Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

This study investigates the most recent advancements in the field of biomedical soft robotics, with a primary emphasis on the integration of nanomaterials and nanotechnology. It underscores the biocompatibility, flexibility, and performance of soft robots by emphasizing critical advancements in nanomaterials, robotics, and biomedical applications. Nanomaterials can improve the biocompatibility and mechanical qualities of soft robots used in tissue engineering and regenerative medicine. Nanotechnology enables the development of flexible and elastic electronics, which may be integrated into soft robotics. This study also analyzes recent patents, offering a viewpoint on emerging technologies and their potential impact on medical diagnostics, therapeutic delivery systems, and minimally invasive procedures. The scientific developments and patents with the functioning and operating mechanisms of soft robots, as well as the problems of constructing biomedical soft robots with nanomaterials and nanotechnology, are examined in this critical study. Moreover, it also examines current advancements, patents, technological challenges, and future trends in nanomaterials and nanotechnology used in biomedical soft robotics.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105361551250120075141
2025-04-15
2025-12-18
Loading full text...

Full text loading...

References

  1. CalistiM. PicardiG. LaschiC. Fundamentals of soft robot locomotion.J. R. Soc. Interface2017141302017010110.1098/rsif.2017.0101 28539483
    [Google Scholar]
  2. FangB. SunF. WuL. Multimode grasping soft gripper achieved by layer jamming structure and tendon-driven mechanism.Soft Robot.20229223324910.1089/soro.2020.0065 34107748
    [Google Scholar]
  3. XuY. ZhangF. ZhaiW. ChengS. LiJ. WangY. Unraveling of advances in 3D-printed polymer-based bone scaffolds.Polymers202214356610.3390/polym14030566 35160556
    [Google Scholar]
  4. LiC. YangX. WangY. LiuJ. ZhangX. Core–shell nanostructured assemblies enable ultrarobust, notch-resistant and self-healing materials.Adv. Funct. Mater.20243452241065910.1002/adfm.202410659
    [Google Scholar]
  5. KangJ. TokJ.B.H. BaoZ. Self-healing soft electronics.Nat. Electron.20192414415010.1038/s41928‑019‑0235‑0
    [Google Scholar]
  6. YangY. JiaoP. Nanomaterials and nanotechnology for biomedical soft robots.Mater. Today Adv.20231710033810.1016/j.mtadv.2022.100338
    [Google Scholar]
  7. UesugiK. ShimizuK. AkiyamaY. HoshinoT. IwabuchiK. MorishimaK. Contractile performance and controllability of insect muscle-powered bioactuator with different stimulation strategies for soft robotics.Soft Robot.201631132210.1089/soro.2015.0014
    [Google Scholar]
  8. WangY. HuangX. ZhangX. Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure.Nat. Commun.2021121129110.1038/s41467‑021‑21577‑7 33637743
    [Google Scholar]
  9. AshuriT. ArmaniA. Jalilzadeh HamidiR. ReasnorT. AhmadiS. IqbalK. Biomedical soft robots: Current status and perspective.Biomed. Eng. Lett.202010336938510.1007/s13534‑020‑00157‑6 32864173
    [Google Scholar]
  10. WangY. ZhaiW. LiJ. LiuH. LiC. LiJ. Friction behavior of biodegradable electrospun polyester nanofibrous membranes.Tribol. Int.202318810889110.1016/j.triboint.2023.108891
    [Google Scholar]
  11. DengK. YangL. LuY. MaS. Multitype chatter detection via multichannelinternal and external signals in robotic milling.Measurement202422911441710.1016/j.measurement.2024.114417
    [Google Scholar]
  12. WangH. ZhangR. ChenW. WangX. PfeiferR. A cable-driven soft robot surgical system for cardiothoracic endoscopic surgery: Preclinical tests in animals.Surg. Endosc.20173183152315810.1007/s00464‑016‑5340‑9 27858208
