Skip to content
2000
Volume 16, Issue 2
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Introduction

Plants have been employed for centuries to enhance human health due to their cost-effectiveness and minimal adverse effects. Numerous plants exhibit a wide spectrum of pharmacological activities, and various herbal medicines are currently being investigated for their memory-enhancing properties.

Methods

(Roxb.), commonly known as Kachari or Bitter gourd, is one such plant with diverse pharmacological attributes. Historically, the fruits of have been utilized for addressing various conditions like leprosy, pyrexia, icterus, hyperglycemia, chronic cough, bronchitis, abdominal fluid accumulation, anemia, obstipation, diverse gastrointestinal disease, and cognitive impairment. The current investigation aims to explore the memory enhancement properties of rooted in its traditional applications, particularly against scopolamine-induced amnesia in mice. Morris water maze and elevated plus maze paradigms were employed to evaluate cognitive performance. Furthermore, the research examined acetylcholine neurotransmission, oxidative stress markers, and cerebral histopathology.

Results

The results showed that ethanol extract (dose- 150 or 300 mg/kg., p.o.), markedly ( < 0.05) improved memory in scopolamine-induced amnesia in mice and significantly ( < 0.05) elevated hippocampus acetylcholine concentration. These findings revealed that the ethanol extract of fruits mitigates memory deficits and demonstrates neuroprotective efficacy analogous to the reference drug Piracetam. Additionally, the extract showed notable antioxidant activity. The occurrence of flavonoids and phenols is likely to be responsible for its memory-enhancing effects due to their antioxidant properties, which help to prevent the loss of neurons.

Conclusion

These results support the efficacy and potential of ethanol extract as an affordable alternative form of herbal medicine for the treatment of Amnesia.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155341478241024043523
2024-11-04
2026-01-02
Loading full text...

Full text loading...

