Skip to content
2000
Volume 16, Issue 2
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Tea is a popular beverage that comprises various antioxidants. Tea is the second most consumed beverage in the world after water. The three ideal types of tea include black, white, and green teas. Catechin, Epicatechin gallate, and Epicatechin are the striped flavonoids coeval in the tea. These flavonoids are freed as a rich source for blood circulation in the heart. Tea possesses anti-inflammatory, anti-neoplastic, anti-arthritic, anti-thrombotic, antimicrobial, anti-platelet aggregation, anti-cholesterol, anti-hyperglycemic, and immuno-protective properties. Modern empowering research studies contemplate that minimal consumption of tea can also be of advantage to the cardiovascular system (CVS) as it modulates oxidative stress. Consumption of tea is beneficial for cardiovascular diseases such as atherosclerosis, coronary artery disease, aortic aneurysms, peripheral artery disease, stroke, ischemic heart disease, and cardiomyopathy. Consumption of excess tea may also be detrimental to health, and we highlight different types of tea. The main aim of the present narrative review is to highlight the natural compounds present in tea and discuss their mechanism of action on the cardiovascular system. Based on evidence gathered from published literature, it is thereby concluded that tea is a popular drink with potential cardiovascular health benefits.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155341103241025054033
2024-11-01
2025-12-22
Loading full text...

Full text loading...

References

  1. HayatK. IqbalH. MalikU. BilalU. MushtaqS. Tea and its consumption: Benefits and risks.Crit. Rev. Food Sci. Nutr.201555793995410.1080/10408398.2012.67894924915350
    [Google Scholar]
  2. ZhangQ. BiG. LiT. WangQ. XingZ. LeCompteJ. HarkessR.L. Color shade nets affect plant growth and seasonal leaf quality of Camellia sinensis grown in Mississippi, the United States.Front. Nutr.2022978642110.3389/fnut.2022.78642135187030
    [Google Scholar]
  3. RiemersmaR.A. Rice-EvansC.A. TyrrellR.M. CliffordM.N. LeanM.E.J. Tea flavonoids and cardiovascular health.QJM200194527728210.1093/qjmed/94.5.27711353103
    [Google Scholar]
  4. OyaH. NakanoM. ShinoharaH. NagaiM. TakimotoY. MasudaT. KazumuraK. MochizukiM. OsawaT. IshikawaH. The Effects of Adlay Tea Intake on immune homeostasis and vascular endothelial function in healthy adults: A randomized, double-blind, parallel-group comparative study.J. Nutr. Sci. Vitaminol. (Tokyo)202470328028710.3177/jnsv.70.28038945894
    [Google Scholar]
  5. DingP. YueW. WangX. ZhangY. LiuY. GuoX. Effects of sugary drinks, coffee, tea and fruit juice on incidence rate, mortality and cardiovascular complications of type 2 diabetes patients: A systematic review and meta-analysis.J. Diabetes Metab. Disord.20242311113112310.1007/s40200‑024‑01396‑538932853
    [Google Scholar]
  6. KimY. JeY. Tea consumption and the risks of all-cause, cardiovascular disease, and cancer mortality: A meta-analysis of 38 prospective cohort data sets.Epidemiol. Health2024e202405610.4178/epih.e202405638938012
    [Google Scholar]
  7. MukhtarH. AhmadN. Cancer chemoprevention: Future holds in multiple agents.Toxicol. Appl. Pharmacol.1999158320721010.1006/taap.1999.872110438653
