Skip to content
2000
Volume 16, Issue 2
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Of the several forms of breast cancer, triple-negative breast cancer (TNBC) is the most aggressive, it is not responsive to traditional human/hormonal epithelial growth factor receptor 2 (HER2)-targeted therapies because the corresponding receptor targets are absent, TNBC tends to be more invasive in form, metastasis, have an early recurrence rate and develop medication resistance. For TNBC, some of the most popular types of treatments are resection, chemotherapy, and radiation therapy. Several studies are being carried out for the development of novel treatment approaches for improved TNBC diagnosis. As our knowledge of the molecular mechanisms behind the development of cancer has grown, a vast array of anticancer drugs has been developed. The use of chemically produced pharmaceuticals has not significantly raised the overall survival rate over the previous few decades. As such, novel approaches and cutting-edge chemopreventive medications are needed to improve the efficacy of existing TNBC therapies. Naturally occurring compounds derived from plants called phytochemicals are valuable resources for the development of novel medications for TNBC treatment. These phytochemicals often function by modulating molecular pathways associated with the onset and propagation of TNBC. Some of the specific methods include boosting antioxidant status, deactivating carcinogens, stopping proliferation, inducing cell cycle arrest, promoting apoptosis, and immune system modulation. This review's main goal is to give a summary of the active components of natural products, together with details on their molecular targets, pharmacological action, and current level of understanding. Several natural compounds that particularly target the pathways linked to TNBC in our study have been thoroughly described by us. We have done extensive research on many natural substances that could lead to the discovery of new targets for TNBC treatment.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155329752241118115506
2025-01-03
2025-12-29
Loading full text...

Full text loading...

References

  1. MehrajU. GanaiR.A. MachaM.A. HamidA. ZargarM.A. BhatA.A. NasserM.W. HarisM. BatraS.K. AlshehriB. Al-BaradieR.S. MirM.A. WaniN.A. The tumor microenvironment as driver of stemness and therapeutic resistance in breast cancer: New challenges and therapeutic opportunities.Cell Oncol. (Dordr.)20214461209122910.1007/s13402‑021‑00634‑934528143
    [Google Scholar]
  2. ReddyV.A. SarinR. PandaD. HanithaR.N.M. JainJ. ChatterjeeS. AnnapurneswariS. SaipillaiM.Z. GuptaS. KhanE. BhattacharyaJ. BhandariT.P.S. PrasadS.V.S.S. SwainM. A Multi-centric retrospective study into the epidemiological distribution of breast cancer patients in India.J. Cancer Res. Ther.202319Suppl. 2S869S87610.4103/jcrt.jcrt_1876_2238384068
    [Google Scholar]
  3. MehrajU. WaniN.A. HamidA. AlkhananiM. AlmilaibaryA. MirM.A. Adapalene inhibits the growth of triple-negative breast cancer cells by S-phase arrest and potentiates the antitumor efficacy of GDC-0941.Front. Pharmacol.20221395844310.3389/fphar.2022.95844336003501
    [Google Scholar]
  4. QayoomH. SofiS. MirM.A. Targeting tumor microenvironment using tumor-infiltrating lymphocytes as therapeutics against tumorigenesis.Immunol. Res.202371458859910.1007/s12026‑023‑09376‑237004645
    [Google Scholar]
  5. OlssonM. LarssonP. JohanssonJ. SahV.R. ParrisT.Z. Cancer stem cells are prevalent in the basal-like 2 and mesenchymal triple-negative breast cancer subtypes in vitro.Front. Cell Dev. Biol.202311123767310.3389/fcell.2023.123767337771376
    [Google Scholar]
  6. MirM.A. QayoomH. Introduction to breast cancer.Therapeutic potential of cell cycle kinases in breast cancer.Springer2023122
    [Google Scholar]
  7. Arranz-LedoM. LastraE. AbellaL. FerreiraR. OrozcoM. HernándezL. MartínezN. InfanteM. DuránM. Multigene germline testing usefulness instead of BRCA1/2 single screening in triple negative breast cancer cases.Pathol. Res. Pract.202324715451410.1016/j.prp.2023.15451437201465
