed them: How the intestinal mucus layer manages the gut microbiota.Gastroenterol. Rep. (Oxf.)20197131210.1093/gastro/goy05230792861
    [Google Scholar]
  111. ShiG. JiangH. FengJ. ZhengX. ZhangD. JiangC. ZhangJ. Aloe vera mitigates dextran sulfate sodium-induced rat ulcerative colitis by potentiating colon mucus barrier.J. Ethnopharmacol.202127911410810.1016/j.jep.2021.11410833839199
    [Google Scholar]
  112. MaslowskiK.M. VieiraA.T. NgA. KranichJ. SierroF. Di Yu; Schilter, H.C.; Rolph, M.S.; Mackay, F.; Artis, D.; Xavier, R.J.; Teixeira, M.M.; Mackay, C.R. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43.Nature200946172681282128610.1038/nature0853019865172
    [Google Scholar]
  113. GeremiaA. BiancheriP. AllanP. CorazzaG.R. Di SabatinoA. Innate and adaptive immunity in inflammatory bowel disease.Autoimmun. Rev.201413131010.1016/j.autrev.2013.06.00423774107
    [Google Scholar]
  114. UngaroR. MehandruS. AllenP.B. Peyrin-BirouletL. ColombelJ.F. Ulcerative colitis.Lancet2017389100801756177010.1016/S0140‑6736(16)32126‑227914657
    [Google Scholar]
  115. ChassaingB. AitkenJ. D. MalleshappaM. Vijay-KumarM. Dextran sulfate sodium (DSS)-induced colitis in miceCurr. Protoc. Immunol.201410415.25.115.25.1410.1002/0471142735.im1525s104
    [Google Scholar]
  116. Tatiya-aphiradeeN. ChatuphonprasertW. JarukamjornK. Immune response and inflammatory pathway of ulcerative colitis.J. Basic Clin. Physiol. Pharmacol.201830111010.1515/jbcpp‑2018‑003630063466
    [Google Scholar]
  117. Gomez-BrisR. SaezA. Herrero-FernandezB. RiusC. Sanchez-MartinezH. Gonzalez-GranadoJ.M. CD4 T-cell subsets and the pathophysiology of inflammatory bowel disease.Int. J. Mol. Sci.2023243269610.3390/ijms2403269636769019
    [Google Scholar]
  118. TindemansI. JoosseM.E. SamsomJ.N. Dissecting the heterogeneity in T-cell mediated inflammation in IBD.Cells20209111010.3390/cells901011031906479
    [Google Scholar]
  119. FunesS.C. Manrique de LaraA. Altamirano-LagosM.J. Mackern-ObertiJ.P. Escobar-VeraJ. KalergisA.M. Immune checkpoints and the regulation of tolerogenicity in dendritic cells: Implications for autoimmunity and immunotherapy.Autoimmun. Rev.201918435936810.1016/j.autrev.2019.02.00630738957
    [Google Scholar]
  120. ZhangN. BevanM.J. CD8(+) T cells: Foot soldiers of the immune system.Immunity201135216116810.1016/j.immuni.2011.07.01021867926
    [Google Scholar]
  121. SakaguchiS. MiyaraM. CostantinoC.M. HaflerD.A. FOXP3+ regulatory T cells in the human immune system.Nat. Rev. Immunol.201010749050010.1038/nri278520559327
    [Google Scholar]
  122. HiraharaK. NakayamaT. CD4+ T-cell subsets in inflammatory diseases: Beyond the Th1/Th2 paradigm.Int. Immunol.201628416317110.1093/intimm/dxw00626874355
    [Google Scholar]
  123. DuPageM. BluestoneJ.A. Harnessing the plasticity of CD4+ T cells to treat immune-mediated disease.Nat. Rev. Immunol.201616314916310.1038/nri.2015.1826875830
    [Google Scholar]
  124. ChenZ. LinF. GaoY. LiZ. ZhangJ. XingY. DengZ. YaoZ. TsunA. LiB. FOXP3 and RORγt: Transcriptional regulation of Treg and Th17.Int. Immunopharmacol.201111553654210.1016/j.intimp.2010.11.00821081189
    [Google Scholar]
  125. AcharyaS. TimilshinaM. JiangL. NeupaneS. ChoiD.Y. ParkS.W. LeeS.Y. JeongB.S. KimJ.A. NamT. ChangJ.H. Amelioration of experimental autoimmune encephalomyelitis and DSS induced colitis by NTG-A-009 through the inhibition of Th1 and Th17 cells differentiation.Sci. Rep.201881779910.1038/s41598‑018‑26088‑y29773813
    [Google Scholar]