    [Google Scholar]
  8. Winiarska-MieczanA. The potential protective effect of green, black, red and white tea infusions against adverse effect of cadmium and lead during chronic exposure – A rat model study.Regul. Toxicol. Pharmacol.201573252152910.1016/j.yrtph.2015.10.00726472100
    [Google Scholar]
  9. WuT. XuJ. ChenY. LiuR. ZhangM. Oolong tea polysaccharide and polyphenols prevent obesity development in Sprague–Dawley rats.Food Nutr. Res.201862010.29219/fnr.v62.159930622452
    [Google Scholar]
  10. DaiY.L. LiY. WangQ. NiuF.J. LiK.W. WangY.Y. WangJ. ZhouC.Z. GaoL.N. Chamomile: A review of its traditional uses, chemical constituents, pharmacological activities and quality control studies.Molecules202228113310.3390/molecules2801013336615326
    [Google Scholar]
  11. WebM.D. Accessed from websiteAvailable from: https://www.webmd.com/diet/supplement-guide-ginseng
    [Google Scholar]
  12. KochmanJ. JakubczykK. AntoniewiczJ. MrukH. JandaK. Health benefits and chemical composition of matcha green tea: A review.Molecules20202618510.3390/molecules2601008533375458
    [Google Scholar]
  13. RahamanS.T. MondalS. Flavonoids: A vital resource in healthcare and medicine.Pharm. Pharmacol. Int. J.2020829110410.15406/ppij.2020.08.00285
    [Google Scholar]
  14. YanZ. ZhongY. DuanY. ChenQ. LiF. Antioxidant mechanism of tea polyphenols and its impact on health benefits.Anim. Nutr.20206211512310.1016/j.aninu.2020.01.00132542190
    [Google Scholar]
  15. ZhangS. JinJ. ChenJ. ErcisliS. ChenL. Purine alkaloids in tea plants: Component, biosynthetic mechanism and genetic variation. Bev.Plant Res.2022211910.48130/BPR‑2022‑0013
    [Google Scholar]
  16. BarnesP.J. Theophylline.Am. J. Respir. Crit. Care Med.2013188890190610.1164/rccm.201302‑0388PP23672674
    [Google Scholar]
  17. YuJ. LiJ. LinZ. ZhuY. FengZ. NiD. ZengS. ZengX. WangY. NingJ. ZhangL. WanX. ZhaiX. Dynamic changes and the effects of key procedures on the characteristic aroma compounds of Lu’an Guapian green tea during the manufacturing process.Food Res. Int.202418811452510.1016/j.foodres.2024.11452538823888
    [Google Scholar]
  18. HoC.T. ZhengX. LiS. Tea aroma formation.Food Sci. Hum. Wellness20154192710.1016/j.fshw.2015.04.001
    [Google Scholar]
  19. Preedy, V.R., Ed.;Tea in health and disease prevention.LondonElsevier200342
    [Google Scholar]
  20. DengW.W. FeiY. WangS. WanX.C. ZhangZ.Z. HuX.Y. Effect of shade treatment on theanine biosynthesis in Camellia sinensis seedlings.Plant Growth Regul.201371329529910.1007/s10725‑013‑9828‑1
    [Google Scholar]
  21. OzturkB. SeyhanF. OzdemirI.S. KaradenizB. BaharB. ErtasE. IlgazS. Change of enzyme activity and quality during the processing of Turkish green tea.Lebensm. Wiss. Technol.20166531832410.1016/j.lwt.2015.07.068
    [Google Scholar]
  22. YueC. WangZ. YangP. Review: The effect of light on the key pigment compounds of photosensitive etiolated tea plant.Bot. Stud. (Taipei, Taiwan)20216212110.1186/s40529‑021‑00329‑234897570
    [Google Scholar]
  23. ShevchukA. Megías-PérezR. ZemedieY. KuhnertN. Evaluation of carbohydrates and quality parameters in six types of commercial teas by targeted statistical analysis.Food Res. Int.202013310912210.1016/j.foodres.2020.10912232466950