    [Google Scholar]
  13. McCandlessM. PerryA. DiFilippoN. CarrollA. BillatosE. RussoS. A soft robot for peripheral lung cancer diagnosis and therapy.Soft Robot.20229475476610.1089/soro.2020.0127 34357810
    [Google Scholar]
  14. Paez-GranadosD. YamamotoT. KadoneH. SuzukiK. Passive flow control for series inflatable actuators: Application on a wearable soft-robot for posture assistance.IEEE Robot. Autom. Lett.2021634891489810.1109/LRA.2021.3070297
    [Google Scholar]
  15. HuF. QiuL. ZhouH. Medical device product innovation choices in Asia: An empirical analysis based on product space.Front. Public Health20221087157510.3389/fpubh.2022.871575 35493362
    [Google Scholar]
  16. RussoS. RanzaniT. LiuH. Nefti-MezianiS. AlthoeferK. MenciassiA. Soft and stretchable sensor using biocompatible electrodes and liquid for medical applications.Soft Robot.20152414615410.1089/soro.2015.0011 27625915
    [Google Scholar]
  17. WalkerI.D. Continuous backbone “Continuum” robot manipulators.ISRN Robotics2013201311910.5402/2013/726506
    [Google Scholar]
  18. LeeC. KimM. KimY.J. Soft robot review.Int. J. Control. Autom. Syst.201715131510.1007/s12555‑016‑0462‑3
    [Google Scholar]
  19. KutesY. AguirreB.A. BosseJ.L. Cruz-CampaJ.L. ZubiaD. HueyB.D. Mapping photovoltaic performance with nanoscale resolution.Prog. Photovolt. Res. Appl.201624331532510.1002/pip.2698
    [Google Scholar]
  20. SolerM.A.G. PaternoL.G. Magnetic Nanomaterials.In: Nanostructures.Elsevier2017147186
    [Google Scholar]
  21. WuZ. ChengH.W. JinC. Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption.Adv. Mater.20223411210753810.1002/adma.202107538 34755916
    [Google Scholar]
  22. AriyantoM RefatCMM HiraoK MorishimaK Movement optimization for a cyborg cockroach in a bounded space incorporating machine learning.Cyborg Bionic Syst20234001210.34133/cbsystems.0012 36939454
    [Google Scholar]
  23. VyatskikhA. DelalandeS. KudoA. ZhangX. PortelaC.M. GreerJ.R. Additive manufacturing of 3D nano-architected metals.Nat. Commun.20189159310.1038/s41467‑018‑03071‑9 29426947
    [Google Scholar]
  24. WangK. BoonpratatongA. ChenW. The fundamental property of human leg during walking: Linearity and nonlinearity.IEEE Trans. Neural Syst. Rehabil. Eng.2023314871488110.1109/TNSRE.2023.3339801 38051625
    [Google Scholar]
  25. LiuY. KumarS. Polymer/carbon nanotube nano composite fibers--a review.ACS Appl. Mater. Interfaces2014696069608710.1021/am405136s 24520802
    [Google Scholar]
  26. YinY. GuoC. MuQ. LiW. YangH. HeY. Dual-sensing nano-yarns for real-time pH and temperature monitoring in smart textiles.Chem. Eng. J.202450015711510.1016/j.cej.2024.157115
    [Google Scholar]
  27. ZhouH CaoS ZhangS LiF MaN Design of a fuel explosion-based chameleon-like soft robot aided by the comprehensive dynamic model.Cyborg Bionic Syst202340010
    [Google Scholar]
  28. WangW. LiuY. LengJ. Recent developments in shape memory polymer nanocomposites: Actuation methods and mechanisms.Coord. Chem. Rev.2016320-321385210.1016/j.ccr.2016.03.007
    [Google Scholar]
  29. DangZ.M. ZhengM.S. ZhaJ.W. 1D/2D carbon nanomaterial‐polymer dielectric composites with high permittivity for power energy storage applications.Small201612131688170110.1002/smll.201503193 26865507
    [Google Scholar]
  30. PahlevaninezhadH. KhorasaninejadM. HuangY.W. Nano-optic endoscope for high-resolution optical coherence tomography in vivo.Nat. Photonics201812954054710.1038/s41566‑018‑0224‑2 30713581
    [Google Scholar]