    [Google Scholar]
  8. HirokiH. AkahaneK. InukaiT. MorioT. TakagiM. Synergistic effect of combined PI3 kinase inhibitor and PARP inhibitor treatment on BCR/ABL1-positive acute lymphoblastic leukemia cells.Int. J. Hematol.2023117574875810.1007/s12185‑022‑03520‑836575328
    [Google Scholar]
  9. SubhanM.A. ParveenF. ShahH. YalamartyS.S.K. AtaideJ.A. TorchilinV.P. Recent advances with precision medicine treatment for breast cancer including triple-negative sub-type.Cancers (Basel)2023158220410.3390/cancers1508220437190133
    [Google Scholar]
  10. MistryT. NathA. PalR. GhoshS. MahataS. Kumar SahooP. SarkarS. ChoudhuryT. NathP. AlamN. NasareV.D. Emerging futuristic targeted therapeutics.Am. J. Clin. Oncol.202447313214810.1097/COC.000000000000107138145412
    [Google Scholar]
  11. MoraesD.F.C. Anticancer drugs from plants.Biotechnology and Production of Anti-Cancer Compounds201712114210.1007/978‑3‑319‑53880‑8_5
    [Google Scholar]
  12. PooC.L. DewadasH.D. NgF.L. FooC.N. LimY.M. Effect of traditional Chinese medicine on musculoskeletal symptoms in breast cancer: A systematic review and meta-analysis.J. Pain Symptom Manage.202162115917310.1016/j.jpainsymman.2020.11.02433278502
    [Google Scholar]
  13. QadirS.U. RajaV. Herbal medicine: Old practice and modern perspectives.Phytomedicine.Elsevier202114918010.1016/B978‑0‑12‑824109‑7.00001‑7
    [Google Scholar]
  14. NwozoO.S. Antioxidant, phytochemical, and therapeutic properties of medicinal plants.RE:view2023261359388
    [Google Scholar]
  15. SohelM. AktarS. BiswasP. AminM.A. HossainM.A. AhmedN. MimM.I.H. IslamF. MamunA.A. Exploring the anti‐cancer potential of dietary phytochemicals for the patients with breast cancer: A comprehensive review.Cancer Med.20231213145561458310.1002/cam4.598437132286
    [Google Scholar]
  16. PondéN.F. ZardavasD. PiccartM. Progress in adjuvant systemic therapy for breast cancer.Nat. Rev. Clin. Oncol.2019161274410.1038/s41571‑018‑0089‑930206303
    [Google Scholar]
  17. TringaleK.R. BergerE.R. SevilimeduV. WenH.Y. GillespieE.F. MuellerB.A. McCormickB. XuA.J. CuaronJ.J. CahlonO. KhanA.J. PowellS.N. MorrowM. HeerdtA.S. BraunsteinL.Z. Breast conservation among older patients with early‐stage breast cancer: Locoregional recurrence following adjuvant radiation or hormonal therapy.Cancer2021127111749175710.1002/cncr.3342233496354
    [Google Scholar]
  18. El-ReadiM.Z. Al-AbdA.M. AlthubitiM.A. AlmaimaniR.A. Al-AmoodiH.S. AshourM.L. WinkM. EidS.Y. Multiple molecular mechanisms to overcome multidrug resistance in cancer by natural secondary metabolites.Front. Pharmacol.20211265851310.3389/fphar.2021.65851334093189
    [Google Scholar]
  19. HusseinA. HusseinK. BabkairH. BadawyM. Anti-cancer medicins (classification and mechanisms of action).Egypt. Dent. J.202470114716410.21608/edj.2023.234480.2708
    [Google Scholar]
  20. HowardA. MartinC. DavisP. CHEMOTHERAPY AND HORMONAL THERAPY Overview I. Principles of cancer chemotherapy (Wellstein, 2018) A. Cancer chemotherapy remains an integral component of systemic therapy in both hematologic and solid tumors.Core Curriculum for Oncology Nursing-E-Book2023257
    [Google Scholar]
  21. VasanN. BaselgaJ. HymanD.M. A view on drug resistance in cancer.Nature2019575778229930910.1038/s41586‑019‑1730‑131723286
    [Google Scholar]
  22. GuestiniF. McNamaraK.M. SasanoH. The use of chemosensitizers to enhance the response to conventional therapy in triple-negative breast cancer patients.Future Medicine2017127131
    [Google Scholar]
  23. El-SeediH.R. YosriN. KhalifaS.A.M. GuoZ. MusharrafS.G. XiaoJ. SaeedA. DuM. KhatibA. Abdel-DaimM.M. EfferthT. GöranssonU. VerpoorteR. Exploring natural products-based cancer therapeutics derived from Egyptian flora.J. Ethnopharmacol.202126911362610.1016/j.jep.2020.11362633248183
    [Google Scholar]