    [Google Scholar]
  24. BaekG.H. YangS.W. YunC.I. LeeJ.G. KimY.J. Determination of methylxanthine contents and risk characterisation for various types of tea in Korea.Food Control202213210854310.1016/j.foodcont.2021.108543
    [Google Scholar]
  25. RatnaniS. MalikS. Therapeutic properties of green tea: A Review.J. Multidiscip. Appl. Nat. Sci.2022229010210.47352/jmans.2774‑3047.117
    [Google Scholar]
  26. ShiY. ZhuY. MaW. ShiJ. PengQ. LinZ. LvH. Comprehensive investigation on non-volatile and volatile metabolites in four types of green teas obtained from the same tea cultivar of Longjing 43 (Camellia sinensis var. sinensis) using the widely targeted metabolomics.Food Chem.202239413350110.1016/j.foodchem.2022.13350135728471
    [Google Scholar]
  27. El-AswadA.F. AisuJ. KhalifaM.H. Biological activity of tannins extracts from processed Camellia sinensis (black and green tea), Vicia faba and Urtica dioica and Allium cepa essential oil on three economic insects.J. Plant Dis. Prot.2023130349550810.1007/s41348‑022‑00680‑x
    [Google Scholar]
  28. FloraG.D. NayakM.K. A brief review of cardiovascular diseases, associated risk factors and current treatment regimes.Curr. Pharm. Des.201925384063408410.2174/138161282566619092516382731553287
    [Google Scholar]
  29. Totoń-ŻurańskaJ. MikolajczykT.P. SajuB. GuzikT.J. Vascular remodelling in cardiovascular diseases: Hypertension, oxidation, and inflammation.Clin. Sci. (Lond.)20241381381785010.1042/CS2022079738920058
    [Google Scholar]
  30. BedroodZ. RameshradM. HosseinzadehH. Toxicological effects of Camellia sinensis (green tea): A review.Phytother. Res.20183271163118010.1002/ptr.606329575316
    [Google Scholar]
  31. GanesanR. HenkelsK.M. WrenshallL.E. KanahoY. Di PaoloG. FrohmanM.A. Gomez-CambroneroJ. Oxidized LDL phagocytosis during foam cell formation in atherosclerotic plaques relies on a PLD2–CD36 functional interdependence.J. Leukoc. Biol.2018103586788310.1002/JLB.2A1017‑407RR29656494
    [Google Scholar]
  32. DuffyS.J. KeaneyJ.F.Jr HolbrookM. GokceN. SwerdloffP.L. FreiB. VitaJ.A. Short- and long-term black tea consumption reverses endothelial dysfunction in patients with coronary artery disease.Circulation2001104215115610.1161/01.CIR.104.2.15111447078
    [Google Scholar]
  33. Health encyclopedia. University of Rochester Medical CentreAvailable from: https://www.urmc.rochester.edu/encyclopedia/content.aspx?contenttypeid=85&contentid=p00236#:~:text=Peripheral%20vascular%20disease%20%28PVD%29%20is%20a%20slow%20and,This%20includes%20the%20arteries%2C%20veins%2C%20or%20lymphatic%20vessels
  34. BondonnoN.P. MurrayK. CassidyA. BondonnoC.P. LewisJ.R. CroftK.D. KyrøC. GislasonG. Torp-PedersenC. ScalbertA. TjønnelandA. HodgsonJ.M. DalgaardF. Higher habitual flavonoid intakes are associated with a lower risk of peripheral artery disease hospitalizations.Am. J. Clin. Nutr.2021113118719910.1093/ajcn/nqaa30033236045
    [Google Scholar]
  35. ShahjehanR.D. BhuttaB.S. Coronary Artery Disease.StatPearls.Treasure IslandStatPearls Publishing2024
    [Google Scholar]