  126. OmenettiS. BussiC. MetidjiA. IsepponA. LeeS. TolainiM. LiY. KellyG. ChakravartyP. ShoaieS. GutierrezM.G. StockingerB. The intestine harbors functionally distinct homeostatic tissue-resident and inflammatory Th17 cells.Immunity20195117789.e610.1016/j.immuni.2019.05.00431229354
    [Google Scholar]
  127. KobayashiT. OkamotoS. HisamatsuT. KamadaN. ChinenH. SaitoR. KitazumeM.T. NakazawaA. SugitaA. KoganeiK. IsobeK. HibiT. IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn’s disease.Gut200857121682168910.1136/gut.2007.13505318653729
    [Google Scholar]
  128. JosefowiczS.Z. LuL.F. RudenskyA.Y. RegulatoryT. Regulatory T cells: Mechanisms of differentiation and function.Annu. Rev. Immunol.201230153156410.1146/annurev.immunol.25.022106.14162322224781
    [Google Scholar]
  129. CazaT. LandasS. Functional and Phenotypic plasticity of CD4 + T cell subsets.BioMed Res. Int.2015201511310.1155/2015/52195726583116
    [Google Scholar]
  130. ZhongY.B. KangZ.P. WangM.X. LongJ. WangH.Y. HuangJ.Q. WeiS.Y. ZhouW. ZhaoH.M. LiuD.Y. Curcumin ameliorated dextran sulfate sodium-induced colitis via regulating the homeostasis of DCs and Treg and improving the composition of the gut microbiota.J. Funct. Foods20218610471610.1016/j.jff.2021.104716
    [Google Scholar]
  131. LvL. ChenZ. BaiW. HaoJ. HengZ. MengC. WangL. LuoX. WangX. CaoY. HeJ. Taurohyodeoxycholic acid alleviates trinitrobenzene sulfonic acid induced ulcerative colitis via regulating Th1/Th2 and Th17/Treg cells balance.Life Sci.202331812150110.1016/j.lfs.2023.12150136801213
    [Google Scholar]
  132. YuF.Y. HuangS-G. ZhangH-Y. YeH. ChiH-G. ZouY. LvR-X. ZhengX-B. Effects of baicalin in CD4+ CD29+ T cell subsets of ulcerative colitis patients.World J. Gastroenterol.20142041152991530910.3748/wjg.v20.i41.1529925386078
    [Google Scholar]
  133. ChenX. ZhangM. ZhouF. GuZ. LiY. YuT. PengC. ZhouL. LiX. ZhuD. ZhangX. YuC. SIRT3 activator honokiol inhibits Th17 cell differentiation and alleviates colitis.Inflamm. Bowel Dis.202329121929194010.1093/ibd/izad09937335900
    [Google Scholar]
  134. ZagórskaA. TravésP.G. LewE.D. DransfieldI. LemkeG. Diversification of TAM receptor tyrosine kinase function.Nat. Immunol.2014151092092810.1038/ni.298625194421
    [Google Scholar]
  135. OrecchioniM. GhoshehY. PramodA.B. LeyK. Macrophage polarization: Different gene signatures in M1(LPS+) vs. classically and M2(LPS–) vs. alternatively activated macrophages.Front. Immunol.201910108410.3389/fimmu.2019.0108431178859
    [Google Scholar]
  136. SeyedizadeS.S. AfshariK. BayatS. RahmaniF. MomtazS. RezaeiN. AbdolghaffariA.H. Current status of M1 and M2 macrophages pathway as drug targets for inflammatory bowel disease.Arch. Immunol. Ther. Exp. (Warsz.)20206821010.1007/s00005‑020‑00576‑432239308
    [Google Scholar]
  137. YangZ. LinS. FengW. LiuY. SongZ. PanG. ZhangY. DaiX. DingX. ChenL. WangY. A potential therapeutic target in traditional Chinese medicine for ulcerative colitis: Macrophage polarization.Front. Pharmacol.20221399917910.3389/fphar.2022.99917936147340
    [Google Scholar]
  138. NaY.R. StakenborgM. SeokS.H. MatteoliG. Macrophages in intestinal inflammation and resolution: A potential therapeutic target in IBD.Nat. Rev. Gastroenterol. Hepatol.201916953154310.1038/s41575‑019‑0172‑431312042
    [Google Scholar]
  139. HanX. DingS. JiangH. LiuG. Roles of macrophages in the development and treatment of gut inflammation.Front. Cell Dev. Biol.2021962542310.3389/fcell.2021.62542333738283
    [Google Scholar]