  24. BhatB.A. Rashid MirW. AlkhananiM. AlmilaibaryA. MirM.A. Network pharmacology and experimental validation for deciphering the action mechanism of Fritillaria cirrhosa D. Don constituents in suppressing breast carcinoma.J. Biomol. Struct. Dyn.202312110.1080/07391102.2023.227496637948293
    [Google Scholar]
  25. MunirA.; Ishrat Fatima, ; Zelle Humma, Evaluation of therapeutic potential of natural resources against breast cancer.Pakistan Journal of Biochemistry and Biotechnology2022328910110.52700/pjbb.v3i2.69
    [Google Scholar]
  26. AsemiZ. YousefiB. FarnoodP.R. PazhoohR.D. Targeting signaling pathway by curcumin in osteosarcoma.Curr. Mol. Pharmacol.2023161718210.2174/187446721566622040810434135400349
    [Google Scholar]
  27. AshrafizadehM. AhmadiZ. MohamamdinejadR. YaribeygiH. SerbanM.C. OrafaiH.M. SahebkarA. Curcumin therapeutic modulation of the wnt signaling pathway.Curr. Pharm. Biotechnol.202021111006101510.2174/138920102166620030511510132133961
    [Google Scholar]
  28. FarghadaniR. NaiduR. Curcumin: Modulator of key molecular signaling pathways in hormone-independent breast cancer.Cancers (Basel)202113143427
    [Google Scholar]
  29. VinodB.S. AntonyJ. NairH.H. PuliyappadambaV.T. SaikiaM. Shyam NarayananS. BevinA. John AntoR. Mechanistic evaluation of the signaling events regulating curcumin-mediated chemosensitization of breast cancer cells to 5-fluorouracil.Cell Death Dis.201342e505e50510.1038/cddis.2013.2623429291
    [Google Scholar]
  30. Mechanism of anti-cancer activity of curcumin on androgen-dependent and androgen-independent prostate cancer.Nutrients2020123679
    [Google Scholar]
  31. MoghtaderiH. SepehriH. AttariF. Combination of arabinogalactan and curcumin induces apoptosis in breast cancer cells in vitro and inhibits tumor growth via overexpression of p53 level in vivo.Biomed. Pharmacother.20178858259410.1016/j.biopha.2017.01.07228152473
    [Google Scholar]
  32. KoJ.H. SethiG. UmJ.Y. ShanmugamM.K. ArfusoF. KumarA.P. BishayeeA. AhnK.S. The role of resveratrol in cancer therapy.Int. J. Mol. Sci.20171812258910.3390/ijms1812258929194365
    [Google Scholar]
  33. KohandelZ. FarkhondehT. AschnerM. Pourbagher-ShahriA.M. SamarghandianS. STAT3 pathway as a molecular target for resveratrol in breast cancer treatment.Cancer Cell Int.202121146810.1186/s12935‑021‑02179‑134488773
    [Google Scholar]
  34. WieczorekM. GinterT. BrandP. HeinzelT. KrämerO.H. Acetylation modulates the STAT signaling code.Cytokine Growth Factor Rev.201223629330510.1016/j.cytogfr.2012.06.00522795479
    [Google Scholar]
  35. LeeH. ZhangP. HerrmannA. YangC. XinH. WangZ. HoonD.S.B. FormanS.J. JoveR. RiggsA.D. YuH. Acetylated STAT3 is crucial for methylation of tumor-suppressor gene promoters and inhibition by resveratrol results in demethylation.Proc. Natl. Acad. Sci. USA2012109207765776910.1073/pnas.120513210922547799
    [Google Scholar]
  36. FuY. ChangH. PengX. BaiQ. YiL. ZhouY. ZhuJ. MiM. Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/β-catenin signaling pathway.PLoS One201497e10253510.1371/journal.pone.010253525068516
    [Google Scholar]
  37. AlmatroodiS.A. AlmatroudiA. KhanA.A. AlhumaydhiF.A. AlsahliM.A. RahmaniA.H. Potential therapeutic targets of epigallocatechin gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer.Molecules20202514314610.3390/molecules2514314632660101
    [Google Scholar]
  38. Abd El-RahmanS.S. ShehabG. NashaatH. Epigallocatechin-3-Gallate: The prospective targeting of cancer stem cells and preventing metastasis of chemically-induced mammary cancer in rats.Am. J. Med. Sci.20173541546310.1016/j.amjms.2017.03.00128755734
    [Google Scholar]
  39. WeiW. TweardyD.J. ZhangM. ZhangX. LanduaJ. PetrovicI. BuW. RoartyK. HilsenbeckS.G. RosenJ.M. LewisM.T. STAT3 signaling is activated preferentially in tumor-initiating cells in claudin-low models of human breast cancer.Stem Cells201432102571258210.1002/stem.175224891218
    [Google Scholar]
  40. LinY. ShiR. WangX. ShenH.M. Luteolin, a flavonoid with potential for cancer prevention and therapy.Curr. Cancer Drug Targets20088763464610.2174/15680090878624105018991571
    [Google Scholar]