  36. DludlaP.V. NkambuleB.B. Mazibuko-MbejeS.E. NyambuyaT.M. OrlandoP. SilvestriS. MarcheggianiF. CirilliI. ZiqubuK. NdevahomaF. MxinwaV. MokgalaboniK. SabbatinelliJ. LouwJ. TianoL. Tea consumption and its effects on primary and secondary prevention of coronary artery disease: Qualitative synthesis of evidence from randomized controlled trials.Clin. Nutr. ESPEN202141778710.1016/j.clnesp.2020.11.00633487310
    [Google Scholar]
  37. PhamM.H.C. SigvardsenP.E. FuchsA. KühlJ.T. SillesenH. AfzalS. NordestgaardB.G. KøberL.V. KofoedK.F. Aortic aneurysms in a general population cohort: Prevalence and risk factors in men and women.Eur. Heart J. Cardiovasc. Imaging20242591235124310.1093/ehjci/jeae10338662458
    [Google Scholar]
  38. KaluzaJ. StackelbergO. HarrisH.R. BjörckM. WolkA. Tea consumption and the risk of abdominal aortic aneurysm.Br. J. Surg.2022109434635410.1093/bjs/znab46835237794
    [Google Scholar]
  39. LiY. PengJ. KarimM.R. WangB. Effects of green tea (−)-Epigallocatechin-3-Gallate (EGCG) on cardiac function - A review of the therapeutic mechanism and potentials.Mini Rev. Med. Chem.202222182371238210.2174/138955752266622032816182635345998
    [Google Scholar]
  40. KjeldsenS.E. Hypertension and cardiovascular risk: General aspects.Pharmacol. Res.2018129959910.1016/j.phrs.2017.11.00329127059
    [Google Scholar]
  41. LiD. WangR. HuangJ. CaiQ. YangC.S. WanX. XieZ. Effects and mechanisms of tea regulating blood pressure: Evidences and promises.Nutrients2019115111510.3390/nu1105111531109113
    [Google Scholar]
  42. RasR.T. ZockP.L. DraijerR. Tea consumption enhances endothelial-dependent vasodilation; a meta-analysis.PLoS One201163e1697410.1371/journal.pone.001697421394199
    [Google Scholar]
  43. WoodwardK.A. HopkinsN.D. DraijerR. de GraafY. LowD.A. ThijssenD.H.J. Acute black tea consumption improves cutaneous vascular function in healthy middle-aged humans.Clin. Nutr.201837124224910.1016/j.clnu.2016.12.01328034564
    [Google Scholar]
  44. 9 Side effects of drinking too much teaAvailable from: https://www.healthline.com/nutrition/side-effects-of-tea
  45. HaleyK.M. Platelet Disorders.Pediatr. Rev.202041522423510.1542/pir.2018‑035932358028
    [Google Scholar]
  46. YangC.S. LandauJ.M. Effects of tea consumption on nutrition and health.J. Nutr.2000130102409241210.1093/jn/130.10.240911015465
    [Google Scholar]
  47. HuangH.C. LinJ.K. Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet.Food Funct.20123217017710.1039/C1FO10157A22127373
    [Google Scholar]
  48. ZorovD.B. JuhaszovaM. SollottS.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release.Physiol. Rev.201494390995010.1152/physrev.00026.201324987008
    [Google Scholar]
  49. YangC. LambertJ. JuJ. LuG. SangS. Tea and cancer prevention: Molecular mechanisms and human relevance.Toxicol. Appl. Pharmacol.2007224326527310.1016/j.taap.2006.11.02417234229
    [Google Scholar]
  50. DaiJ. MumperR.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties.Molecules201015107313735210.3390/molecules1510731320966876
    [Google Scholar]
  51. XuR. YangK. LiS. DaiM. ChenG. Effect of green tea consumption on blood lipids: A systematic review and meta-analysis of randomized controlled trials.Nutr. J.20201914810.1186/s12937‑020‑00557‑532434539
    [Google Scholar]
