Skip to content
2000
Volume 16, Issue 2
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

A natural product is a natural compound or substance produced by a living organism, that is, found in nature. The term natural product has also been prolonged for commercial purposes to refers to dietary supplements, cosmetics and food produced from natural sources without added artificial ingredients. Luteolin, a bioflavonoid found abundantly in various fruits, vegetables, and medicinal plants has gained significant attention in recent years due to its potential pharmacological properties. This comprehensive review explores the multifaceted aspects of luteolin, encompassing clinical studies, experimental research, kinetic analyses, nanotechnology-based formulations, and synergistic interactions with conventional drugs. The introduction section describes the various sources and biological functions of luteolin and emphasizes its importance in the realm of medicine. The clinical studies section provides insights into the therapeutic potential of luteolin in various human diseases, highlighting its efficacy, safety profile, and potential mechanisms of action. Experimental studies exploring luteolin's mechanisms of action, cellular interactions, and therapeutic effects in various disease models. It elucidates underlying the biological mechanism of luteolin, shedding light on its antioxidant, anti-inflammatory, anti-cancer, and neuroprotective effects. Furthermore, a detailed pharmacokinetic study examines the absorption, distribution, metabolism, and excretion (ADME) of luteolin, offering valuable information for optimizing its dosing regimens and enhancing therapeutic outcomes. The integration of nanotechnology in luteolin formulations is discussed, focusing on innovative nanoformulations that improve its solubility, stability, and targeted delivery, thus enhancing its bioavailability and efficacy. Additionally, this review delves into the synergistic interactions between luteolin and conventional drugs, emphasizing the potential for combination therapies to enhance treatment outcomes and reduce adverse effects. The synergistic mechanisms, preclinical and clinical evidence, and future prospects of these combinations are explored in detail. Future applications of luteolin appear to be very promising in a variety of fields, including personalized medicine, disease-specific medicines, and preventative healthcare.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155316738240901181513
2025-01-10
2025-12-26
Loading full text...

Full text loading...

References

  1. HarborneJ.B. WilliamsC.A. Advances in flavonoid research since 1992.Phytochemistry200055648150410.1016/S0031‑9422(00)00235‑111130659
    [Google Scholar]
  2. BirtD.F. HendrichS. WangW. Dietary agents in cancer prevention: flavonoids and isoflavonoids.Pharmacol. Ther.2001902-315717710.1016/S0163‑7258(01)00137‑111578656
    [Google Scholar]
  3. MencheriniT. PicernoP. ScesaC. AquinoR. Triterpene, antioxidant, and antimicrobial compounds from Melissa officinalis.J. Nat. Prod.200770121889189410.1021/np070351s18004816
    [Google Scholar]
  4. RossJ.A. KasumC.M. Dietary flavonoids: bioavailability, metabolic effects, and safety.Annu. Rev. Nutr.2002221193410.1146/annurev.nutr.22.111401.14495712055336
    [Google Scholar]
  5. ChanT.S. GalatiG. PannalaA.S. Rice-EvansC. O’BrienP.J. Simultaneous detection of the antioxidant and pro-oxidant activity of dietary polyphenolics in a peroxidase system.Free Radic. Res.200337778779410.1080/107157603100009489912911276
    [Google Scholar]
  6. HempelJ. PforteH. RaabB. EngstW. BöhmH. JacobaschG. Flavonols and flavones of parsley cell suspension culture change the antioxidative capacity of plasma in rats.Nahrung199943320110.1002/(SICI)1521‑3803(19990601)43:3<201:AID‑FOOD201>3.0.CO;2‑1
    [Google Scholar]
  7. Le MarchandL. Cancer preventive effects of flavonoids—a review.Biomed. Pharmacother.200256629630110.1016/S0753‑3322(02)00186‑512224601
    [Google Scholar]
  8. LiY.L. LiJ. WangN.L. YaoX.S. Flavonoids and a new polyacetylene from Bidens parviflora Willd.Molecules20081381931194110.3390/molecules1308193118794794
    [Google Scholar]
  9. BrodyJ.S. SpiraA. State of the art. Chronic obstructive pulmonary disease, inflammation, and lung cancer.Proc. Am. Thorac. Soc.20063653553710.1513/pats.200603‑089MS16921139
    [Google Scholar]
  10. Perwez HussainS. HarrisC.C. Inflammation and cancer: An ancient link with novel potentials.Int. J. Cancer2007121112373238010.1002/ijc.2317317893866
    [Google Scholar]
  11. KarinM. LawrenceT. NizetV. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer.Cell2006124482383510.1016/j.cell.2006.02.01616497591
    [Google Scholar]
  12. XagorariA. PapapetropoulosA. MauromatisA. EconomouM. FotsisT. RoussosC. Luteolin inhibits an endotoxin-stimulated phosphorylation cascade and proinflammatory cytokine production in macrophages.J. Pharmacol. Exp. Ther.20012961181187[PMID: 11123379
    [Google Scholar]
  13. QinwufengG. JiachengL. XiaolingL. TingruC. YunyangW. YanlongY. Formula suppresses JAK1/STAT3 and MAPK signaling alleviates atopic dermatitis-like skin lesions.J. Ethnopharmacol.202229511542810.1016/j.jep.2022.11542835659915
    [Google Scholar]
  14. KumazawaY. KawaguchiK. TakimotoH. Immunomodulating effects of flavonoids on acute and chronic inflammatory responses caused by tumor necrosis factor α.Curr. Pharm. Des.200612324271427910.2174/13816120677874356517100629
    [Google Scholar]
  15. LienE.J. RenS. BuiH.H. WangR. Quantitative structure-activity relationship analysis of phenolic antioxidants.Free Radic. Biol. Med.1999263-428529410.1016/S0891‑5849(98)00190‑79895218
    [Google Scholar]
  16. SenN. DasB.B. GangulyA. BanerjeeB. SenT. MajumderH.K. Leishmania donovani: Intracellular ATP level regulates apoptosis-like death in luteolin induced dyskinetoplastid cells.Exp. Parasitol.2006114320421410.1016/j.exppara.2006.03.01316707127
    [Google Scholar]