  41. GanaiS.A. SheikhF.A. BabaZ.A. MirM.A. MantooM.A. YatooM.A. Anticancer activity of the plant flavonoid luteolin against preclinical models of various cancers and insights on different signalling mechanisms modulated.Phytother. Res.20213573509353210.1002/ptr.704433580629
    [Google Scholar]
  42. ZhuM. SunY. SuY. GuanW. WangY. HanJ. WangS. YangB. WangQ. KuangH. Luteolin: A promising multifunctional natural flavonoid for human diseases.Phytother. Res.20243873417344310.1002/ptr.821738666435
    [Google Scholar]
  43. ReipasK.M. LawJ.H. CoutoN. IslamS. LiY. LiH. CherkasovA. JungK. CheemaA.S. JonesS.J.M. HassellJ.A. DunnS.E. Luteolin is a novel p90 ribosomal S6 kinase (RSK) inhibitor that suppresses Notch4 signaling by blocking the activation of Y-box binding protein-1 (YB-1).Oncotarget20134232934510.18632/oncotarget.83423593654
    [Google Scholar]
  44. SunD.W. ZhangH.D. MaoL. MaoC.F. ChenW. CuiM. MaR. CaoH.X. JingC.W. WangZ. WuJ.Z. TangJ.H. Luteolin inhibits breast cancer development and progression in vitro and in vivo by suppressing notch signaling and regulating MiRNAs.Cell. Physiol. Biochem.20153751693171110.1159/00043853526545287
    [Google Scholar]
  45. EsmaeiliM.A. Synergistic inhibition of drug resistant breast cancer cells growth by the combination of luteolin and tamoxifen involves Nrf2 downregulation.JCPR201579291296
    [Google Scholar]
  46. MirW.R. BhatB.A. RatherM.A. MuzamilS. AlmilaibaryA. AlkhananiM. MirM.A. Molecular docking analysis and evaluation of the antimicrobial properties of the constituents of Geranium wallichianum D. Don ex Sweet from Kashmir Himalaya.Sci. Rep.20221211254710.1038/s41598‑022‑16102‑935869098
    [Google Scholar]
  47. NguyenL.T. LeeY.H. SharmaA.R. ParkJ.B. JaggaS. SharmaG. LeeS.S. NamJ.S. Quercetin induces apoptosis and cell cycle arrest in triple-negative breast cancer cells through modulation of Foxo3a activity.Korean J. Physiol. Pharmacol.201721220521310.4196/kjpp.2017.21.2.20528280414
    [Google Scholar]
  48. HeL. HouX. FanF. WuH. Quercetin stimulates mitochondrial apoptosis dependent on activation of endoplasmic reticulum stress in hepatic stellate cells.Pharm. Biol.201654123237324310.1080/13880209.2016.122314327572285
    [Google Scholar]
  49. ChoiE.J. BaeS.M. AhnW.S. Antiproliferative effects of quercetin through cell cycle arrest and apoptosis in human breast cancer MDA-MB-453 cells.Arch. Pharm. Res.200831101281128510.1007/s12272‑001‑2107‑018958418
    [Google Scholar]
  50. MirW.R. BhatB.A. KumarA. DhimanR. AlkhananiM. AlmilaibaryA. DarM.Y. GanieS.A. MirM.A. Network pharmacology combined with molecular docking and in vitro verification reveals the therapeutic potential of Delphinium roylei munz constituents on breast carcinoma.Front. Pharmacol.202314113589810.3389/fphar.2023.113589837724182
    [Google Scholar]
  51. BhatB.A. MirW.R. SheikhB.A. RatherM.A. DarT.H. MirM.A. In vitro and in silico evaluation of antimicrobial properties of Delphinium cashmerianum L., a medicinal herb growing in Kashmir, India.J. Ethnopharmacol.202229111504610.1016/j.jep.2022.11504635167935
    [Google Scholar]
  52. PerkA.A. Shatynska-MytsykI. GerçekY.C. BoztaşK. YazganM. FayyazS. FarooqiA.A. Rutin mediated targeting of signaling machinery in cancer cells.Cancer Cell Int.201414112410.1186/s12935‑014‑0124‑625493075
    [Google Scholar]
  53. ChenH. Anti-tumor effect of rutin on human neuroblastoma cell lines through inducing G2/M cell cycle arrest and promoting apoptosisScientificWorldJournal,20132013
    [Google Scholar]
  54. RasheedS. RehmanK. ShahidM. SuhailS. AkashM.S.H. Therapeutic potentials of genistein: New insights and perspectives.J. Food Biochem.2022469e1422810.1111/jfbc.1422835579327
    [Google Scholar]
  55. PanH. ZhouW. HeW. LiuX. DingQ. LingL. ZhaX. WangS. Genistein inhibits MDA-MB-231 triple-negative breast cancer cell growth by inhibiting NF-κB activity via the Notch-1 pathway.Int. J. Mol. Med.201230233734310.3892/ijmm.2012.99022580499
    [Google Scholar]