  52. YuJ. LiW. XiaoX. HuangQ. YuJ. YangY. HanT. ZhangD. NiuX. (−)-Epicatechin gallate blocks the development of atherosclerosis by regulating oxidative stress in vivo and in vitro.Food Funct.202112188715872710.1039/D1FO00846C34365492
    [Google Scholar]
  53. AhmedS. RahmanA. HasnainA. LalondeM. GoldbergV.M. HaqqiT.M. Green tea polyphenol epigallocatechin-3-gallate inhibits the IL-1β-induced activity and expression of cyclooxygenase-2 and nitric oxide synthase-2 in human chondrocytes.Free Radic. Biol. Med.20023381097110510.1016/S0891‑5849(02)01004‑312374621
    [Google Scholar]
  54. ReddyA.T. LakshmiS.P. Maruthi PrasadE. VaradacharyuluN.C. KodidhelaL.D. Epigallocatechin gallate suppresses inflammation in human coronary artery endothelial cells by inhibiting NF-κB.Life Sci.202025811813610.1016/j.lfs.2020.11813632726662
    [Google Scholar]
  55. HossenI. KaiqiZ. HuaW. JunsongX. MingquanH. YanpingC. Epigallocatechin gallate (EGCG) inhibits lipopolysaccharide‐induced inflammation in RAW 264.7 macrophage cells via modulating nuclear factor kappa‐light‐chain enhancer of activated B cells (NF‐ κ B) signaling pathway.Food Sci. Nutr.20231184634465010.1002/fsn3.342737576060
    [Google Scholar]
  56. TranP.L.C.H.B. KimS.A. ChoiH.S. YoonJ.H. AhnS.G. Epigallocatechin-3-gallate suppresses the expression of HSP70 and HSP90 and exhibits anti-tumor activity in vitro and in vivo.BMC Cancer201010127610.1186/1471‑2407‑10‑27620537126
    [Google Scholar]
  57. KawaiK. TsunoN.H. KitayamaJ. OkajiY. YazawaK. AsakageM. HoriN. WatanabeT. TakahashiK. NagawaH. Epigallocatechin gallate attenuates adhesion and migration of CD8+ T cells by binding to CD11b.J. Allergy Clin. Immunol.200411361211121710.1016/j.jaci.2004.02.04415208607
    [Google Scholar]
  58. Giménez-BastidaJ.A. González-SarríasA. Laparra-LlopisJ.M. SchneiderC. EspínJ.C. Targeting Mammalian 5-Lipoxygenase by dietary phenolics as an anti-inflammatory mechanism: A systematic review.Int. J. Mol. Sci.20212215793710.3390/ijms2215793734360703
    [Google Scholar]
  59. LeeM.H. KwonB.J. KooM.A. YouK.E. ParkJ.C. Mitogenesis of vascular smooth muscle cell stimulated by platelet-derived growth factor-bb is inhibited by blocking of intracellular signaling by epigallocatechin-3-O-gallate.Oxid. Med. Cell. Longev.2013201311010.1155/2013/82790524307927
    [Google Scholar]
  60. HwangK.C. LeeK.H. JangY. YunY.P. ChungK.H. Epigallocatechin-3-gallate inhibits basic fibroblast growth factor-induced intracellular signaling transduction pathway in rat aortic smooth muscle cells.J. Cardiovasc. Pharmacol.200239227127710.1097/00005344‑200202000‑0001411791013
    [Google Scholar]
  61. NuryanaI. AndrianiA. JuanssilferoA. Fahrurrozi, Fahrurrozi Catechin contents, antioxidant and antibacterial activities of different types of Indonesian Tea Annales.Bogorienses20202106113
    [Google Scholar]
  62. PelusoI. SerafiniM. Antioxidants from black and green tea: From dietary modulation of oxidative stress to pharmacological mechanisms.Br. J. Pharmacol.2017174111195120810.1111/bph.1364927747873
    [Google Scholar]
  63. CsuporD. BorosK. JedlinszkiN. Theanine and Caffeine content of infusions prepared from commercial tea samples.Pharmacogn. Mag.20161245757910.4103/0973‑1296.17606127019564
    [Google Scholar]