  17. Wing-Cheung LeungH. KuoC.L. YangW.H. LinC.H. LeeH.Z. Antioxidant enzymes activity involvement in luteolin-induced human lung squamous carcinoma CH27 cell apoptosis.Eur. J. Pharmacol.20065341-3121810.1016/j.ejphar.2006.01.02116469309
    [Google Scholar]
  18. ManjuV. NaliniN. Chemopreventive potential of luteolin during colon carcinogenesis induced by 1,2-dimethylhydrazine.Ital. J. Biochem.2005543-4268275[PMID: 16688936
    [Google Scholar]
  19. ChungJ.H. Photoaging in Asians.Photodermatol. Photoimmunol. Photomed.200319310912110.1034/j.1600‑0781.2003.00027.x12914595
    [Google Scholar]
  20. HausenloyD.J. TsangA. MocanuM.M. YellonD.M. Ischemic preconditioning protects by activating prosurvival kinases at reperfusion.Am. J. Physiol. Heart Circ. Physiol.20052882H971H97610.1152/ajpheart.00374.200415358610
    [Google Scholar]
  21. LiaoP.H. HungL.M. ChenY.H. KuanY.H. ZhangF.B.Y. LinR.H. ShihH.C. TsaiS.K. HuangS.S. Cardioprotective effects of luteolin during ischemia-reperfusion injury in rats.Circ. J.201175244345010.1253/circj.CJ‑10‑038121178298
    [Google Scholar]
  22. HanahanD WeinbergRA The hallmarks of cancercell200010015770
    [Google Scholar]
  23. GalatiG. TengS. MoridaniM.Y. ChanT.S. O’BrienP.J. Cancer chemoprevention and apoptosis mechanisms induced by dietary polyphenolics.Drug Metabol. Drug Interact.2000171-431135010.1515/DMDI.2000.17.1‑4.31111201302
    [Google Scholar]
  24. FangJ. ZhouQ. ShiX. JiangB. Luteolin inhibits insulin-like growth factor 1 receptor signaling in prostate cancer cells.Carcinogenesis200628371372310.1093/carcin/bgl18917065200
    [Google Scholar]
  25. HanD.H. DenisonM.S. TachibanaH. YamadaK. Relationship between estrogen receptor-binding and estrogenic activities of environmental estrogens and suppression by flavonoids.Biosci. Biotechnol. Biochem.20026671479148710.1271/bbb.66.147912224631
    [Google Scholar]
  26. KnowlesL.M. ZigrossiD.A. TauberR.A. HightowerC. MilnerJ.A. Flavonoids suppress androgen-independent human prostate tumor proliferation.Nutr. Cancer200038111612210.1207/S15327914NC381_1611341036
    [Google Scholar]
  27. MassaguéJ. G1 cell-cycle control and cancer.Nature2004432701529830610.1038/nature0309415549091
    [Google Scholar]
  28. CasagrandeF. DarbonJ.M. Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: regulation of cyclin-dependent kinases CDK2 and CDK111Abbreviations: CDK, cyclin-dependent kinase; CKI, CDK inhibitor; PI 3-kinase, phosphatidylinositol 3-kinase; PKC, protein kinase C; DTT, dithiothreitol; RIPA, radioimmunoprecipitation assay buffer.Biochem. Pharmacol.200161101205121510.1016/S0006‑2952(01)00583‑411322924
    [Google Scholar]
  29. LiW.X. CuiC.B. CaiB. WangH.Y. YaoX.S. Flavonoids from Vitex trifolia L. inhibit cell cycle progression at G 2 /M phase and induce apoptosis in mammalian cancer cells.J. Asian Nat. Prod. Res.20057461562610.1080/1028602031000162508516087636
    [Google Scholar]
  30. CainoM.C. OlivaJ.L. JiangH. PenningT.M. KazanietzM.G. Benzo[a]pyrene-7,8-dihydrodiol promotes checkpoint activation and G2/M arrest in human bronchoalveolar carcinoma H358 cells.Mol. Pharmacol.200771374475010.1124/mol.106.03207817114299
    [Google Scholar]
  31. ZhangL. LauY.K. XiL. HongR.L. KimD.S.H.L. ChenC.F. HortobagyiG.N. ChangC. HungM.C. Tyrosine kinase inhibitors, emodin and its derivative repress HER-2/neu-induced cellular transformation and metastasis-associated properties.Oncogene199816222855286310.1038/sj.onc.12018139671406
    [Google Scholar]
  32. LeeL.T. HuangY.T. HwangJ.J. LeeP.P. KeF.C. NairM.P. KanadaswamC. LeeM.T. Blockade of the epidermal growth factor receptor tyrosine kinase activity by quercetin and luteolin leads to growth inhibition and apoptosis of pancreatic tumor cells.Anticancer Res.200222316151627[PMID: 12168845
    [Google Scholar]
  33. MateiD. EmersonR.E. LaiY-C. BaldridgeL.A. RaoJ. YiannoutsosC. DonnerD.D. Autocrine activation of PDGFRα promotes the progression of ovarian cancer.Oncogene200625142060206910.1038/sj.onc.120923216331269
    [Google Scholar]
  34. HanahanD. WeinbergR.A. The Hallmark of Cancer.Cell200010015770
    [Google Scholar]
  35. WajantH. PfizenmaierK. ScheurichP. Tumor necrosis factor signaling.Cell Death Differ.2003101456510.1038/sj.cdd.440118912655295
    [Google Scholar]
  36. HuangY.T. HwangJ.J. LeeP.P. KeF.C. HuangJ.H. HuangC.J. KandaswamiC. MiddletonE.Jr LeeM.T. Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis‐associated properties in A431 cells overexpressing epidermal growth factor receptor.Br. J. Pharmacol.19991285999101010.1038/sj.bjp.070287910556937
    [Google Scholar]
  37. LeeH.J. WangC.J. KuoH.C. ChouF.P. JeanL.F. TsengT.H. Induction apoptosis of luteolin in human hepatoma HepG2 cells involving mitochondria translocation of Bax/Bak and activation of JNK.Toxicol. Appl. Pharmacol.2005203212413110.1016/j.taap.2004.08.00415710173
    [Google Scholar]
  38. HorinakaM. YoshidaT. ShiraishiT. NakataS. WakadaM. NakanishiR. NishinoH. MatsuiH. SakaiT. Luteolin induces apoptosis via death receptor 5 upregulation in human malignant tumor cells.Oncogene200524487180718910.1038/sj.onc.120887416007131
    [Google Scholar]
  39. ShiR. HuangQ. ZhuX. OngY.B. ZhaoB. LuJ. OngC.N. ShenH.M. Luteolin sensitizes the anticancer effect of cisplatin via c-Jun NH2-terminal kinase–mediated p53 phosphorylation and stabilization.Mol. Cancer Ther.2007641338134710.1158/1535‑7163.MCT‑06‑063817431112
    [Google Scholar]
  40. ShiR.X. OngC.N. ShenH.M. Luteolin sensitizes tumor necrosis factor-α-induced apoptosis in human tumor cells.Oncogene200423467712772110.1038/sj.onc.120804615334063
    [Google Scholar]
  41. ChengA.C. HuangT.C. LaiC.S. PanM.H. Induction of apoptosis by luteolin through cleavage of Bcl-2 family in human leukemia HL-60 cells.Eur. J. Pharmacol.2005509111010.1016/j.ejphar.2004.12.02615713423
    [Google Scholar]
  42. YadavH.P. LiY. The development of treatment for Parkinson’s disease.Adv. Parkin. Diseas.201543597810.4236/apd.2015.43008
    [Google Scholar]
  43. NazF. SiddiqueY.H. Role of genes and treatments for Parkinson’s disease. “Open Biol”.Open Biol. J.202081
    [Google Scholar]