  31. ZhuJ. PanS. ChaiH. Microfluidic impedance cytometry enabled one‐step sample preparation for efficient single‐cell mass spectrometry.Small20242026231070010.1002/smll.202310700 38483007
    [Google Scholar]
  32. AlvesS BabcinschiM SilvaA NetoD FonsecaD NetoP Integrated design fabrication and control of a bioinspired multimaterial soft robotic hand.Cyborg Bionic Syst20234005110.34133/cbsystems.005137559941
    [Google Scholar]
  33. ZhouC. ZhangX. TangN. FangY. ZhangH. DuanX. Rapid response flexible humidity sensor for respiration monitoring using nano-confined strategy.Nanotechnology2020311212530210.1088/1361‑6528/ab5cda 31778983
    [Google Scholar]
  34. LiangX ZhaoY LiuD Magnetic microrobots fabricated by photopolymerization and assembly.Cyborg Bionic Syst20234006010.34133/cbsystems.0060 38026540
    [Google Scholar]
  35. GuX RenH. A survey of transoral robotic mechanisms: Distal dexterity, variable stiffness, and triangulation.Cyborg Bionic Syst20234000710.34133/cbsystems.0007 37058618
    [Google Scholar]
  36. DemidovV.E. UrazhdinS. UlrichsH. Magnetic nano-oscillator driven by pure spin current.Nat. Mater.201211121028103110.1038/nmat3459 23064497
    [Google Scholar]
  37. HaoX. JiangB. WuJ. Nanomaterials for bone metastasis.J. Control. Release202437364065110.1016/j.jconrel.2024.07.067 39084467
    [Google Scholar]
  38. LiH. ZhouY. LiaoL. Pharmacokinetics effects of chuanxiong rhizoma on warfarin in pseudo germ-free rats.Front. Pharmacol.202313102256710.3389/fphar.2022.1022567 36686675
    [Google Scholar]
  39. YangW. WangX. GeZ. YuH. Magnetically controlled millipede inspired soft robot for releasing drugs on target area in stomach.IEEE Robot. Autom. Lett.2024943846385310.1109/LRA.2024.3372467
    [Google Scholar]
  40. LouY. SongF. ChengM. Effects of the CYP3A inhibitors, voriconazole, itraconazole, and fluconazole on the pharmacokinetics of osimertinib in rats.PeerJ202311e1584410.7717/peerj.15844 37581117
    [Google Scholar]
  41. YangY. HeZ. LinG. WangH. JiaoP. Large deformation mechanics of the thrust performances generated by combustion-enabled soft actuators.Int. J. Mech. Sci.202222910751310.1016/j.ijmecsci.2022.107513
    [Google Scholar]
  42. ProbstT.M. LindgrenR.J. DoroshR.J. AllenJ.C. PascualL.S. LuoM. Effects of prior robot experience, speed, and proximity on psychosocial reactions to a soft growing robot.IISE Trans. Occup. Ergon. Hum. Factors2024121-2849610.1080/24725838.2023.2284193 37970839
    [Google Scholar]
  43. ZaidiS. MaselliM. LaschiC. CianchettiM. Actuation technologies for soft robot grippers and manipulators: A review.Curr. Robot. Rep.20212335536910.1007/s43154‑021‑00054‑5
    [Google Scholar]
  44. ÖzdemirO. KopacT. Recent progress on the applications of nanomaterials and nano-characterization techniques in endodontics: A review.Materials (Basel)20221515510910.3390/ma15155109 35897542
    [Google Scholar]
  45. NieM. ZhaoQ. DuX. Recent advances in small-scale hydrogel-based robots for adaptive biomedical applications.Nano Res.202417264966210.1007/s12274‑023‑6184‑y
    [Google Scholar]
  46. Medical News TodayAvailable from: https://www.medicalnewstoday.com/articles/organs-in-the-body
  47. WuZ. LiL. YangY. A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo.Sci. Robot.2019432eaax061310.1126/scirobotics.aax0613 32632399
    [Google Scholar]
  48. NieM. HuangC. DuX. Recent advances in colour-tunable soft actuators.Nanoscale20211352780279110.1039/D0NR07907C 33514972
    [Google Scholar]
  49. JungK. KooJ.C. NamJ. LeeY.K. ChoiH.R. Artificial annelid robot driven by soft actuators.Bioinspir. Biomim.200722S42S4910.1088/1748‑3182/2/2/S05 17671328
    [Google Scholar]