  64. LiJ. ZengL. LiaoY. TangJ. YangZ. Evaluation of the contribution of trichomes to metabolite compositions of tea] (Camellia sinensis) leaves and their products.Lebensm. Wiss. Technol.202012210902310.1016/j.lwt.2020.109023
    [Google Scholar]
  65. Determination of tannin content by titrimetric method from different types of tea.J. Chem. Pharm. Res.20157238241
    [Google Scholar]
  66. DreostiI.E. Antioxidant polyphenols in tea, cocoa, and wine.Nutrition2000167-869269410.1016/S0899‑9007(00)00304‑X10906600
    [Google Scholar]
  67. ChenD. DingY. ChenG. SunY. ZengX. YeH. Components identification and nutritional value exploration of tea (Camellia sinensis L.) flower extract: Evidence for functional food.Food Res. Int.202013210910010.1016/j.foodres.2020.10910032331644
    [Google Scholar]
  68. XuC. LiangL. LiY. YangT. FanY. MaoX. WangY. Studies of quality development and major chemical composition of green tea processed from tea with different shoot maturity.Lebensm. Wiss. Technol.202114211105510.1016/j.lwt.2021.111055
    [Google Scholar]
  69. LocherR. EmmanueleL. SuterP.M. VetterW. BartonM. Green tea polyphenols inhibit human vascular smooth muscle cell proliferation stimulated by native low-density lipoprotein.Eur. J. Pharmacol.20024341-21710.1016/S0014‑2999(01)01535‑711755158
    [Google Scholar]
  70. KimD.W. ParkY.S. KimY.G. PiaoH. KwonJ.S. HwangK.K. YounT.J. ParkJ.B. YunY.P. SachinidisA. KimC.H. ChoM.C. AhnH.Y. Local delivery of green tea catechins inhibits neointimal formation in the rat carotid artery injury model.Heart Vessels200419524224710.1007/s00380‑004‑0768‑615372300
    [Google Scholar]
  71. WonS.M. ParkY.H. KimH.J. ParkK.M. LeeW.J. Catechins inhibit angiotensin II-induced vascular smooth muscle cell proliferation via mitogen-activated protein kinase pathway.Exp. Mol. Med.200638552553410.1038/emm.2006.6217079869
    [Google Scholar]
  72. MaedaK. KuzuyaM. ChengX.W. AsaiT. KandaS. Tamaya-MoriN. SasakiT. ShibataT. IguchiA. Green tea catechins inhibit the cultured smooth muscle cell invasion through the basement barrier.Atherosclerosis20031661233010.1016/S0021‑9150(02)00302‑712482547
    [Google Scholar]
  73. YangT.T.C. KooM.W.L. Hypocholesterolemic effects of Chinese tea.Pharmacol. Res.199735650551210.1006/phrs.1997.01769356199
    [Google Scholar]
  74. YangT.T.C. KooM.W.L. Chinese green tea lowers cholesterol level through an increase in fecal lipid excretion.Life Sci.199966541142310.1016/S0024‑3205(99)00607‑410670829
    [Google Scholar]
  75. LöestH.B. NohS.K. KooS.I. Green tea extract inhibits the lymphatic absorption of cholesterol and α-tocopherol in ovariectomized rats.J. Nutr.200213261282128810.1093/jn/132.6.128212042447
    [Google Scholar]
  76. ChanP.T. FongW.P. CheungY.L. HuangY. HoW.K.K. ChenZ.Y. Jasmine green tea epicatechins are hypolipidemic in hamsters (Mesocricetus auratus) fed a high fat diet.J. Nutr.199912961094110110.1093/jn/129.6.109410356071
    [Google Scholar]
  77. HasegawaN. YamdaN. MoriM. Powdered green tea has antilipogenic effect on Zucker rats fed a high‐fat diet.Phytother. Res.200317547748010.1002/ptr.117712748982
    [Google Scholar]
  78. OuyangP. PengW. LaiW. XuA. J. First Mil. Med. Univ.200424975979[Green tea polyphenols inhibit low-density lipoprotein-induced proliferation of rat vascular smooth muscle cells.