  44. ZhangZ. XuP. YuH. ShiL. Luteolin protects PC-12 cells from H2O2-induced injury by up-regulation of microRNA-21.Biomed. Pharmacother.201911210869810.1016/j.biopha.2019.10869830802826
    [Google Scholar]
  45. FeanyM.B. BenderW.W. A Drosophila model of Parkinson’s disease.Nature2000404677639439810.1038/3500607410746727
    [Google Scholar]
  46. SiddiqueY.H. JyotiS. NazF. Protective effect of luteolin on the transgenic Drosophila model of Parkinson’s disease.Braz. J. Pharm. Sci.20185435410.1590/s2175‑97902018000317760
    [Google Scholar]
  47. KongX. HuoG. LiuS. LiF. ChenW. JiangD. Luteolin suppresses inflammation through inhibiting cAMP-phosphodiesterases activity and expression of adhesion molecules in microvascular endothelial cells.Inflammopharmacology201927477378010.1007/s10787‑018‑0537‑230276558
    [Google Scholar]
  48. AzizN. KimM.Y. ChoJ.Y. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies.J. Ethnopharmacol.201822534235810.1016/j.jep.2018.05.01929801717
    [Google Scholar]
  49. ColetaM. CamposM.G. CotrimM.D. LimaT.C.M. CunhaA.P. Assessment of luteolin (3′,4′,5,7-tetrahydroxyflavone) neuropharmacological activity.Behav. Brain Res.20081891758210.1016/j.bbr.2007.12.01018249450
    [Google Scholar]
  50. DirscherlK. KarlstetterM. EbertS. KrausD. HlawatschJ. WalczakY. MoehleC. FuchshoferR. LangmannT. Luteolin triggers global changes in the microglial transcriptome leading to a unique anti-inflammatory and neuroprotective phenotype.J. Neuroinflammation201071310.1186/1742‑2094‑7‑320074346
    [Google Scholar]
  51. YangJ.J. ZhouQ. YanH.H. ZhangX.C. ChenH.J. TuH.Y. WangZ. XuC.R. SuJ. WangB.C. JiangB.Y. BaiX.Y. ZhongW.Z. YangX.N. WuY.L. A phase III randomised controlled trial of erlotinib vs gefitinib in advanced non-small cell lung cancer with EGFR mutations.Br. J. Cancer2017116556857410.1038/bjc.2016.45628103612
    [Google Scholar]
  52. Paredes-GonzalezX. FuentesF. JefferyS. SawC.L.L. ShuL. SuZ.Y. KongA.N.T. Induction of NRF2‐mediated gene expression by dietary phytochemical flavones apigenin and luteolin.Biopharm. Drug Dispos.201536744045110.1002/bdd.195625904312
    [Google Scholar]
  53. ZhuZ. YanJ. JiangW. YaoX. ChenJ. ChenL. LiC. HuL. JiangH. ShenX. Arctigenin effectively ameliorates memory impairment in Alzheimer’s disease model mice targeting both β-amyloid production and clearance.J. Neurosci.20133332131381314910.1523/JNEUROSCI.4790‑12.201323926267
    [Google Scholar]
  54. MasliahE. TerryR.D. AlfordM. DeTeresaR. HansenL.A. Cortical and subcortical patterns of synaptophysinlike immunoreactivity in Alzheimer’s disease.Am. J. Pathol.19911381235246[PMID: 1899001
    [Google Scholar]
  55. ChoiS.M. KimB.C. ChoY.H. ChoiK.H. ChangJ. ParkM.S. KimM.K. ChoK.H. KimJ.K. Effects of flavonoid compounds on β-amyloid-peptide-induced neuronal death in cultured mouse cortical neurons.Chonnam Med. J.2014502455110.4068/cmj.2014.50.2.4525229015
    [Google Scholar]
  56. ZhengL. KågedalK. DehvariN. BenedikzE. CowburnR. MarcussonJ. TermanA. Oxidative stress induces macroautophagy of amyloid β-protein and ensuing apoptosis.Free Radic. Biol. Med.200946342242910.1016/j.freeradbiomed.2008.10.04319038331
    [Google Scholar]
  57. ButterfieldD.A. PerluigiM. SultanaR. Oxidative stress in Alzheimer’s disease brain: New insights from redox proteomics.Eur. J. Pharmacol.20065451395010.1016/j.ejphar.2006.06.02616860790
    [Google Scholar]
  58. AlievG. MillerJ.P. LeiferD.W. ObrenovichM.E. ShenkJ.C. SmithM.A. LamannaJ.C. PerryG. LustD.W. CohenA.R. Ultrastructural analysis of a murine model of congenital hydrocephalus produced by overexpression of transforming growth factor-beta1 in the central nervous system.J. Submicrosc. Cytol. Pathol.2006382-38591[PMID: 17784635
    [Google Scholar]
  59. JiangD. RaudaI. HanS. ChenS. ZhouF. Aggregation pathways of the amyloid β(1-42) peptide depend on its colloidal stability and ordered β-sheet stacking.Langmuir20122835127111272110.1021/la302143622870885
    [Google Scholar]
  60. SawmillerD. LiS. ShahaduzzamanM. SmithA. ObregonD. GiuntaB. BorlonganC. SanbergP. TanJ. Luteolin reduces Alzheimer’s disease pathologies induced by traumatic brain injury.Int. J. Mol. Sci.201415189590410.3390/ijms1501089524413756
    [Google Scholar]
  61. Gilgun-SherkiY. RosenbaumZ. MelamedE. OffenD. Antioxidant therapy in acute central nervous system injury: current state.Pharmacol. Rev.200254227128410.1124/pr.54.2.27112037143
    [Google Scholar]
  62. Comino-SanzI.M. López-FrancoM.D. CastroB. Pancorbo-HidalgoP.L. The role of antioxidants on wound healing: A review of the current evidence.J. Clin. Med.20211016355810.3390/jcm1016355834441854
    [Google Scholar]
  63. ChenL.Y. ChengH.L. KuanY.H. LiangT.J. ChaoY.Y. LinH.C. Therapeutic potential of luteolin on impaired wound healing in streptozotocin-induced rats.Biomedicines20219776110.3390/biomedicines907076134209369
    [Google Scholar]
  64. AzevedoM.F. CamsariÇ. SáC.M. LimaC.F. Fernandes-FerreiraM. Pereira-WilsonC. Ursolic acid and luteolin‐7‐glucoside improve lipid profiles and increase liver glycogen content through glycogen synthase kinase‐3.Phytother. Res.201024S2S220S22410.1002/ptr.311820127879
    [Google Scholar]
  65. DiS. WangY. HanL. BaoQ. GaoZ. WangQ. YangY. ZhaoL. TongX. The intervention effect of traditional Chinese medicine on the intestinal flora and its metabolites in glycolipid metabolic disorders.J. Altern. Complement. Med.2019295892010.1155/2019/2958920
    [Google Scholar]
  66. DudekM. KołodziejskiP.A. Pruszyńska-OszmałekE. SassekM. ZiarniakK. NowakK.W. SliwowskaJ.H. Effects of high-fat diet-induced obesity and diabetes on Kiss1 and GPR54 expression in the hypothalamic–pituitary–gonadal (HPG) axis and peripheral organs (fat, pancreas and liver) in male rats.Neuropeptides201656414910.1016/j.npep.2016.01.00526853724
    [Google Scholar]
  67. AmpofoA.G. BoatengE.B. Beyond 2020: Modelling obesity and diabetes prevalence.Diabetes Res. Clin. Pract.202016710836210.1016/j.diabres.2020.10836232758618
    [Google Scholar]
  68. Tomás-BarberánF.A. Andrés-LacuevaC. Polyphenols and health: current state and progress.J. Agric. Food Chem.201260368773877510.1021/jf300671j22578138