  50. ShianS. BertoldiK. ClarkeD.R. Dielectric elastomer based “Grippers” for soft robotics.Adv. Mater.201527436814681910.1002/adma.201503078 26418227
    [Google Scholar]
  51. MazzolaiB. MargheriL. CianchettiM. DarioP. LaschiC. Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions.Bioinspir. Biomim.20127202500510.1088/1748‑3182/7/2/025005 22617166
    [Google Scholar]
  52. SatheeshbabuS. UppalapatiN.K. ChowdharyG. KrishnanG. Open loop position control of soft continuum arm using deep reinforcement learning.2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada 5133-910.31224/osf.io/n7h9y
    [Google Scholar]
  53. SadeghiA. MondiniA. MazzolaiB. Toward self-growing soft robots inspired by plant roots and based on additive manufacturing technologies.Soft Robot.20174321122310.1089/soro.2016.0080 29062628
    [Google Scholar]
  54. MantiM. CacuccioloV. CianchettiM. Stiffening in soft robotics: A review of the state of the art.IEEE Robot. Autom. Mag.20162339310610.1109/MRA.2016.2582718
    [Google Scholar]
  55. TerrynS. BrancartJ. LefeberD. Van AsscheG. VanderborghtB. Self-healing soft pneumatic robots.Sci. Robot.201729eaan426810.1126/scirobotics.aan4268 33157852
    [Google Scholar]
  56. KannoR. CarusoF. TakaiK. PiskarevY. CacuccioloV. ShintakeJ. Biodegradable electrohydraulic soft actuators.Adv. Intell. Syst.202359220023910.1002/aisy.202200239
    [Google Scholar]
  57. CianchettiM. LaschiC. MenciassiA. DarioP. Biomedical applications of soft robotics.Nat. Rev. Mater.20183614315310.1038/s41578‑018‑0022‑y
    [Google Scholar]
  58. HartmannF. BaumgartnerM. KaltenbrunnerM. Becoming sustainable, the new frontier in soft robotics.Adv. Mater.20213319200441310.1002/adma.202004413 33336520
    [Google Scholar]
  59. BaumgartnerM. HartmannF. DrackM. Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics.Nat. Mater.202019101102110910.1038/s41563‑020‑0699‑3 32541932
    [Google Scholar]
  60. XuF. WangH. ChenW. MiaoY. Visual servoing of a cable-driven soft robot manipulator with shape feature.IEEE Robot. Autom. Lett.2021634281428810.1109/LRA.2021.3067285
    [Google Scholar]
  61. RogóżM. ZengH. XuanC. WiersmaD.S. WasylczykP. Light‐driven soft robot mimics caterpillar locomotion in natural scale.Adv. Opt. Mater.20164111689169410.1002/adom.201600503
    [Google Scholar]
  62. BellD.J. LeuteneggerS. HammarK.M. DongL.X. NelsonB.J. Flagella-like propulsion for microrobots using a nanocoil and a rotating electromagnetic field.Proceedings 2007 IEEE International Conference on Robotics and Automation, Rome, Italy 1128-3310.1109/ROBOT.2007.363136
    [Google Scholar]
  63. YesinK.B. VollmersK. NelsonB.J. Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields.Int. J. Robot. Res.2006255-652753610.1177/0278364906065389
    [Google Scholar]
  64. DoT.N. HoK.Y. PheeS.J. A magnetic soft endoscopic capsule-inflated intragastric balloon for weight management.Sci. Rep.2016613948610.1038/srep39486 28000756
    [Google Scholar]
  65. MaparaS.S. PatravaleV.B. Medical capsule robots: A renaissance for diagnostics, drug delivery and surgical treatment.J. Control. Release201726133735110.1016/j.jconrel.2017.07.005 28694029
    [Google Scholar]
  66. AbbottJ.J. PeyerK.E. LagomarsinoM.C. How should microrobots swim?Int. J. Robot. Res.20092811-121434144710.1177/0278364909341658
    [Google Scholar]
  67. BehkamB. SittiM. Design methodology for biomimetic propulsion of miniature swimming robots.J. Dyn. Syst. Meas. Control20061281364310.1115/1.2171439
    [Google Scholar]
  68. WangJ. ZhaoG. FengL. ChenS. Metallic nanomaterials with biomedical applications.Metals (Basel)20221212213310.3390/met12122133
    [Google Scholar]