  140. LissnerD. SchumannM. BatraA. KredelL.I. KühlA.A. ErbenU. MayC. SchulzkeJ.D. SiegmundB. Monocyte and M1 macrophage-induced barrier defect contributes to chronic intestinal inflammation in IBD.Inflamm. Bowel Dis.2015216110.1097/MIB.000000000000038425901973
    [Google Scholar]
  141. WangK. MaoT. LuX. WangM. YunY. JiaZ. ShiL. JiangH. LiJ. ShiR. A potential therapeutic approach for ulcerative colitis: Targeted regulation of macrophage polarization through phytochemicals.Front. Immunol.202314115507710.3389/fimmu.2023.115507737197668
    [Google Scholar]
  142. Shapouri-MoghaddamA. MohammadianS. VaziniH. TaghadosiM. EsmaeiliS.A. MardaniF. SeifiB. MohammadiA. AfshariJ.T. SahebkarA. Macrophage plasticity, polarization, and function in health and disease.J. Cell. Physiol.201823396425644010.1002/jcp.2642929319160
    [Google Scholar]
  143. WuM.M. WangQ.M. HuangB.Y. MaiC.T. WangC.L. WangT.T. ZhangX.J. Dioscin ameliorates murine ulcerative colitis by regulating macrophage polarization.Pharmacol. Res.202117210579610.1016/j.phrs.2021.10579634343656
    [Google Scholar]
  144. LongJ. LiuX.K. KangZ.P. WangM.X. ZhaoH.M. HuangJ.Q. XiaoQ.P. LiuD.Y. ZhongY.B. Ginsenoside Rg1 ameliorated experimental colitis by regulating the balance of M1/M2 macrophage polarization and the homeostasis of intestinal flora.Eur. J. Pharmacol.202291717474210.1016/j.ejphar.2022.17474234999087
    [Google Scholar]
  145. GuoR. MengQ. WangB. LiF. Anti-inflammatory effects of Platycodin D on dextran sulfate sodium (DSS) induced colitis and E. coli Lipopolysaccharide (LPS) induced inflammation.Int. Immunopharmacol.20219410747410.1016/j.intimp.2021.10747433611056
    [Google Scholar]
  146. XiongK. DengJ. YueT. HuW. ZengX. YangT. XiaoT. Berberine promotes M2 macrophage polarisation through the IL-4-STAT6 signalling pathway in ulcerative colitis treatment.Heliyon202393e1417610.1016/j.heliyon.2023.e1417636923882
    [Google Scholar]
  147. DuewellP. KonoH. RaynerK.J. SiroisC.M. VladimerG. BauernfeindF.G. AbelaG.S. FranchiL. NuñezG. SchnurrM. EspevikT. LienE. FitzgeraldK.A. RockK.L. MooreK.J. WrightS.D. HornungV. LatzE. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals.Nature201046472931357136110.1038/nature0893820428172
    [Google Scholar]
  148. LissnerD. SiegmundB. The multifaceted role of the inflammasome in inflammatory bowel diseases.Sci World J2011111536154710.1100/tsw.2011.13921805022
    [Google Scholar]
  149. TanX. WenY. HanZ. SuX. PengJ. ChenF. WangY. WangT. WangC. MaK. Cinnamaldehyde Ameliorates dextran sulfate sodium‐induced colitis in mice by modulating TLR4/NF‐κB signaling pathway and NLRP3 inflammasome activation.Chem. Biodivers.2023202e20220008910.1002/cbdv.20220008936653304
    [Google Scholar]
  150. LiH. YangD.H. ZhangY. ZhengF. GaoF. SunJ. ShiG. Geniposide suppresses NLRP3 inflammasome-mediated pyroptosis via the AMPK signaling pathway to mitigate myocardial ischemia/reperfusion injury.Chin. Med.20221717310.1186/s13020‑022‑00616‑535715805
    [Google Scholar]
  151. SongM. Fuqian ChenZ. QiuR. ZhiT. XieW. ZhouY. LuoN. ChenF. Liu, F.; Shen, C.; Lin, S.; Zhang, F.; Gao, Y.; Liu, C. Inhibition of NLRP3-mediated crosstalk between hepatocytes and liver macrophages by geniposidic acid alleviates cholestatic liver inflammatory injury.Redox Biol.20225510240410.1016/j.redox.2022.10240435868156
    [Google Scholar]
  152. PuZ. LiuY. LiC. XuM. XieH. ZhaoJ. Using network pharmacology for systematic understanding of geniposide in ameliorating inflammatory responses in colitis through suppression of NLRP3 inflammasome in macrophage by AMPK/Sirt1 dependent signaling.Am. J. Chin. Med.20204871693171310.1142/S0192415X2050084633202149