  56. FangY. ZhangQ. WangX. YangX. WangX. HuangZ. JiaoY. WangJ. Quantitative phosphoproteomics reveals genistein as a modulator of cell cycle and DNA damage response pathways in triple-negative breast cancer cells.Int. J. Oncol.20164831016102810.3892/ijo.2016.332726783066
    [Google Scholar]
  57. KabilN. BayraktarR. KahramanN. MokhlisH.A. CalinG.A. Lopez-BeresteinG. OzpolatB. Thymoquinone inhibits cell proliferation, migration, and invasion by regulating the elongation factor 2 kinase (eEF-2K) signaling axis in triple-negative breast cancer.Breast Cancer Res. Treat.2018171359360510.1007/s10549‑018‑4847‑229971628
    [Google Scholar]
  58. WeiC. ZouH. XiaoT. LiuX. WangQ. ChengJ. FuS. PengJ. XieX. FuJ. TQFL12, a novel synthetic derivative of TQ, inhibits triple‐negative breast cancer metastasis and invasion through activating AMPK/ACC pathway.J. Cell. Mol. Med.20212521101011011010.1111/jcmm.1694534609056
    [Google Scholar]
  59. JiH. ZhangK. PanG. LiC. LiC. HuX. YangL. CuiH. Deoxyelephantopin induces apoptosis and enhances chemosensitivity of colon cancer via miR-205/bcl2 Axis.Int. J. Mol. Sci.2022239505110.3390/ijms2309505135563442
    [Google Scholar]
  60. LiN. GuoW. LiY. ZuoH. ZhangH. WangZ. ZhaoY. YangF. RenG. ZhangS. Construction and anti-tumor activities of disulfide-linked docetaxel-dihydroartemisinin nanoconjugates.Colloids Surf. B Biointerfaces202019111101810.1016/j.colsurfb.2020.11101832304917
    [Google Scholar]
  61. HeW. DuY. WangT. WangJ. ChengL. LiX. Dimeric artesunate–phosphatidylcholine-based liposomes for irinotecan delivery as a combination therapy approach.Mol. Pharm.202118103862387010.1021/acs.molpharmaceut.1c0050034470216
    [Google Scholar]
  62. RigantiC. DoublierS. ViarisioD. MiragliaE. PescarmonaG. GhigoD. BosiaA. Artemisinin induces doxorubicin resistance in human colon cancer cells via calcium‐dependent activation of HIF‐1α and P‐glycoprotein overexpression.Br. J. Pharmacol.200915671054106610.1111/j.1476‑5381.2009.00117.x19298255
    [Google Scholar]
  63. AtebaS.B. MvondoM.A. NgeuS.T. TchoumtchouaJ. AwounfackC.F. NjamenD. KrennL. Natural terpenoids against female breast cancer: A 5-year recent research.Curr. Med. Chem.201825273162321310.2174/092986732566618021411093229446727
    [Google Scholar]
  64. Abu SamaanT.M. SamecM. LiskovaA. KubatkaP. BüsselbergD. Paclitaxel’s mechanistic and clinical effects on breast cancer.Biomolecules201991278910.3390/biom912078931783552
    [Google Scholar]
  65. JiangW. ChenM. XiaoC. YangW. QinQ. TanQ. LiangZ. LiaoX. MaoA. WeiC. Triptolide suppresses growth of breast cancer by targeting HMGB1 in vitro and in vivo.Biol. Pharm. Bull.201942689289910.1248/bpb.b18‑0081830956264
    [Google Scholar]
  66. LandgrafM. LahrC.A. KaurI. ShafieeA. Sanchez-HerreroA. JanowiczP.W. RavichandranA. HowardC.B. Cifuentes-RiusA. McGovernJ.A. VoelckerN.H. HutmacherD.W. Targeted camptothecin delivery via silicon nanoparticles reduces breast cancer metastasis.Biomaterials202024011979110.1016/j.biomaterials.2020.11979132109589
    [Google Scholar]
  67. PhamE. YinM. PetersC.G. LeeC.R. BrownD. XuP. ManS. JayaramanL. RohdeE. ChowA. LazarusD. EliasofS. FosterF.S. KerbelR.S. Preclinical efficacy of bevacizumab with CRLX101, an investigational nanoparticle–drug conjugate, in treatment of metastatic triple-negative breast cancer.Cancer Res.201676154493450310.1158/0008‑5472.CAN‑15‑343527325647
    [Google Scholar]
  68. AndersC. DealA.M. AbramsonV. LiuM.C. StornioloA.M. CarpenterJ.T. PuhallaS. NandaR. Melhem-BertrandtA. LinN.U. Kelly MarcomP. Van PoznakC. StearnsV. MeliskoM. SmithJ.K. KarginovaO. ParkerJ. BergJ. WinerE.P. PetermanA. PratA. PerouC.M. WolffA.C. CareyL.A. TBCRC 018: Phase II study of iniparib in combination with irinotecan to treat progressive triple negative breast cancer brain metastases.Breast Cancer Res. Treat.2014146355756610.1007/s10549‑014‑3039‑y25001612
    [Google Scholar]
  69. ValabregaG. BerrinoG. MilaniA. AgliettaM. MontemurroF. A retrospective analysis of the activity and safety of oral Etoposide in heavily pretreated metastatic breast cancer patients.Breast J.201521324124510.1111/tbj.1239825772707