  69. ChoI.H. KimD.H. ParkS. Electrochemical biosensors: Perspective on functional nanomaterials for on-site analysis.Biomater. Res.2020241610.1186/s40824‑019‑0181‑y 32042441
    [Google Scholar]
  70. Sánchez-TiradoE. González-CortésA. Yáñez-SedeñoP. PingarrónJ.M. Carbon nanotubes functionalized by click chemistry as scaffolds for the preparation of electrochemical immunosensors. Application to the determination of TGF-beta 1 cytokine.Analyst (Lond.)2016141205730573710.1039/C6AN00941G 27384038
    [Google Scholar]
  71. FrechetteM.F. TrudeauM.L. AlamdariH.D. BoilyS. Introductory remarks on nanodielectrics.IEEE Trans. Dielectr. Electr. Insul.200411580881810.1109/TDEI.2004.1349786
    [Google Scholar]
  72. CostaC.M. CardosoV.F. MartinsP. Smart and multifunctional materials based on electroactive poly(vinylidene fluoride): Recent advances and opportunities in sensors, actuators, energy, environmental, and biomedical applications.Chem. Rev.202312319113921148710.1021/acs.chemrev.3c00196 37729110
    [Google Scholar]
  73. GorissenB. De VolderM. ReynaertsD. Chip-on-tip endoscope incorporating a soft robotic pneumatic bending microactuator.Biomed. Microdevices20182037310.1007/s10544‑018‑0317‑1 30105633
    [Google Scholar]
  74. ChungH.J. ParsonsA.M. ZhengL. Magnetically controlled soft robotics utilizing elastomers and gels in actuation: A review.Adv. Intell. Syst.202133200018610.1002/aisy.202000186
    [Google Scholar]
  75. ZhaoY. ChiY. HongY. LiY. YangS. YinJ. Twisting for soft intelligent autonomous robot in unstructured environments.Proc. Natl. Acad. Sci. USA202211922e220026511910.1073/pnas.2200265119 35605115
    [Google Scholar]
  76. ShiY. AskounisE. PlamthottamR. LibbyT. PengZ. YoussefK. A processable, high-performance dielectric elastomer and multilayering process.Science2022377660222823210.1126/science.abn0099
    [Google Scholar]
  77. QianY. LuS. MengJ. ChenW. LiJ. Thermo‐responsive hydrogels coupled with photothermal agents for biomedical applications.Macromol. Biosci.20232312230021410.1002/mabi.202300214 37526220
    [Google Scholar]
  78. GuoY. ZhangY-F. BaoX-Y. HanT-Z. TangZ. ZhangL-X. Superconductivity modulated by quantum size effects.Science200430657031915191710.1126/science.1105130 15591197
    [Google Scholar]
  79. LanY. HuangC. Tunable melting temperature of Sn encased by Cu nanoparticles for high temperature energy storage.J. Energy Storage20225410520310.1016/j.est.2022.105203
    [Google Scholar]
  80. GifariM.W. NaghibiH. StramigioliS. AbayazidM. A review on recent advances in soft surgical robots for endoscopic applications.Int. J. Med. Robot.2019155e201010.1002/rcs.2010 31069938
    [Google Scholar]
  81. KotalM. KimJ. TabassianR. Highly bendable ionic soft actuator based on nitrogen‐enriched 3D hetero‐nanostructure electrode.Adv. Funct. Mater.20182834180246410.1002/adfm.201802464
    [Google Scholar]
  82. ZhangX. ChenG. FuX. WangY. ZhaoY. Magneto‐responsive microneedle robots for intestinal macromolecule delivery.Adv. Mater.20213344210493210.1002/adma.202104932 34532914
    [Google Scholar]
  83. LiY. ZhouS. SongH. YuT. ZhengX. ChuQ. CaCO3 nanoparticles incorporated with KAE to enable amplified calcium overload cancer therapy.Biomaterials202127712108010.1016/j.biomaterials.2021.121080 34488120
    [Google Scholar]
  84. GuoJ. ZhaoK. ZhouB. Wearable and skin‐mountable fiber‐optic strain sensors interrogated by a free‐running, dual‐comb fiber laser.Adv. Opt. Mater.2019712190008610.1002/adom.201900086
    [Google Scholar]
  85. AbidN. KhanA.M. ShujaitS. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review.Adv. Colloid Interface Sci.202230010259710.1016/j.cis.2021.102597 34979471