    [Google Scholar]
  79. HofmannC.S. SonensheinG.E. Green tea polyphenol epigallocatechin‐3 gallate induces apoptosis of proliferating vascular smooth muscle cells via activation of p53.FASEB J.200317670270410.1096/fj.02‑0665fje12586742
    [Google Scholar]
  80. MiuraY. ChibaT. MiuraS. TomitaI. KoizumiH. UmegakiK. HaraY. IkedaM. TomitaT. Tea catechins prevent the development of atherosclerosis in apoprotein E-deficient mice.J. Nutr.20011311273210.1093/jn/131.1.2711208934
    [Google Scholar]
  81. ErcisliS. OrhanE. OzdemirO. SengulM. GungorN. Seasonal variation of total phenolic, antioxidant activity, plant nutritional nlms, and fatty acids in tea leaves (Camellia sinensis var. sinensis clone Derepazari 7) grown in Turkey.Pharm. Biol.20084610-1168368710.1080/13880200802215818
    [Google Scholar]
  82. ZhuangZ. MiZ. KongL. WangQ. SchweigerA.H. WanY. LiH. Accumulation of potentially toxic nlms in Chinese tea (Camellia sinensis): Towards source apportionment and health risk assessment.Sci. Total Environ.2022851Pt 115801810.1016/j.scitotenv.2022.15801835987241
    [Google Scholar]
  83. TsaiY-J. ChenB-H. Preparation of catechin extracts and nanoemulsions from green tea leaf waste and their inhibition effect on prostate cancer cell PC-3.Int. J. Nanomedicine20161119071926[PMID: 27226712
    [Google Scholar]
  84. FakaeL.B. StevensonC.W. ZhuX.Q. ElsheikhaH.M. In vitro activity of Camellia sinensis (green tea) against trophozoites and cysts of Acanthamoeba castellanii.Int. J. Parasitol. Drugs Drug Resist.202013597210.1016/j.ijpddr.2020.05.00132512260
    [Google Scholar]
  85. LiuM. XieF. CaoR. QiX. ChenX. Effect of different cover cultivations in later summer on aroma constituents of Autumn Tea (Camellia sinensis L.).J. Agric. Chem. Environ.2014341610.4236/jacen.2014.34B001
    [Google Scholar]
  86. ChenY.L. DuanJ. JiangY.M. ShiJ. PengL. XueS. KakudaY. Production, quality, and biological effects of Oolong Tea (Camellia sinensis).Food Rev. Int.201027111510.1080/87559129.2010.518294
    [Google Scholar]
  87. BornhoeftJ. CastanedaD. NemoseckT. WangP. HenningS.M. HongM.Y. The protective effects of green tea polyphenols: lipid profile, inflammation, and antioxidant capacity in rats fed an atherogenic diet and dextran sodium sulfate.J. Med. Food201215872673210.1089/jmf.2011.025822846079
    [Google Scholar]
  88. SuzukiT. The participation of S ‐adenosylmethionine in the biosynthesis of caffeine in the tea plant.FEBS Lett.1972241182010.1016/0014‑5793(72)80815‑9
    [Google Scholar]
  89. KoshiishiC. KatoA. YamaS. CrozierA. AshiharaH. A new caffeine biosynthetic pathway in tea leaves: Utilisation of adenosine released from the S ‐adenosyl‐ L ‐methionine cycle.FEBS Lett.20014991-2505410.1016/S0014‑5793(01)02512‑111418110
    [Google Scholar]
  90. MuhlemannJ.K. KlempienA. DudarevaN. Floral volatiles: From biosynthesis to function.Plant Cell Environ.20143781936194910.1111/pce.1231424588567
    [Google Scholar]
  91. DudarevaN. AnderssonS. OrlovaI. GattoN. ReicheltM. RhodesD. BolandW. GershenzonJ. The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers.Proc. Natl. Acad. Sci. USA2005102393393810.1073/pnas.040736010215630092
    [Google Scholar]
  92. KarunanithiP.S. ZerbeP. Terpene Synthases as Metabolic Gatekeepers in the Evolution of Plant Terpenoid Chemical Diversity.Front. Plant Sci.201910116610.3389/fpls.2019.0116631632418
    [Google Scholar]
/content/journals/npj/10.2174/0122103155341103241025054033
Loading
/content/journals/npj/10.2174/0122103155341103241025054033
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antioxidants; atherosclerosis; beverage; cardiomyopathy; cardiovascular system; Tea
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test