    [Google Scholar]
  70. WuY.H. HongC.W. WangY.C. HuangW.J. YehY.L. WangB.J. WangY.J. ChiuH.W. A novel histone deacetylase inhibitor TMU-35435 enhances etoposide cytotoxicity through the proteasomal degradation of DNA-PKcs in triple-negative breast cancer.Cancer Lett.2017400798810.1016/j.canlet.2017.04.02328450160
    [Google Scholar]
  71. DengD. ShahK. TRAIL of hope meeting resistance in cancer.Trends Cancer2020612989100110.1016/j.trecan.2020.06.00632718904
    [Google Scholar]
  72. YaoM. FanX. YuanB. TakagiN. LiuS. HanX. RenJ. LiuJ. Berberine inhibits NLRP3 Inflammasome pathway in human triple-negative breast cancer MDA-MB-231 cell.BMC Complement. Altern. Med.201919121610.1186/s12906‑019‑2615‑431412862
    [Google Scholar]
  73. RefaatA. AbdelhamedS. YagitaH. InoueH. YokoyamaS. HayakawaY. SaikiI. Berberine enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in breast cancer.Oncol. Lett.20136384084410.3892/ol.2013.143424137422
    [Google Scholar]
  74. RatherR.A. BhagatM. Cancer chemoprevention and piperine: molecular mechanisms and therapeutic opportunities.Front. Cell Dev. Biol.201861010.3389/fcell.2018.0001029497610
    [Google Scholar]
  75. LeeS.T. WelchK.D. PanterK.E. GardnerD.R. GarrossianM. ChangC.W.T. Cyclopamine: From cyclops lambs to cancer treatment.J. Agric. Food Chem.201462307355736210.1021/jf500562224754790
    [Google Scholar]
  76. LiuR. YuY. WangQ. ZhaoQ. YaoY. SunM. ZhuangJ. SunC. QiY. Interactions between hedgehog signaling pathway and the complex tumor microenvironment in breast cancer: Current knowledge and therapeutic promises.Cell Commun. Signal.202422143210.1186/s12964‑024‑01812‑639252010
    [Google Scholar]
  77. BhatB.A. MirW.R. SheikhB.A. AlkananiM. MirM.A. Metabolite fingerprinting of phytoconstituents from Fritillaria cirrhosa D. Don and molecular docking analysis of bioactive peonidin with microbial drug target proteins.Sci. Rep.2022121729610.1038/s41598‑022‑10796‑735508512
    [Google Scholar]
  78. TaherM.A. Vinca alkaloid-the second most used alkaloid for cancer treatment-A review.Inter. J. Physiol. Nutr. Phys. Educ20172723727
    [Google Scholar]
  79. BanyalA. Vinca alkaloids as a potential cancer therapeutics: Recent update and future challenges3 Biotech,202313621110.1007/s13205‑023‑03636‑6
    [Google Scholar]
  80. ZhangY. YangS.H. GuoX.L. New insights into Vinca alkaloids resistance mechanism and circumvention in lung cancer.Biomed. Pharmacother.20179665966610.1016/j.biopha.2017.10.04129035832
    [Google Scholar]
  81. MartinoE. CasamassimaG. CastiglioneS. CellupicaE. PantaloneS. PapagniF. RuiM. SicilianoA.M. CollinaS. Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead.Bioorg. Med. Chem. Lett.201828172816282610.1016/j.bmcl.2018.06.04430122223
    [Google Scholar]
  82. VargheseE. SamuelS. AbotalebM. CheemaS. MamtaniR. BüsselbergD. The “Yin and Yang” of natural compounds in anticancer therapy of triple-negative breast cancers.Cancers (Basel)2018101034610.3390/cancers1010034630248941
    [Google Scholar]
  83. TuliH.S. MittalS. LokaM. AggarwalV. AggarwalD. MasurkarA. KaurG. VarolM. SakK. KumarM. SethiG. BishayeeA. Deguelin targets multiple oncogenic signaling pathways to combat human malignancies.Pharmacol. Res.202116610548710.1016/j.phrs.2021.10548733581287
    [Google Scholar]
  84. RoblesA.J. CaiS. CichewiczR.H. MooberryS.L. Selective activity of deguelin identifies therapeutic targets for androgen receptor-positive breast cancer.Breast Cancer Res. Treat.2016157347548810.1007/s10549‑016‑3841‑927255535
    [Google Scholar]
  85. YangM. TengW. QuY. WangH. YuanQ. Sulforaphene inhibits triple negative breast cancer through activating tumor suppressor Egr1.Breast Cancer Res. Treat.2016158227728610.1007/s10549‑016‑3888‑727377973
    [Google Scholar]
  86. YangF. WangF. LiuY. WangS. LiX. HuangY. XiaY. CaoC. Sulforaphane induces autophagy by inhibition of HDAC6-mediated PTEN activation in triple negative breast cancer cells.Life Sci.201821314915710.1016/j.lfs.2018.10.03430352240