    [Google Scholar]
  86. SheeparamattiB.G. SheeparamattiR.B. KadadevaramathJ.S. Nanotechnology: Inspiration from nature.IETE Tech. Rev.20072458
    [Google Scholar]
  87. BhushanB. Handbook of Nanotechnology.Berlin, HeidelbergSpringer Berlin Heidelberg201010.1007/978‑3‑642‑02525‑9
    [Google Scholar]
  88. XuH. Medina-SánchezM. MaitzM.F. WernerC. SchmidtO.G. Sperm micromotors for cargo delivery through flowing blood.ACS Nano20201432982299310.1021/acsnano.9b07851 32096976
    [Google Scholar]
  89. DanielK. T-cell receptors offer window to the cell for a new class of cancer therapeutics. Drug Target Rev. Issue #42024https://www.drugtargetreview.com/article/113391/t-cell-receptors-offer-window-to-the-cell-for-a-new-class-of-cancer-therapeutics/
    [Google Scholar]
  90. YangX. ShangW. LuH. An agglutinate magnetic spray transforms inanimate objects into millirobots for biomedical applications.Sci. Robot.2020548eabc819110.1126/scirobotics.abc8191 33208522
    [Google Scholar]
  91. SutradharK.B. SumiC.D. Implantable microchip: The futuristic controlled drug delivery system.Drug Deliv.201623111110.3109/10717544.2014.903579 24758139
    [Google Scholar]
  92. HeidenA. PreningerD. LehnerL. 3D printing of resilient biogels for omnidirectional and exteroceptive soft actuators.Sci. Robot.2022763eabk211910.1126/scirobotics.abk2119 35108023
    [Google Scholar]
  93. XuW. JambhulkarS. ZhuY. 3D printing for polymer/particle-based processing: A review.Compos., Part B Eng.202122310910210.1016/j.compositesb.2021.109102
    [Google Scholar]
  94. XieH. SunM. FanX. Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion, and manipulation.Sci. Robot.2019428eaav800610.1126/scirobotics.aav8006 33137748
    [Google Scholar]
  95. QuJ. XuY. LiZ. Recent advances on underwater soft robots.Adv. Intell. Syst.202462230029910.1002/aisy.202300299
    [Google Scholar]
  96. GongZ. ChengJ. ChenX. A bio-inspired soft robotic arm: Kinematic modeling and hydrodynamic experiments.J. Bionics Eng.201815220421910.1007/s42235‑018‑0016‑x
    [Google Scholar]
  97. RosenJ. HannafordB. SatavaR.M. Surgical Robotics.Boston, MASpringer US201110.1007/978‑1‑4419‑1126‑1
    [Google Scholar]
  98. WangH. TotaroM. BeccaiL. Toward perceptive soft robots: Progress and challenges.Adv. Sci. (Weinh.)201859180054110.1002/advs.201800541 30250796
    [Google Scholar]
  99. KumarL. KukretiG. RanaR. Poly(lactic-co-glycolic) acid (PLGA) nanoparticles and transdermal drug delivery: An overview.Curr. Pharm. Des.202329372940295310.2174/0113816128275385231027054743 38173050
    [Google Scholar]
  100. GaglioS.C. De RosaC. PiccinelliF. RomeoA. PerducaM. Complexes of rare earth ions embedded in poly(lactic-co-glycolic acid) (PLGA) nanoparticles: Characterization and spectroscopic study.Opt. Mater.20199424925610.1016/j.optmat.2019.05.034
    [Google Scholar]
  101. SarkarT. KunduS. GhoraiG. SahooP.K. ReddyV.R. BhattacharjeeA. Structure, optical, magnetic, morphology and dielectric studies of pristine and green synthesized hematite nanoparticles.Appl. Phys., A Mater. Sci. Process.2024130212310.1007/s00339‑023‑07228‑2
    [Google Scholar]
  102. PermpatdechakulT. KhajornrungruangP. SuzukiK. KutomiS. Study on a novel Peeling of Nano-Particle (PNP) process for localized material removal on a 4H-SiC surface by controllable magnetic field.Int. J. Automot. Technol.202317441042110.20965/ijat.2023.p0410
    [Google Scholar]
  103. Mashuri, Heni DB. Development of magnetic materials based on micro-nano particles natural ferrite as microwaves absorber materials.J. Phys. Conf. Ser.20201491101200510.1088/1742‑6596/1491/1/012005
    [Google Scholar]