    [Google Scholar]
  69. JucáM.M. Cysne FilhoF.M.S. de AlmeidaJ.C. MesquitaD.S. BarrigaJ.R.M. DiasK.C.F. BarbosaT.M. VasconcelosL.C. LealL.K.A.M. RibeiroJ.E. VasconcelosS.M.M. Flavonoids: biological activities and therapeutic potential.Nat. Prod. Res.202034569270510.1080/14786419.2018.149358830445839
    [Google Scholar]
  70. SongD. ChengL. ZhangX. WuZ. ZhengX. The modulatory effect and the mechanism of flavonoids on obesity.J. Food Biochem.20194381295410.1111/jfbc.1295431368555
    [Google Scholar]
  71. HayasakaN. ShimizuN. KomodaT. MohriS. TsushidaT. EitsukaT. MiyazawaT. NakagawaK. Absorption and metabolism of luteolin in rats and humans in relation to in vitro anti-inflammatory effects.J. Agric. Food Chem.20186643113201132910.1021/acs.jafc.8b0327330280574
    [Google Scholar]
  72. SangeethaR. Luteolin in the management of type 2 diabetes mellitus.Curr. Res. Nutr. Food Sci.20197239339810.12944/CRNFSJ.7.2.09
    [Google Scholar]
  73. YasudaM.T. FujitaK. HosoyaT. ImaiS. ShimoiK. Absorption and metabolism of luteolin and its glycosides from the extract of Chrysanthemum morifolium flowers in rats and Caco-2 cells.J. Agric. Food Chem.201563357693769910.1021/acs.jafc.5b0023225843231
    [Google Scholar]
  74. ShimoiK. OkadaH. FurugoriM. GodaT. TakaseS. SuzukiM. HaraY. YamamotoH. KinaeN. Intestinal absorption of luteolin and luteolin 7‐ O ‐β‐glucoside in rats and humans.FEBS Lett.1998438322022410.1016/S0014‑5793(98)01304‑09827549
    [Google Scholar]
  75. WittemerS.M. PlochM. WindeckT. MüllerS.C. DrewelowB. DerendorfH. VeitM. Bioavailability and pharmacokinetics of caffeoylquinic acids and flavonoids after oral administration of Artichoke leaf extracts in humans.Phytomedicine2005121-2283810.1016/j.phymed.2003.11.00215693705
    [Google Scholar]
  76. LinL.C. PaiY.F. TsaiT.H. Isolation of luteolin and luteolin-7-O-glucoside from Dendranthema morifolium Ramat Tzvel and their pharmacokinetics in rats.J. Agric. Food Chem.201563357700770610.1021/jf505848z25625345
    [Google Scholar]
  77. BélangerM. AllamanI. MagistrettiP.J. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation.Cell Metab.201114672473810.1016/j.cmet.2011.08.01622152301
    [Google Scholar]
  78. SamodienE. JohnsonR. PheifferC. MabasaL. ErasmusM. LouwJ. ChellanN. Diet-induced hypothalamic dysfunction and metabolic disease, and the therapeutic potential of polyphenols.Mol. Metab.20192711010.1016/j.molmet.2019.06.02231300352
    [Google Scholar]
  79. PanickarK.S. Effects of dietary polyphenols on neuroregulatory factors and pathways that mediate food intake and energy regulation in obesity.Mol. Nutr. Food Res.2013571344710.1002/mnfr.20120043123125162
    [Google Scholar]
  80. LiuY. FuX. LanN. LiS. ZhangJ. WangS. LiC. ShangY. HuangT. ZhangL. Luteolin protects against high fat diet-induced cognitive deficits in obesity mice.Behav. Brain Res.201426717818810.1016/j.bbr.2014.02.04024667364
    [Google Scholar]
  81. Bumke-VogtC. OsterhoffM.A. BorchertA. Guzman-PerezV. SaremZ. BirkenfeldA.L. BährV. PfeifferA.F.H. The flavones apigenin and luteolin induce FOXO1 translocation but inhibit gluconeogenic and lipogenic gene expression in human cells.PLoS One20149810432110.1371/journal.pone.010432125136826
    [Google Scholar]
  82. HuangQ. ChenL. TengH. SongH. WuX. XuM. Phenolic compounds ameliorate the glucose uptake in HepG2 cells’ insulin resistance via activating AMPK.J. Funct. Foods20151948749410.1016/j.jff.2015.09.020
    [Google Scholar]
  83. WongT.Y. LinS. LeungL.K. The flavone luteolin suppresses SREBP-2 expression and post-translational activation in hepatic cells.PLoS One201510813563710.1371/journal.pone.013563726302339
    [Google Scholar]
  84. KwonE.Y. KimS.Y. ChoiM.S. Luteolin-enriched artichoke leaf extract alleviates the metabolic syndrome in mice with high-fat diet-induced obesity.Nutrients201810897910.3390/nu1008097930060507
    [Google Scholar]
  85. ShonJ.C. KimW.C. RyuR. WuZ. SeoJ.S. ChoiM.S. LiuK.H. Plasma lipidomics reveals insights into anti-obesity effect of Chrysanthemum morifolium. Ramat leaves and its constituent luteolin in high-fat diet-induced dyslipidemic mice.Nutrients20201210297310.3390/nu1210297333003339
    [Google Scholar]
  86. NicolaiA. LiM. KimD.H. PetersonS.J. VanellaL. PositanoV. GastaldelliA. RezzaniR. RodellaL.F. DrummondG. KusmicC. L’AbbateA. KappasA. AbrahamN.G. Heme oxygenase-1 induction remodels adipose tissue and improves insulin sensitivity in obesity-induced diabetic rats.Hypertension200953350851510.1161/HYPERTENSIONAHA.108.12470119171794
    [Google Scholar]
  87. BlüherM. Adipose tissue dysfunction in obesity.Exp. Clin. Endocrinol. Diabetes2009117624125010.1055/s‑0029‑119204419358089
    [Google Scholar]
  88. DingL. JinD. ChenX. Luteolin enhances insulin sensitivity via activation of PPARγ transcriptional activity in adipocytes.J. Nutr. Biochem.2010211094194710.1016/j.jnutbio.2009.07.00919954946
    [Google Scholar]
  89. AndoC. TakahashiN. HiraiS. NishimuraK. LinS. UemuraT. GotoT. YuR. NakagamiJ. MurakamiS. KawadaT. Luteolin, a food‐derived flavonoid, suppresses adipocyte‐dependent activation of macrophages by inhibiting JNK activation.FEBS Lett.2009583223649365410.1016/j.febslet.2009.10.04519854181
    [Google Scholar]
  90. KimD-K. NepaliS. SonJ-S. PoudelB. LeeJ.H. LeeY-M. Luteolin is a bioflavonoid that attenuates adipocyte-derived inflammatory responses via suppression of nuclear factor-κB/mitogen-activated protein kinases pathway.Pharmacogn. Mag.2015114362763510.4103/0973‑1296.16047026246742
    [Google Scholar]
  91. KwonS.M. KimS. SongN.J. ChangS.H. HwangY.J. YangD.K. HongJ.W. ParkW.J. ParkK.W. Antiadipogenic and proosteogenic effects of luteolin, a major dietary flavone, are mediated by the induction of DnaJ (Hsp40) Homolog, Subfamily B, Member 1.J. Nutr. Biochem.201630243210.1016/j.jnutbio.2015.11.01327012618
    [Google Scholar]
  92. ZhangL. HanY.J. ZhangX. WangX. BaoB. QuW. LiuJ. Luteolin reduces obesity-associated insulin resistance in mice by activating AMPKα1 signalling in adipose tissue macrophages.Diabetologia201659102219222810.1007/s00125‑016‑4039‑827377644