    [Google Scholar]
  153. FangxiaoM. YifanK. JihongZ. YanS. YingchaoL. Effect of Tripterygium wilfordii Polycoride on the NOXs-ROS-NLRP3 Inflammasome signaling pathway in mice with Ulcerative Colitis.Evid. Based Complement. Alternat. Med.201920191710.1155/2019/930628331531121
    [Google Scholar]
  154. BelkaidY. HarrisonO.J. Homeostatic immunity and the microbiota.Immunity201746456257610.1016/j.immuni.2017.04.00828423337
    [Google Scholar]
  155. VinoloM.A.R. RodriguesH.G. NachbarR.T. CuriR. Regulation of inflammation by short chain fatty acids.Nutrients201131085887610.3390/nu310085822254083
    [Google Scholar]
  156. ZhouZ. YuS. CuiL. ShaoK. PangH. WangZ. HeN. LiS. Isomaltulose alleviates acute colitis via modulating gut microbiota and the Treg/Th17 balance in mice.Food Funct.202213168572858410.1039/D2FO01157C35894244
    [Google Scholar]
  157. SunZ. LiJ. DaiY. WangW. ShiR. WangZ. DingP. LuQ. JiangH. PeiW. ZhaoX. GuoY. LiuJ. TanX. MaoT. Indigo naturalis alleviates dextran sulfate sodium-induced colitis in rats via altering gut microbiota.Front. Microbiol.20201173110.3389/fmicb.2020.0073132425906
    [Google Scholar]
  158. LiZ. SongY. XuW. ChenJ. ZhouR. YangM. ZhuG. LuoX. AiZ. LiuY. SuD. Pulsatilla chinensis saponins improve SCFAs regulating GPR43-NLRP3 signaling pathway in the treatment of ulcerative colitis.J. Ethnopharmacol.202330811621510.1016/j.jep.2023.11621536806339
    [Google Scholar]
  159. ShaoS. WangD. ZhengW. LiX. ZhangH. ZhaoD. WangM. A unique polysaccharide from Hericium erinaceus mycelium ameliorates acetic acid-induced ulcerative colitis rats by modulating the composition of the gut microbiota, short chain fatty acids levels and GPR41/43 respectors.Int. Immunopharmacol.20197141142210.1016/j.intimp.2019.02.03831059977
    [Google Scholar]
  160. KaserA. AdolphT.E. BlumbergR.S. The unfolded protein response and gastrointestinal disease.Semin. Immunopathol.201335330731910.1007/s00281‑013‑0377‑523588234
    [Google Scholar]
  161. MayerL. ShlienR. Evidence for function of Ia molecules on gut epithelial cells in man.J. Exp. Med.198716651471148310.1084/jem.166.5.14712960770
    [Google Scholar]
  162. DubuquoyL. JanssonE.Å. DeebS. RakotobeS. KarouiM. ColombelJ.F. AuwerxJ. PetterssonS. DesreumauxP. Impaired expression of peroxisome proliferator-activated receptor γ in ulcerative colitis.Gastroenterology200312451265127610.1016/S0016‑5085(03)00271‑312730867
    [Google Scholar]
  163. RanB. GuoC.E. ZhangY. HanC. CaoT. HuangH. GengZ. LiW. Preventive effect of Chinese dwarf cherry [Cerasus humilis (Bge.) Sok. fermentation juice on dextran sulfate sodium-induced ulcerative colitis rats through the regulation of IgA and the intestinal immune barrier.Food Funct.202213105766578110.1039/D1FO04218A35536119
    [Google Scholar]
  164. DaneseS. SansM. de la MotteC. GrazianiC. WestG. PhillipsM.H. PolaR. RutellaS. WillisJ. GasbarriniA. FiocchiC. Angiogenesis as a novel component of inflammatory bowel disease pathogenesis.Gastroenterology200613072060207310.1053/j.gastro.2006.03.05416762629
    [Google Scholar]
  165. MateescuR.B. BastianA.E. NichitaL. MarinescuM. RouhaniF. VoiosuA.M. BenguşA. TudoraşcuD.R. PoppC.G. Vascular endothelial growth factor - key mediator of angiogenesis and promising therapeutical target in ulcerative colitis.Rom. J. Morphol. Embryol.201758413391345[PMID: 29556626
    [Google Scholar]