  104. YanL. YanB. PengL. Microstructure and magnetic properties of grain boundary insulated Fe/Mn0.5Zn0.5Fe2O4 soft magnetic composites.Materials (Basel)2022155185910.3390/ma15051859 35269090
    [Google Scholar]
  105. WangX. ZhongX. ChengL. Titanium-based nanomaterials for cancer theranostics.Coord. Chem. Rev.202143021366210.1016/j.ccr.2020.213662
    [Google Scholar]
  106. HanJ. MaQ. AnY. The current status of stimuli-responsive nanotechnologies on orthopedic titanium implant surfaces.J. Nanobiotechnology202321127710.1186/s12951‑023‑02017‑8 37596638
    [Google Scholar]
  107. KimY. ZhaoX. Magnetic soft materials and robots.Chem. Rev.202212255317536410.1021/acs.chemrev.1c00481 35104403
    [Google Scholar]
  108. ChenL. WengM. ZhouP. ZhangL. HuangZ. ZhangW. Multi-responsive actuators based on a graphene oxide composite: Intelligent robot and bioinspired applications.Nanoscale20179289825983310.1039/C7NR01913K 28585961
    [Google Scholar]
  109. GaoY.Y. HanB. ZhaoW.Y. MaZ.C. YuY.S. SunH.B. Light-responsive actuators based on graphene.Front Chem.2019750610.3389/fchem.2019.00506 31380350
    [Google Scholar]
  110. JinX. FengC. PonnammaD. Review on exploration of graphene in the design and engineering of smart sensors, actuators and soft robotics.Chem. Eng. J. Adv.2020410003410.1016/j.ceja.2020.100034
    [Google Scholar]
  111. YangY. LiuY. ShenY. Plasmonic‐assisted graphene oxide films with enhanced photothermal actuation for soft robots.Adv. Funct. Mater.20203014191017210.1002/adfm.201910172
    [Google Scholar]
  112. YangY. ShenY. Light‐driven carbon‐based soft materials: Principle, robotization, and application.Adv. Opt. Mater.2021912210003510.1002/adom.202100035
    [Google Scholar]
  113. YangM. YuanZ. LiuJ. Photoresponsive actuators built from carbon‐based soft materials.Adv. Opt. Mater.2019716190006910.1002/adom.201900069
    [Google Scholar]
  114. ZhouX. CaoW. Flexible and stretchable carbon-based sensors and actuators for soft robots.Nanomaterials (Basel)202313231610.3390/nano13020316 36678069
    [Google Scholar]
  115. HorneJ. McLoughlinL. BuryE. KohA.S. WujcikE.K. Interfacial phenomena of advanced composite materials toward wearable platforms for biological and environmental monitoring sensors, armor, and soft robotics.Adv. Mater. Interfaces202074190185110.1002/admi.201901851
    [Google Scholar]
  116. ZhangP. ZhangC. WangS. ChenZ. Motion characteristic and analysis of bionic jellyfish with fluid-driven soft actuator.15th IEEE Conference on Industrial Electronics and Applications (ICIEA)Kristiansand, Norway20201684910.1109/ICIEA48937.2020.9248354
    [Google Scholar]
  117. MehrotraS. DeyS. SachdevaK. MohantyS. MandalB.B. Recent advances in tailoring stimuli-responsive hybrid scaffolds for cardiac tissue engineering and allied applications.J. Mater. Chem. B20231143102971033110.1039/D3TB00450C 37905467
    [Google Scholar]
  118. FilippiM. BuchnerT. YasaO. WeirichS. KatzschmannR.K. Microfluidic tissue engineering and bio‐actuation.Adv. Mater.20223423210842710.1002/adma.202108427 35194852
    [Google Scholar]
  119. ZhangT. LiG. YangX. A fast soft continuum catheter robot manufacturing strategy based on heterogeneous modular magnetic units.Micromachines (Basel)202314591110.3390/mi14050911 37241535
    [Google Scholar]
  120. SolomonN. Nanorobotics system. W.O.Patent 2008063473A22008
  121. SolomonN. System and methods for collective nanorobotics for medical applications.U.S. Patent 200802412642008
/content/journals/nanotec/10.2174/0118722105361551250120075141
Loading
/content/journals/nanotec/10.2174/0118722105361551250120075141
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test