    [Google Scholar]
  93. KwonE.Y. ChoiM.S. Luteolin targets the toll-like receptor signaling pathway in prevention of hepatic and adipocyte fibrosis and insulin resistance in diet-induced obese mice.Nutrients20181010141510.3390/nu1010141530282902
    [Google Scholar]
  94. YoonH.J. BangM.H. KimH. ImmJ.Y. Improvement of palmitate-induced insulin resistance in C2C12 skeletal muscle cells using Platycodon grandiflorum seed extracts.Food Biosci.201825616710.1016/j.fbio.2018.08.002
    [Google Scholar]
  95. YooA. JangY.J. AhnJ. JungC.H. SeoH.D. HaT.Y. Chrysanthemi Zawadskii var. Latilobum attenuates obesity-induced skeletal muscle atrophy via regulation of PRMTs in skeletal muscle of mice.Int. J. Mol. Sci.2020218281110.3390/ijms2108281132316567
    [Google Scholar]
  96. AlpertM.A. Obesity cardiomyopathy: pathophysiology and evolution of the clinical syndrome.Am. J. Med. Sci.2001321422523610.1097/00000441‑200104000‑0000311307864
    [Google Scholar]
  97. WangJ. GaoT. WangF. XueJ. YeH. XieM. Luteolin improves myocardial cell glucolipid metabolism by inhibiting hypoxia inducible factor-1α expression in angiotensin II/hypoxia-induced hypertrophic H9c2 cells.Nutr. Res.201965637010.1016/j.nutres.2019.02.00430954346
    [Google Scholar]
  98. Abu-ElsaadN. El-KarefA. The falconoid luteolin mitigates the myocardial inflammatory response induced by high-carbohydrate/high-fat diet in wistar rats.Inflammation201841122123110.1007/s10753‑017‑0680‑829047036
    [Google Scholar]
  99. YangJ.T. WangJ. ZhouX.R. XiaoC. LouY.Y. TangL.H. ZhangF.J. QianL.B. Luteolin alleviates cardiac ischemia/reperfusion injury in the hypercholesterolemic rat via activating Akt/Nrf2 signaling.Naunyn Schmiedebergs Arch. Pharmacol.2018391771972810.1007/s00210‑018‑1496‑229671020
    [Google Scholar]
  100. AkinolaO.S. Caxton-MartinsE.A. AkinolaO.B. Ethanolic leaf extract of Vernonia amygdalina improves islet morphology and upregulates pancreatic G6PDH activity in streptozotocin-induced diabetic Wistar rats.Pharmacologyonline20102932942
    [Google Scholar]
  101. NekohashiM. OgawaM. OgiharaT. NakazawaK. KatoH. MisakaT. AbeK. KobayashiS. Luteolin and quercetin affect the cholesterol absorption mediated by epithelial cholesterol transporter niemann-pick c1-like 1 in caco-2 cells and rats.PLoS One2014959790110.1371/journal.pone.009790124859282
    [Google Scholar]
  102. DavisH.R.Jr AltmannS.W. Niemann–Pick C1 Like 1 (NPC1L1) an intestinal sterol transporter.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20091791767968310.1016/j.bbalip.2009.01.002
    [Google Scholar]
  103. OgawaM. YamanashiY. TakadaT. AbeK. KobayashiS. Effect of luteolin on the expression of intestinal cholesterol transporters.J. Funct. Foods20173627427910.1016/j.jff.2017.07.008
    [Google Scholar]
  104. GalindoR.J. BeckR.W. SciosciaM.F. UmpierrezG.E. TuttleK.R. Glycaemic monitoring and management in advanced chronic kidney disease.Endocr. Rev.202041575677410.1210/endrev/bnaa01732455432
    [Google Scholar]
  105. GerichJ.E. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: Therapeutic implications.Diabet. Med.201027213614210.1111/j.1464‑5491.2009.02894.x20546255
    [Google Scholar]
  106. WangG.G. LuX.H. LiW. ZhaoX. ZhangC. Protective effects of luteolin on diabetic nephropathy in STZ-induced diabetic rats.J. Altern. Complement. Med.20112011323171
    [Google Scholar]
  107. ZhangM. HeL. LiuJ. ZhouL. Luteolin attenuates diabetic nephropathy through suppressing inflammatory response and oxidative stress by inhibiting STAT3 pathway.Exp. Clin. Endocrinol. Diabetes20211291072973910.1055/a‑0998‑798531896157
    [Google Scholar]
  108. RajamanickamS. AgarwalR. Natural products and colon cancer: current status and future prospects.Drug Dev. Res.200869746047110.1002/ddr.2027619884979
    [Google Scholar]
  109. FerlayJ. AutierP. BoniolM. HeanueM. ColombetM. BoyleP. Estimates of the cancer incidence and mortality in Europe in 2006.Ann. Oncol.200718358159210.1093/annonc/mdl49817287242
    [Google Scholar]
  110. TsuzukiT. NakatsuY. NakabeppuY. Significance of error‐avoiding mechanisms for oxidative DNA damage in carcinogenesis.Cancer Sci.200798446547010.1111/j.1349‑7006.2007.00409.x17425590
    [Google Scholar]
  111. PowellC.L. SwenbergJ.A. RusynI. Expression of base excision DNA repair genes as a biomarker of oxidative DNA damage.Cancer Lett.2005229111110.1016/j.canlet.2004.12.00216157213
    [Google Scholar]
  112. LiuJ. Pharmacology of oleanolic acid and ursolic acid.J. Ethnopharmacol.1995492576810.1016/0378‑8741(95)90032‑28847885
    [Google Scholar]
  113. SeelingerG. MerfortI. WölfleU. SchemppC.M. Anti-carcinogenic effects of the flavonoid luteolin.Molecules200813102628265110.3390/molecules1310262818946424
    [Google Scholar]
  114. RamosA.A. LimaC.F. PereiraM.L. Fernandes-FerreiraM. Pereira-WilsonC. Antigenotoxic effects of quercetin, rutin and ursolic acid on HepG2 cells: Evaluation by the comet assay.Toxicol. Lett.20081771667310.1016/j.toxlet.2008.01.00118276086
    [Google Scholar]
  115. HalliwellB. Dietary polyphenols: Good, bad, or indifferent for your health?Cardiovasc. Res.200773234134710.1016/j.cardiores.2006.10.00417141749
    [Google Scholar]
  116. Kilani-JaziriS. NeffatiA. LimemI. BoubakerJ. SkandraniI. SghairM.B. BouhlelI. BhouriW. MariotteA.M. GhediraK. Dijoux FrancaM.G. Chekir-GhediraL. Relationship correlation of antioxidant and antiproliferative capacity of Cyperus rotundus products towards K562 erythroleukemia cells.Chem. Biol. Interact.20091811859410.1016/j.cbi.2009.04.01419446539
    [Google Scholar]
  117. TsaiS.J. YinM.C. Antioxidative and anti-inflammatory protection of oleanolic acid and ursolic acid in PC12 cells.J. Food Sci.200873717417810.1111/j.1750‑3841.2008.00864.x18803714
    [Google Scholar]
  118. ChakrabartiM. RayS.K. Synergistic anti-tumor actions of luteolin and silibinin prevented cell migration and invasion and induced apoptosis in glioblastoma SNB19 cells and glioblastoma stem cells.Brain Res.20151629859310.1016/j.brainres.2015.10.01026471408