    [Google Scholar]
  87. BurnettJ.P. LimG. LiY. ShahR.B. LimR. PaholakH.J. McDermottS.P. SunL. TsumeY. BaiS. WichaM.S. SunD. ZhangT. Sulforaphane enhances the anticancer activity of taxanes against triple negative breast cancer by killing cancer stem cells.Cancer Lett.2017394526410.1016/j.canlet.2017.02.02328254410
    [Google Scholar]
  88. SandovalT.A. UrueñaC.P. LlanoM. Gómez-CadenaA. HernándezJ.F. SequedaL.G. LoaizaA.E. BarretoA. LiS. FiorentinoS. Standardized extract from Caesalpinia spinosa is cytotoxic over cancer stem cells and enhance anticancer activity of doxorubicin.Am. J. Chin. Med.20164481693171710.1142/S0192415X1650095627852125
    [Google Scholar]
  89. UrueñaC. SandovalT.A. LassoP. TawilM. BarretoA. TorregrosaL. FiorentinoS. Evaluation of chemotherapy and P2Et extract combination in ex-vivo derived tumor mammospheres from breast cancer patients.Sci. Rep.20201011963910.1038/s41598‑020‑76619‑933184339
    [Google Scholar]
  90. KronskiE. FioriM.E. BarbieriO. AstigianoS. MirisolaV. KillianP.H. BrunoA. PaganiA. RoveraF. PfefferU. SommerhoffC.P. NoonanD.M. NerlichA.G. FontanaL. BachmeierB.E. miR181b is induced by the chemopreventive polyphenol curcumin and inhibits breast cancer metastasis via down‐regulation of the inflammatory cytokines CXCL1 and ‐2.Mol. Oncol.20148358159510.1016/j.molonc.2014.01.00524484937
    [Google Scholar]
  91. FalahR.R. TalibW.H. ShbailatS.J. Combination of metformin and curcumin targets breast cancer in mice by angiogenesis inhibition, immune system modulation and induction of p53 independent apoptosis.Ther. Adv. Med. Oncol.20179423525210.1177/175883401668748228491145
    [Google Scholar]
  92. SunY. ZhouQ.M. LuY.Y. ZhangH. ChenQ.L. ZhaoM. SuS.B. Resveratrol inhibits the migration and metastasis of MDA-MB-231 human breast cancer by reversing TGF-β1-induced epithelial-mesenchymal transition.Molecules2019246113110.3390/molecules2406113130901941
    [Google Scholar]
  93. YangM.D. SunY. ZhouW.J. XieX.Z. ZhouQ.M. LuY.Y. SuS.B. Resveratrol enhances inhibition effects of cisplatin on cell migration and invasion and tumor growth in breast cancer MDA-MB-231 cell models in vivo and in vitro.Molecules2021268220410.3390/molecules2608220433921192
    [Google Scholar]
  94. NarayananS. MonyU. VijaykumarD.K. KoyakuttyM. Paul-PrasanthB. MenonD. Sequential release of epigallocatechin gallate and paclitaxel from PLGA-casein core/shell nanoparticles sensitizes drug-resistant breast cancer cells.Nanomedicine20151161399140610.1016/j.nano.2015.03.01525888278
    [Google Scholar]
  95. Giró-PerafitaA. PalomerasS. LumD.H. BlancafortA. ViñasG. OliverasG. Pérez-BuenoF. SarratsA. WelmA.L. PuigT. Preclinical evaluation of fatty acid synthase and EGFR inhibition in triple-negative breast cancer.Clin. Cancer Res.201622184687469710.1158/1078‑0432.CCR‑15‑313327106068
    [Google Scholar]
  96. WooC.C. HsuA. KumarA.P. SethiG. TanK.H.B. Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: The role of p38 MAPK and ROS.PLoS One2013810e7535610.1371/journal.pone.007535624098377
    [Google Scholar]
  97. CaoY. FengY.H. GaoL.W. LiX.Y. JinQ.X. WangY.Y. XuY.Y. JinF. LuS.L. WeiM.J. Artemisinin enhances the anti-tumor immune response in 4T1 breast cancer cells in vitro and in vivo.Int. Immunopharmacol.20197011011610.1016/j.intimp.2019.01.04130798159
    [Google Scholar]
  98. NosratiH. BarzegariP. DanafarH. Kheiri ManjiliH. Biotin-functionalized copolymeric PEG-PCL micelles for in vivo tumour-targeted delivery of artemisinin.Artif. Cells Nanomed. Biotechnol.201947110411410.1080/21691401.2018.154319930663422
    [Google Scholar]
  99. BelloE. TarabolettiG. ColellaG. ZucchettiM. ForestieriD. LicandroS.A. BerndtA. RichterP. D’IncalciM. CavallettiE. GiavazziR. CamboniG. DamiaG. The tyrosine kinase inhibitor E-3810 combined with paclitaxel inhibits the growth of advanced-stage triple-negative breast cancer xenografts.Mol. Cancer Ther.201312213114010.1158/1535‑7163.MCT‑12‑0275‑T23270924
    [Google Scholar]