  166. LiD. FengY. TianM. JiJ. HuX. ChenF. Gut microbiota-derived inosine from dietary barley leaf supplementation attenuates colitis through PPARγ signaling activation.Microbiome2021918310.1186/s40168‑021‑01028‑733820558
    [Google Scholar]
  167. ZhouX. LuQ. KangX. TianG. MingD. YangJ. Protective role of a new polysaccharide extracted from Lonicera japonica Thunb in mice with ulcerative colitis induced by dextran sulphate sodium.BioMed Res. Int.202120211910.1155/2021/887863333490281
    [Google Scholar]
  168. KimD.S. KimS.H. KeeJ.Y. HanY.H. ParkJ. MunJ.G. JooM.J. JeonY.D. KimS.J. ParkS.H. ParkS.J. UmJ.Y. HongS.H. Eclipta prostrata improves DSS-induced colitis through regulation of inflammatory response in intestinal epithelial cells.Am. J. Chin. Med.20174551047106010.1142/S0192415X1750056228659027
    [Google Scholar]
  169. YangY. VongC.T. ZengS. GaoC. ChenZ. FuC. WangS. ZouL. WangA. WangY. Tracking evidences of Coptis chinensis for the treatment of inflammatory bowel disease from pharmacological, pharmacokinetic to clinical studies.J. Ethnopharmacol.202126811357310.1016/j.jep.2020.11357333181286
    [Google Scholar]
  170. WeberL. KuckK. JürgenliemkG. HeilmannJ. LipowiczB. VissiennonC. Anti-inflammatory and barrier-stabilising effects of Myrrh, coffee charcoal and chamomile flower extract in a co-culture cell model of the intestinal mucosa.Biomolecules2020107103310.3390/biom1007103332664498
    [Google Scholar]
  171. GargS.K. AhujaV. SankarM.J. KumarA. MossA.C. Curcumin for maintenance of remission in ulcerative colitis.Cochrane Database Syst. Rev.201410CD008424
    [Google Scholar]
  172. DavilaM.M. PapadaE. The role of plant-derived natural products in the management of inflammatory bowel disease-what is the clinical evidence so far?Life20231381703
    [Google Scholar]
  173. TriantafyllidiA. XanthosT. PapaloisA. TriantafillidisJ.K. Herbal and plant therapy in patients with inflammatory bowel disease.Ann. Gastroenterol.201528210220
    [Google Scholar]
  174. SalehiB. MnayerD. ÖzçelikB. AltinG. KasapoğluK.N. Daskaya-DikmenC. Sharifi-RadM. SelamogluZ. AcharyaK. SenS. MatthewsK.R. FokouP.V.T. SharopovF. SetzerW.N. MartorellM. Sharifi-RadJ. Plants of the genus Lavandula: From farm to pharmacy.Nat. Prod. Commun.2018131010.1177/1934578X1801301037
    [Google Scholar]
  175. TahirM.M. RasulA. RiazA. BatoolR. NageenB. AdnanM. SarfrazI. AdnanM. SadiqaA. SelamogluZ. Ficus benghalensis: A plant with potential pharmacological properties f rom tradition to pharmacy.Trop. J. Pharm. Res.202422112407241310.4314/tjpr.v22i11.22
    [Google Scholar]
  176. GogebakanA. TalasZ.S. OzdemirI. SahnaE. Role of propolis on tyrosine hydroxylase activity and blood pressure in nitric oxide synthase-inhibited hypertensive rats.Clin. Exp. Hypertens.201234642442810.3109/10641963.2012.66554222471835
    [Google Scholar]
  177. SelamogluS.R. Anti-inflammatory influences of royal jelly and melittin and their effectiveness on wound healing.Cent. Asian J. Med. Pharm. Sci202332384710.22034/CAJMPSI.2023.02.02
    [Google Scholar]
  178. ErdemliM.E. Ekhteiari SalmasR. DurdagiS. AkgulH. DemirkolM. AksungurZ. SelamogluZ. Biochemical changes induced by grape seed extract and low level laser therapy administration during intraoral wound healing in rat liver: An experimental and in silico study.J. Biomol. Struct. Dyn.2018364993100810.1080/07391102.2017.130529728279122
    [Google Scholar]
/content/journals/npj/10.2174/0122103155348415241119073736
Loading
/content/journals/npj/10.2174/0122103155348415241119073736
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test