    [Google Scholar]
  119. NakaiE. ParkK. YawataT. ChiharaT. KumazawaA. NakabayashiH. ShimizuK. Enhanced MDR1 expression and chemoresistance of cancer stem cells derived from glioblastoma.Cancer Invest.200927990190810.3109/0735790080194667919832037
    [Google Scholar]
  120. Söderberg-NauclérC. RahbarA. StragliottoG. Survival in patients with glioblastoma receiving valganciclovir.N. Engl. J. Med.20133691098598610.1056/NEJMc130214524004141
    [Google Scholar]
  121. UmesalmaS. SudhandiranG. Differential inhibitory effects of the polyphenol ellagic acid on inflammatory mediators NF-kappaB, iNOS, COX-2, TNF-α, and IL-6 in 1,2-dimethylhydrazine-induced rat colon carcinogenesis.Basic Clin. Pharmacol. Toxicol.2010107265065510.1111/j.1742‑7843.2010.00565.x20406206
    [Google Scholar]
  122. ChiangC.T. WayT.D. LinJ.K. Sensitizing HER2-overexpressing cancer cells to luteolin-induced apoptosis through suppressing p21WAF1/CIP1 expression with rapamycin.Mol. Cancer Ther.2007672127213810.1158/1535‑7163.MCT‑07‑010717620442
    [Google Scholar]
  123. SegalR. LubartE. LeibovitzA. IainaA. CaspiD. Renal effects of low dose aspirin in elderly patients.Isr. Med. Assoc. J.2006810679682[PMID: 17125112
    [Google Scholar]
  124. RobakJ. ShridiF. WolbísM. KrólikowskaM. Screening of the influence of flavonoids on lipoxygenase and cyclooxygenase activity, as well as on nonenzymic lipid oxidation.Pol. J. Pharmacol. Pharm.1988405451458[PMID: 3151014
    [Google Scholar]
  125. IwashitaK. KoboriM. YamakiK. TsushidaT. Flavonoids inhibit cell growth and induce apoptosis in B16 melanoma 4A5 cells.Biosci. Biotechnol. Biochem.20006491813182010.1271/bbb.64.181311055382
    [Google Scholar]
  126. YoonJ.H. BaekS.J. Molecular targets of dietary polyphenols with anti-inflammatory properties.Yonsei Med. J.200546558559610.3349/ymj.2005.46.5.58516259055
    [Google Scholar]
  127. DavisAE PattersonF Aspirin reduces the incidence of colonic carcinoma in the dimethylhydrazine rat animal model.Aus. NZ. J. medi19942433013
    [Google Scholar]
  128. BhatnagarJ. TewariH.B. BhatnagarM. AustinG.E. Comparison of carcinoembryonic antigen in tissue and serum with grade and stage of colon cancer.Anticancer Res.1999193B21812187[PMID: 10472328
    [Google Scholar]
  129. LvGY ZhangYP GaoJL YuJJ LeiJ ZhangZR LiB ZhanRJ ChenSH Combined antihypertensive effect of luteolin and buddleoside enriched extracts in spontaneously hypertensive rats.J. of ethnoph2013150250713
    [Google Scholar]
  130. FernándezS. WasowskiC. PaladiniA.C. MarderM. Sedative and sleep-enhancing properties of linarin, a flavonoid-isolated from Valeriana officinalis.Pharmacol. Biochem. Behav.200477239940410.1016/j.pbb.2003.12.00314751470
    [Google Scholar]
  131. HanS. SungK. YimD. LeeS. LeeC. HaN. KimK. The effect of linarin on lps-lnduced cytokine production and nitric oxide inhibition in murine macrophages cell line RAW264.7.Arch. Pharm. Res.200225217017710.1007/BF0297655912009031
    [Google Scholar]
  132. VerhaarM.C. StrachanF.E. NewbyD.E. CrudenN.L. KoomansH.A. RabelinkT.J. WebbD.J. Endothelin-A receptor antagonist-mediated vasodilatation is attenuated by inhibition of nitric oxide synthesis and by endothelin-B receptor blockade.Circulation199897875275610.1161/01.CIR.97.8.7529498538
    [Google Scholar]
  133. ObinecheE. AbdulleA. PathanJ. NagelkerkeN.D. Plasma endothelin-1, homocysteine, and nitric oxide levels in a multiethnic hypertensive cohort from the united arab emirates.Hamdan Med. J.20103315315910.4103/2227‑2437.231264
    [Google Scholar]
  134. SinghR.P. AgrawalP. YimD. AgarwalC. AgarwalR. Acacetin inhibits cell growth and cell cycle progression, and induces apoptosis in human prostate cancer cells: Structure-activity relationship with linarin and linarin acetate.Carcinogenesis200526484585410.1093/carcin/bgi01415637089
    [Google Scholar]
  135. MorellE.A. BalkinD.M. Methicillin-resistant Staphylococcus aureus: A pervasive pathogen highlights the need for new antimicrobial development.J. Biomed. (Syd.)2010834223233[PMID: 21165342
    [Google Scholar]
  136. TajY. AbdullahF.E. KazmiS.U. Current pattern of antibiotic resistance in Staphylococcus aureus clinical isolates and the emergence of vancomycin resistance.J. Coll. Physicians Surg. Pak.20102011728732[PMID: 21078245
    [Google Scholar]
  137. HafizS. HafizA.N. AliL. ChughtaiA.S. MemonB. AhmedA. HussainS. SarwarG. MughalT. SiddiquiS.J. AwanA. ZakiK. FareedA. Methicillin resistant Staphylococcus aureus: a multicentre study.J. Pak. Med. Assoc.2002527312315[PMID: 12481663
    [Google Scholar]
  138. LinR.D. ChinY.P. LeeM.H. Antimicrobial activity of antibiotics in combination with natural flavonoids against clinical extended‐spectrum β ‐lactamase (ESBL)‐producing Klebsiella pneumoniae.Phytother. Res.200519761261710.1002/ptr.169516161024
    [Google Scholar]
  139. DarwishR.M. Ra’edJ. ZargaM.H. NazerI.K. Antibacterial effect of Jordanian propolis and isolated flavonoids against human pathogenic bacteria.Afr. J. Biotechnol.2010936
    [Google Scholar]
  140. SuY. MaL. WenY. WangH. ZhangS. Studies of the in vitro antibacterial activities of several polyphenols against clinical isolates of methicillin-resistant Staphylococcus aureus.Molecules2014198126301263910.3390/molecules19081263025153875
    [Google Scholar]
  141. IdreesF. JabeenK. KhanM.S. ZafarA. Antimicrobial resistance profile of methicillin resistant Staphylococcal aureus from skin and soft tissue isolates.J. Pak. Med. Assoc.2009595266269[PMID: 19438125
    [Google Scholar]
  142. XuH.X. LeeS.F. Activity of plant flavonoids against antibiotic‐resistant bacteria. Phytotherapy Research.Int. J. Devo. Pharmacol. Toxicol. Eval. Nat.20011513943
    [Google Scholar]
  143. LinY. ShiR. WangX. ShenH.M. Luteolin, a flavonoid with potential for cancer prevention and therapy.Curr. Cancer Drug Targets20088763464610.2174/156800908786241050
    [Google Scholar]
  144. LeeH.Z. YangW.H. BaoB.Y. LoP.L. Proteomic analysis reveals ATP-dependent steps and chaperones involvement in luteolin-induced lung cancer CH27 cell apoptosis.Eur. J. Pharmacol.20106421-3192710.1016/j.ejphar.2010.05.05320553912