  100. CardilloT.M. SharkeyR.M. RossiD.L. ArrojoR. MostafaA.A. GoldenbergD.M. Synthetic lethality exploitation by an anti–trop-2-SN-38 antibody–drug conjugate, IMMU-132, plus PARP inhibitors in BRCA1/2–wild-type triple-negative breast cancer.Clin. Cancer Res.201723133405341510.1158/1078‑0432.CCR‑16‑240128069724
    [Google Scholar]
  101. PusuluriA. KrishnanV. WuD. ShieldsC.W.IV WangL.W. MitragotriS. Role of synergy and immunostimulation in design of chemotherapy combinations: An analysis of doxorubicin and camptothecin.Bioeng. Transl. Med.201942e1012910.1002/btm2.1012931249879
    [Google Scholar]
  102. KimS. LeeJ. YouD. JeongY. JeonM. YuJ. KimS.W. NamS.J. LeeJ.E. Berberine suppresses cell motility through downregulation of TGF-β1 in triple negative breast cancer cells.Cell. Physiol. Biochem.201845279580710.1159/00048717129414799
    [Google Scholar]
  103. XuX. YiH. WuJ. KuangT. ZhangJ. LiQ. DuH. XuT. JiangG. FanG. Therapeutic effect of berberine on metabolic diseases: Both pharmacological data and clinical evidence.Biomed. Pharmacother.202113311098410.1016/j.biopha.2020.11098433186794
    [Google Scholar]
  104. MansouriK. RasoulpoorS. DaneshkhahA. AbolfathiS. SalariN. MohammadiM. RasoulpoorS. ShabaniS. Clinical effects of curcumin in enhancing cancer therapy: A systematic review.BMC Cancer202020179110.1186/s12885‑020‑07256‑832838749
    [Google Scholar]
  105. PallerC.J. RudekM.A. ZhouX.C. WagnerW.D. HudsonT.S. AndersN. HammersH.J. DowlingD. KingS. AntonarakisE.S. DrakeC.G. EisenbergerM.A. DenmeadeS.R. RosnerG.L. CarducciM.A. A phase I study of muscadine grape skin extract in men with biochemically recurrent prostate cancer: Safety, tolerability, and dose determination.Prostate201575141518152510.1002/pros.2302426012728
    [Google Scholar]
  106. ZhouX. SetoS.W. ChangD. KiatH. Razmovski-NaumovskiV. ChanK. BensoussanA. Synergistic effects of Chinese herbal medicine: A comprehensive review of methodology and current research.Front. Pharmacol.2016720110.3389/fphar.2016.0020127462269
    [Google Scholar]
  107. PatraS. Chemotherapeutic efficacy of curcumin and resveratrol against cancer: Chemoprevention, chemoprotection, drug synergism and clinical pharmacokinetics.Semin. Cancer Biol.20217331032010.1016/j.semcancer.2020.10.010
    [Google Scholar]
  108. TangX. BiH. FengJ. CaoJ. Effect of curcumin on multidrug resistance in resistant human gastric carcinoma cell line SGC7901/VCR.Acta Pharmacol. Sin.20052681009101610.1111/j.1745‑7254.2005.00149.x16038636
    [Google Scholar]
  109. CassidyA. MinihaneA.M. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids.Am. J. Clin. Nutr.20171051102210.3945/ajcn.116.13605127881391
    [Google Scholar]
  110. LiskovaA. KoklesovaL. SamecM. SmejkalK. SamuelS.M. VargheseE. AbotalebM. BiringerK. KudelaE. DankoJ. ShakibaeiM. KwonT.K. BüsselbergD. KubatkaP. Flavonoids in cancer metastasis.Cancers (Basel)2020126149810.3390/cancers1206149832521759
    [Google Scholar]
  111. HaqB.U. QayoomH. SofiS. JanN. ShabirA. AhmadI. AhmadF. AlmilaibaryA. MirM.A. Targeting p53 misfolding conundrum by stabilizing agents and their analogs in breast cancer therapy: A comprehensive computational analysis.Front. Pharmacol.202414133344710.3389/fphar.2023.133344738269278
    [Google Scholar]
  112. MirM.A. SofiS. IshfaqP.M. CDK Dysregulation in breast cancer: A bioinformatics analysis202310.1007/978‑981‑19‑8911‑7_8
    [Google Scholar]
  113. QayoomH. AlkhananiM. AlmilaibaryA. AlsagabyS.A. MirM.A. Mechanistic elucidation of Juglanthraquinone C targeting breast Cancer: A network pharmacology-based investigation.Saudi J. Biol. Sci.202330710370510.1016/j.sjbs.2023.10370537425621
    [Google Scholar]
  114. MoarK. YadavS. PantA.; Deepika, ; Maurya, P.K. Anti-tumor Effects of Polyphenols via Targeting Cancer Driving Signaling Pathways: A Review.Indian J. Clin. Biochem.202439447048810.1007/s12291‑024‑01222‑y39346722
    [Google Scholar]
/content/journals/npj/10.2174/0122103155329752241118115506
Loading
/content/journals/npj/10.2174/0122103155329752241118115506
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test