References

  1. ZhangJ. ShiL. ShenY. The retina: A window in which to view the pathogenesis of Alzheimer’s disease.Ageing Res. Rev.20227710159010.1016/j.arr.2022.10159035192959
    [Google Scholar]
  2. LynchC. World Alzheimer report 2019: Attitudes to dementia, a global survey.Alzheimers Dement.202016S10e03825510.1002/alz.038255
    [Google Scholar]
  3. PantS. GuptaM. AnthwalT. ChauhanM. NainS. Neuroprotective effects of novel pyrrolidine-2-one derivatives on scopolamine-induced cognitive impairment in mice: Behavioral and biochemical analysis.Pharmacol. Biochem. Behav.202322917360210.1016/j.pbb.2023.17360237453560
    [Google Scholar]
  4. LopezA.D. MurrayC.C.J.L. The global burden of disease, 1990–2020.Nat. Med.19984111241124310.1038/32189809543
    [Google Scholar]
  5. WhellanD.J. Heart failure disease management: Implementation and outcomes.Cardiol. Rev.200513523123910.1097/01.crd.0000135765.60824.2f16106184
    [Google Scholar]
  6. WexlerB.C. Myocardial infarction in young vs old male rats: Pathophysiologic changes.Am. Heart J.1978961708010.1016/0002‑8703(78)90128‑X655113
    [Google Scholar]
  7. ToddG.L. CullanG.E. CullanG.M. Isoproterenol-induced myocardial necrosis and membrane permeability alterations in the isolated perfused rabbit heart.Exp. Mol. Pathol.1980331435410.1016/0014‑4800(80)90006‑47409085
    [Google Scholar]
  8. YoungI.S. PurvisJ.A. LightbodyJ.H. AdgeyA.A.J. TrimbleE.R. Lipid peroxidation and antioxidant status following thrombolytic therapy for acute myocardial infarction.Eur. Heart J.19931481027103310.1093/eurheartj/14.8.10278404932
    [Google Scholar]
  9. TalesaV.N. Acetylcholinesterase in Alzheimer’s disease.Mech. Ageing Dev.2001122161961196910.1016/S0047‑6374(01)00309‑811589914
    [Google Scholar]
  10. MohunA.F. CookI.J.Y. Simple methods for measuring serum levels of the glutamic-oxalacetic and glutamic-pyruvic transaminases in routine laboratories.J. Clin. Pathol.195710439439910.1136/jcp.10.4.39413481132
    [Google Scholar]
  11. KingJ. The dehydrogenase of oxidoreductase-lactate dehydrogenase.In: Practical Clinical Enzymology; Van, D., Ed.; Nostrand Co196593193
    [Google Scholar]
  12. OkinakaS. KumagaiH. EbashiS. SugitaH. MomoiH. ToyokuraY. FujieY. Serum creatine phosphokinase. Activity in progressive muscular dystrophy and neuromuscular diseases.Arch. Neurol.19614552052510.1001/archneur.1961.0045011005000613730599
    [Google Scholar]
  13. SabeenafarvinK. AnandanR. SenthilkumarS. ShinyK. SankarT. ThankappanT. Effect of squalene on tissue defense system in isoproterenol-induced myocardial infarction in rats.Pharmacol. Res.200450323123610.1016/j.phrs.2004.03.00415225664
    [Google Scholar]
  14. GürgünC. IldızlıM. YavuzgilO. SinA. ApaydınA. ÇınarC. KültürsayH. The effects of short term statin treatment on left ventricular function and inflammatory markers in patients with chronic heart failure.Int. J. Cardiol.2008123210210710.1016/j.ijcard.2006.11.15217320212
    [Google Scholar]
  15. KirtikarK.R. BasuB.D. Indian Medicinal Plants; 2nd edLalit Mohan Basu: Allahabad1999
    [Google Scholar]
  16. NaikV.R. AgshikarN.V. AbrahamG.J.S. Analgesic and anti-inflammatory activity in alcoholic extracts of Cucumis trigonus Roxburghii. A preliminary communication.Pharmacol.1980201525610.1159/0001373457375503
    [Google Scholar]
  17. NaikV.R. AgshikarN.V. AbrahamG.J.S. Cucumis trigonus Roxb. II. Diuretic activity.J. Ethnopharmacol.198131151910.1016/0378‑8741(81)90011‑87464192
    [Google Scholar]
  18. NaveenaB.M. MendirattaS.K. AnjaneyuluA.S.R. Tenderization of buffalo meat using plant proteases from Cucumis trigonus Roxb (Kachri) and Zingiber officinale roscoe (Ginger rhizome).Meat Sci.200468336336910.1016/j.meatsci.2004.04.00422062404
    [Google Scholar]
  19. Asif-UllahM. KimK.S. YuY.G. Purification and characterization of a serine protease from Cucumis trigonus Roxburghi.Phytochemistry200667987087510.1016/j.phytochem.2006.02.02016603211
    [Google Scholar]
  20. IghodaroO.M. AkinloyeO.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid.Alex. J. Med.201854428729310.1016/j.ajme.2017.09.001
    [Google Scholar]
  21. BeckhauserT.F. Francis-OliveiraJ. De PasqualeR. Reactive oxygen species: Physiological and physiopathological effects on synaptic plasticity.J. Exp. Neurosci201610(Suppl 1)2348-4810.4137/JEN.S3988727625575
    [Google Scholar]
  22. NomiJ.S. BoltT.S. EzieC.E.C. UddinL.Q. HellerA.S. Moment-to-moment BOLD signal variability reflects regional changes in neural flexibility across the lifespan.J. Neurosci.201737225539554810.1523/JNEUROSCI.3408‑16.201728473644
    [Google Scholar]
  23. XuJ. ChenD. QiuX. HuangX. Cached long short-term memory neural networks for document-level sentiment classification.arXiv201610.48550/arXiv.1610.04989
    [Google Scholar]
  24. JadhavK.S. MaratheP.A. RegeN.N. ParekarR.R. Effect of Saraswatarishta in animal models of behavior despair.J. Ayurveda Integr. Med.20145314114710.4103/0975‑9476.14046925336844
    [Google Scholar]
  25. The Ayurvedic Pharmacopoeia of India, 1st ed; Ministry Of Health And Family Welfare Department Of Ayush: New Delhi, India,20081
    [Google Scholar]
  26. HossainM.A. AL-Raqmi, K.A.S.; AL-Mijizy, Z.H.; Weli, A.M.; Al-Riyami, Q. Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vulgaris.Asian Pac. J. Trop. Biomed.20133970571010.1016/S2221‑1691(13)60142‑223998010
    [Google Scholar]
  27. PrabhuJ. K PrabhuP.; Chaudhuri, A.; Krishna Rao, M.R.; Selvi, V.S.K.; TK Balaji, B.; Dinakar, S. Neuro-protective effect of ayurveda formulation, saraswatharishtam, on scopolamine induced memory impairment in animal model.Pharmacogn. J.202012161310.5530/pj.2020.12.2
    [Google Scholar]
  28. DhingraD. KumarV. Memory-enhancing activity of palmatine in mice using elevated plus maze and Morri’s water maze.Adv. Pharmacol. Pharm. Sci.2012201235736810.1155/2012/35736823193393
    [Google Scholar]
  29. FaesC. AertsM. GeysH. De SchaepdrijverL. Modeling spatial learning in rats based on Morris water maze experiments.Pharm. Stat.201091102010.1002/pst.36119180531
    [Google Scholar]
  30. BoraK.S. SharmaA. Evaluation of antioxidant and free-radical scavenging potential of Artemisia absinthium.Pharm. Biol.201149121216122310.3109/13880209.2011.57814221999109
    [Google Scholar]
  31. IttadwarP.A. PuranikP.K. Novel umbelliferone phytosomes: Development and optimization using experimental design approach and evaluation of photo-protective and antioxidant activity.Int. J. Pharm. Pharm. Sci.20169121822810.22159/ijpps.2017v9i1.14635
    [Google Scholar]
  32. GötzJ. StrefferJ.R. DavidD. SchildA. HoerndliF. PennanenL. KurosinskiP. ChenF. Transgenic animal models of Alzheimer’s disease and related disorders: Histopathology, behavior and therapy.Mol. Psychiatry20049766468310.1038/sj.mp.400150815052274
    [Google Scholar]
/content/journals/npj/10.2174/0122103155341478241024043523
Loading
/content/journals/npj/10.2174/0122103155341478241024043523
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): acetylcholine; Alzheimer's disease; amnesia; antioxidant; cognition; Cucumis trigonus
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test