    [Google Scholar]
  145. CaiX. YeT. LiuC. LuW. LuM. ZhangJ. WangM. CaoP. Luteolin induced G2 phase cell cycle arrest and apoptosis on non-small cell lung cancer cells.Toxicol. In Vitro20112571385139110.1016/j.tiv.2011.05.00921601631
    [Google Scholar]
  146. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2018.CA Cancer J. Clin.201868173010.3322/caac.2144229313949
    [Google Scholar]
  147. KhanM.A. JainV.K. RizwanullahM. AhmadJ. JainK. PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer: a review on drug discovery and future challenges.Drug Discov. Today201924112181219110.1016/j.drudis.2019.09.00131520748
    [Google Scholar]
  148. KamaruzmanN.I. AzizN.A. PohC.L. ChowdhuryE.H. Oncogenic signaling in tumorigenesis and applications of siRNA nanotherapeutics in breast cancer.Cancers (Basel)201911563210.3390/cancers1105063231064156
    [Google Scholar]
  149. SharmaA. JainN. SareenR. Nanocarriers for diagnosis and targeting of breast cancer.Biomed Res. Int.201320132386507610.1155/2013/960821
    [Google Scholar]
  150. RizwanullahM. AlamM. Harshita; Mir, S.R.; Rizvi, M.M.A.; Amin, S. Polymer-lipid hybrid nanoparticles: A next-generation nanocarrier for targeted treatment of solid tumors.Curr. Pharm. Des.202026111206121510.2174/138161282666620011615042631951163
    [Google Scholar]
  151. DuM. OuyangY. MengF. MaQ. LiuH. ZhuangY. PangM. CaiT. CaiY. Nanotargeted agents: an emerging therapeutic strategy for breast cancer.Nanomedicine (Lond.)201914131771178610.2217/nnm‑2018‑048131298065
    [Google Scholar]
  152. HaiderN. FatimaS. TahaM. RizwanullahM. FirdousJ. AhmadR. MazharF. KhanM.A. Nanomedicines in diagnosis and treatment of cancer: An update.Curr. Pharm. Des.202026111216123110.2174/18734286MTA1wMzYbx32188379
    [Google Scholar]
  153. AdamczakA. OżarowskiM. KarpińskiT.M. Antibacterial activity of some flavonoids and organic acids widely distributed in plants.J. Clin. Med.20199110910.3390/jcm901010931906141
    [Google Scholar]
  154. ManzoorM.F. AhmadN. AhmedZ. SiddiqueR. ZengX.A. RahamanA. Muhammad AadilR. WahabA. Novel extraction techniques and pharmaceutical activities of luteolin and its derivatives.J. Food Biochem.20194391297410.1111/jfbc.1297431489656
    [Google Scholar]
  155. LvP.C. LiH.Q. XueJ.Y. ShiL. ZhuH.L. Synthesis and biological evaluation of novel luteolin derivatives as antibacterial agents.Eur. J. Med. Chem.200944290891410.1016/j.ejmech.2008.01.01318313801
    [Google Scholar]
  156. QianW. LiuM. FuY. ZhangJ. LiuW. LiJ. LiX. LiY. WangT. Antimicrobial mechanism of luteolin against Staphylococcus aureus and Listeria monocytogenes and its antibiofilm properties.Microb. Pathog.202014210405610.1016/j.micpath.2020.10405632058023
    [Google Scholar]
  157. ImranM. RaufA. Abu-IzneidT. NadeemM. ShariatiM.A. KhanI.A. ImranA. OrhanI.E. RizwanM. AtifM. GondalT.A. MubarakM.S. Luteolin, a flavonoid, as an anticancer agent: A review.Biomed. Pharmacother.201911210861210.1016/j.biopha.2019.10861230798142
    [Google Scholar]
  158. AlshehriS. ImamS.S. AltamimiM.A. HussainA. ShakeelF. ElzayatE. MohsinK. IbrahimM. AlanaziF. Enhanced dissolution of luteolin by solid dispersion prepared by different methods: physicochemical characterization and antioxidant activity.ACS Omega20205126461647110.1021/acsomega.9b0407532258881
    [Google Scholar]
  159. HanX. LuY. XieJ. ZhangE. ZhuH. DuH. WangK. SongB. YangC. ShiY. CaoZ. Zwitterionic micelles efficiently deliver oral insulin without opening tight junctions.Nat. Nanotechnol.202015760561410.1038/s41565‑020‑0693‑632483319
    [Google Scholar]
  160. RizwanullahM. AminS. AhmadJ. Improved pharmacokinetics and antihyperlipidemic efficacy of rosuvastatin-loaded nanostructured lipid carriers.J. Drug Target.2017251587410.1080/1061186X.2016.119108027186665
    [Google Scholar]
  161. EidR.K. AshourD.S. EssaE.A. El MaghrabyG.M. ArafaM.F. Chitosan coated nanostructured lipid carriers for enhanced in vivo efficacy of albendazole against Trichinella spiralis.Carbohydr. Polym.202023211582610.1016/j.carbpol.2019.11582631952620
    [Google Scholar]
  162. LingTan. J.S.; Roberts, C.J.; Billa, N. Mucoadhesive chitosan-coated nanostructured lipid carriers for oral delivery of amphotericin B.Pharm. Dev. Technol.201924450451210.1080/10837450.2018.151522530132723
    [Google Scholar]
  163. LingJ.T.S. RobertsC.J. BillaN. Antifungal and mucoadhesive properties of an orally administered chitosan-coated amphotericin B nanostructured lipid carrier (NLC).AAPS PharmSciTech201920313610.1208/s12249‑019‑1346‑730838459
    [Google Scholar]
  164. LiuM. ZhongX. YangZ. Chitosan functionalized nanocochleates for enhanced oral absorption of cyclosporine A.Sci. Rep.2017714132210.1038/srep4132228112262
    [Google Scholar]
  165. GartziandiaO. HerranE. PedrazJ.L. CarroE. IgartuaM. HernandezR.M. Chitosan coated nanostructured lipid carriers for brain delivery of proteins by intranasal administration.Colloids Surf. B Biointerfaces201513430431310.1016/j.colsurfb.2015.06.05426209963
    [Google Scholar]
  166. GilaniS.J. Bin-JumahM. RizwanullahM. ImamS.S. ImtiyazK. AlshehriS. RizviM.M.A. Chitosan coated luteolin nanostructured lipid carriers: Optimization, in vitro ex vivo assessments and cytotoxicity study in breast cancer cells.Coatings202111215810.3390/coatings11020158
    [Google Scholar]
  167. GovindarajuK. PrabhuD. ArulvasuC. KarthickV. ChangmaiN. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7).Appl. Surf. Sci.201637141542410.1016/j.apsusc.2016.03.004
    [Google Scholar]
  168. YangC. LiuH.Z. FuZ.X. LuW.D. Oxaliplatin long-circulating liposomes improved therapeutic index of colorectal carcinoma.BMC Biotechnol.20111112110.1186/1472‑6750‑11‑2121401960
    [Google Scholar]
  169. MajumdarD. JungK.H. ZhangH. NannapaneniS. WangX. AminA.R.M.R. ChenZ. ChenZ.G. ShinD.M. Luteolin nanoparticle in chemoprevention: in vitro and in vivo anticancer activity.Cancer Prev. Res. (Phila.)201471657310.1158/1940‑6207.CAPR‑13‑023024403290
    [Google Scholar]
  170. SpornMB DunlopNM NewtonDL SmithJM Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids).Fed. Proc.197635613321338
    [Google Scholar]
  171. GuoL. FanL. RenJ. PangZ. RenY. LiJ. WenZ. QianY. ZhangL. MaH. JiangX. Combination of TRAIL and actinomycin D liposomes enhances antitumor effect in non-small cell lung cancer.Int. J. Nanomedicine2012714491460[PMID: 22619505
    [Google Scholar]
  172. KoudelkaS. Turanek KnotigovaP. MasekJ. ProchazkaL. LukacR. MillerA.D. NeuzilJ. TuranekJ. Liposomal delivery systems for anti-cancer analogues of vitamin E.J. Control. Release2015207596910.1016/j.jconrel.2015.04.00325861728
    [Google Scholar]
  173. BarenholzY.C. Doxil® — The first FDA-approved nano-drug: Lessons learned.J. Control. Release2012160211713410.1016/j.jconrel.2012.03.02022484195
    [Google Scholar]
  174. HiokiA. WakasugiA. KawanoK. HattoriY. MaitaniY. Development of an in vitro drug release assay of PEGylated liposome using bovine serum albumin and high temperature.Biol. Pharm. Bull.20103391466147010.1248/bpb.33.146620823558
    [Google Scholar]
  175. HaleyB. FrenkelE. Nanoparticles for drug delivery in cancer treatment.Urol. Oncol.2008261576410.1016/j.urolonc.2007.03.015
    [Google Scholar]
  176. PanduranganA.K. EsaN.M. Luteolin, a bioflavonoid inhibits colorectal cancer through modulation of multiple signaling pathways: a review.J. Cancer Prev.2014151455015508[PMID: 25081655
    [Google Scholar]
  177. PratheeshkumarP. SonY.O. BudhrajaA. WangX. DingS. WangL. HitronA. LeeJ.C. KimD. DivyaS.P. ChenG. ZhangZ. LuoJ. ShiX. Luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis.PLoS One20127125227910.1371/journal.pone.005227923300633
    [Google Scholar]
  178. CukiermanE. KhanD.R. The benefits and challenges associated with the use of drug delivery systems in cancer therapy.Biochem. Pharmacol.201080576277010.1016/j.bcp.2010.04.02020417189
    [Google Scholar]
  179. HicksA. JolkkonenJ. Challenges and possibilities of intravascular cell therapy in stroke.Acta Neurobiol. Exp. (Warsz.)200969111110.55782/ane‑2009‑172419325636
    [Google Scholar]
  180. MehtaS.L. ManhasN. RaghubirR. Molecular targets in cerebral ischemia for developing novel therapeutics.Brain Res. Brain Res. Rev.2007541346610.1016/j.brainresrev.2006.11.00317222914
    [Google Scholar]
  181. CollinoM. AragnoM. MastrocolaR. GallicchioM. RosaA.C. DianzaniC. DanniO. ThiemermannC. FantozziR. Modulation of the oxidative stress and inflammatory response by PPAR-γ agonists in the hippocampus of rats exposed to cerebral ischemia/reperfusion.Eur. J. Pharmacol.20065301-2708010.1016/j.ejphar.2005.11.04916386242
    [Google Scholar]
  182. NeumarR. Molecular mechanisms of ischemic neuronal injury.Ann. Emerg. Med.200036548350610.1016/S0196‑0644(00)82028‑411054204
    [Google Scholar]
  183. KellyP.J. MorrowJ.D. NingM. KoroshetzW. LoE.H. TerryE. MilneG.L. HubbardJ. LeeH. StevensonE. LedererM. FurieK.L. Oxidative stress and matrix metalloproteinase-9 in acute ischemic stroke: the Biomarker Evaluation for Antioxidant Therapies in Stroke (BEAT-Stroke) study.Stroke200839110010410.1161/STROKEAHA.107.48818918063832
    [Google Scholar]
  184. ChuC. XuB. HuangW. GnRH analogue attenuated apoptosis of rat hippocampal neuron after ischemia–reperfusion injury.J. Mol. Histol.201041638739310.1007/s10735‑010‑9300‑820953819
    [Google Scholar]
  185. DonniniS. SolitoR. MontiM. BalduiniW. CarloniS. CiminoM. BamptonE.T.W. PinonL.G.P. NicoteraP. ThorpeP.E. ZicheM. Prevention of ischemic brain injury by treatment with the membrane penetrating apoptosis inhibitor, TAT-BH4.Cell Cycle2009881271127810.4161/cc.8.8.830119305142
    [Google Scholar]
  186. ZhangH.Y. YangD.P. TangG.Y. Multipotent antioxidants: from screening to design.Drug Discov. Today20061115-1674975410.1016/j.drudis.2006.06.00716846803
    [Google Scholar]
  187. TsaiF.S. PengW.H. WangW.H. WuC.R. HsiehC.C. LinY.T. FengI.C. HsiehM.T. Effects of luteolin on learning acquisition in rats: Involvement of the central cholinergic system.Life Sci.200780181692169810.1016/j.lfs.2007.01.05517337279
    [Google Scholar]
  188. van MeeterenM.E. HendriksJ.J.A. DijkstraC.D. van TolE.A.F. Dietary compounds prevent oxidative damage and nitric oxide production by cells involved in demyelinating disease.Biochem. Pharmacol.200467596797510.1016/j.bcp.2003.10.01815104250
    [Google Scholar]
  189. DeguchiK. HayashiT. NagotaniS. SeharaY. ZhangH. TsuchiyaA. OhtaY. TomiyamaK. MorimotoN. MiyazakiM. HuhN. NakaoA. KamiyaT. AbeK. Reduction of cerebral infarction in rats by biliverdin associated with amelioration of oxidative stress.Brain Res.200811881810.1016/j.brainres.2007.07.10418035335
    [Google Scholar]
  190. BiJ. JiangB. LiuJ.H. LeiC. ZhangX.L. AnL.J. Protective effects of catalpol against H2O2-induced oxidative stress in astrocytes primary cultures.Neurosci. Lett.2008442322422710.1016/j.neulet.2008.07.02918652878
    [Google Scholar]
  191. HunterA.J. HatcherJ. VirleyD. NelsonP. IrvingE. HadinghamS.J. ParsonsA.A. Functional assessments in mice and rats after focal stroke.Neuropharmacology200039580681610.1016/S0028‑3908(99)00262‑210699446
    [Google Scholar]
  192. RalhanR. KaurJ. Alkylating agents and cancer therapy.Expert Opin. Ther. Pat.20071791061107510.1517/13543776.17.9.1061
    [Google Scholar]
  193. SinghA. SettlemanJ. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer.Oncogene201029344741475110.1038/onc.2010.21520531305
    [Google Scholar]
  194. MaemondoM. InoueA. KobayashiK. SugawaraS. OizumiS. IsobeH. GemmaA. HaradaM. YoshizawaH. KinoshitaI. FujitaY. OkinagaS. HiranoH. YoshimoriK. HaradaT. OguraT. AndoM. MiyazawaH. TanakaT. SaijoY. HagiwaraK. MoritaS. NukiwaT. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR.N. Engl. J. Med.2010362252380238810.1056/NEJMoa090953020573926
    [Google Scholar]
/content/journals/npj/10.2174/0122103155316738240901181513
Loading
/content/journals/npj/10.2174/0122103155316738240901181513
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): bioflavonoids; Luteolin; metabolism; nanoformulations; pharmaceuticals; pharmacokinetic
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test