Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

One-dimensional (1D) vanadium-based nanostructures have advantageous properties and are showing emerging critical applications in the fields of catalysis, smart devices, and electrochemical energy storage. We herein timely gave an overview of the 1D vanadium pentoxide (VO)-based nanomaterials for these promising applications, especially regarding the merits of different synthetic methods, structures and properties combined with recent research frontiers and patents in advanced energy storage, including batteries, supercapacitors and the like. The high capacity, high rate and flexibility of 1D VO-based nanomaterials endow them with great potential in high-energy-density, high-power energy devices and specific/harsh environments. Finally, some major directions and suggestions are provided for further development of this emerging and promising field.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105349485241028104311
2025-01-01
2025-12-21
Loading full text...

Full text loading...

References

  1. HuH. WangS. FengX. PaulyM. DecherG. LongY. In-plane aligned assemblies of 1D-nanoobjects: Recent approaches and applications.Chem. Soc. Rev.202049250955310.1039/C9CS00382G 31845689
    [Google Scholar]
  2. WangR. ChenC. ZhengY. WangH. LiuJ.W. YuS.H. Structure–property relationship of assembled nanowire materials.Mater. Chem. Front.20204102881290310.1039/D0QM00365D
    [Google Scholar]
  3. HuP. HuP. VuT.D. Vanadium oxide: Phase diagrams, structures, synthesis, and applications.Chem. Rev.202312384353441510.1021/acs.chemrev.2c00546 36972332
    [Google Scholar]
  4. LiuP. ZhuK. GaoY. LuoH. LuL. Recent progress in the applications of vanadium‐based oxides on energy storage: From low‐dimensional nanomaterials synthesis to 3D micro/nano‐structures and free‐standing electrodes fabrication.Adv. Energy Mater.2017723170054710.1002/aenm.201700547
    [Google Scholar]
  5. LiuM. SuB. TangY. JiangX. YuA. Recent advances in nanostructured vanadium oxides and composites for energy conversion.Adv. Energy Mater.2017723170088510.1002/aenm.201700885
    [Google Scholar]
  6. YueY. LiangH. Micro‐ and Nano‐structured vanadium pentoxide (V2O5) for electrodes of lithium‐ion batteries.Adv. Energy Mater.2017717160254510.1002/aenm.201602545
    [Google Scholar]
  7. YaoJ. LiY. MasséR.C. UchakerE. CaoG. Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond.Energy Storage Mater.20181120525910.1016/j.ensm.2017.10.014
    [Google Scholar]
  8. ZhangY. LaiJ. GongY. A safe high-performance all-solid-state lithium–vanadium battery with a freestanding V2O5 nanowire composite paper cathode.ACS Appl. Mater. Interfaces2016850343093431610.1021/acsami.6b10358 27998115
    [Google Scholar]
  9. RuiX. ZhuJ. LiuW. Facile preparation of hydrated vanadium pentoxide nanobelts based bulky paper as flexible binder-free cathodes for high-performance lithium ion batteries.RSC Advances20111111712210.1039/c1ra00281c
    [Google Scholar]
  10. WangY. ZhangH.J. SiahK.W. WongC.C. LinJ. BorgnaA. One pot synthesis of self-assembled V2O5 nanobelt membrane via capsule-like hydrated precursor as improved cathode for Li-ion battery.J. Mater. Chem.20112128103361034110.1039/c1jm10783f
    [Google Scholar]
  11. ZhaiT. LiuH. LiH. Centimeter-long V2O5 nanowires: From synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties.Adv. Mater.201022232547255210.1002/adma.200903586 20449845
    [Google Scholar]
  12. XiongC. AlievA.E. GnadeB. BalkusK.J.Jr Fabrication of silver vanadium oxide and V2O5 nanowires for electrochromics.ACS Nano20082229330110.1021/nn700261c 19206630
    [Google Scholar]
  13. ChouS.L. WangJ.Z. SunJ.Z. High capacity, safety, and enhanced cyclability of lithium metal battery using a V2O5 Nanomaterial cathode and room temperature ionic liquid electrolyte.Chem. Mater.200820227044705110.1021/cm801468q
    [Google Scholar]
  14. DingN. LiuS. FengX. Hydrothermal growth and characterization of nanostructured vanadium-based oxides.Cryst. Growth Des.2009941723172810.1021/cg800645c
    [Google Scholar]
  15. LiuQ. LiZ.F. LiuY. Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries.Nat. Commun.201561612710.1038/ncomms7127 25600907
    [Google Scholar]
  16. BietteL. CarnF. MaugeyM. Macroscopic fibers of oriented vanadium oxide ribbons and their application as highly sensitive alcohol microsensors.Adv. Mater.200517242970297410.1002/adma.200501368
    [Google Scholar]
  17. RuiX. TangY. MalyiO.I. Ambient dissolution–recrystallization towards large-scale preparation of V2O5 nanobelts for high-energy battery applications.Nano Energy20162258359310.1016/j.nanoen.2016.03.001
    [Google Scholar]
  18. LausserC. CölfenH. AntoniettiM. Mesocrystals of vanadium pentoxide: A comparative evaluation of three different pathways of mesocrystal synthesis from tactosol precursors.ACS Nano20115110711410.1021/nn1017186 21204578
    [Google Scholar]
  19. WangP.P. YaoY.X. XuC.Y. WangL. HeW. ZhenL. Self-standing flexible cathode of V2O5 nanobelts with high cycling stability for lithium-ion batteries.Ceram. Int.20164213145951460010.1016/j.ceramint.2016.06.075
    [Google Scholar]
  20. BurghardZ. LeineweberA. van AkenP.A. DufauxT. BurghardM. BillJ. Hydrogen-bond reinforced vanadia nanofiber paper of high stiffness.Adv. Mater.201325172468247310.1002/adma.201300135 23468458
    [Google Scholar]
  21. ArmerC.F. YeohJ.S. LiX. LoweA. Electrospun vanadium-based oxides as electrode materials.J. Power Sources201839541442910.1016/j.jpowsour.2018.05.076
    [Google Scholar]
  22. NiW. Preparation method of high-purity vanadium pentoxide nanofiber non-woven fabric.CN Patent 113481656B2021
  23. NiW. Low-cost room-temperature rapid batch preparation method and equipment for special-shaped vanadium oxide nanofibers and aggregates thereof.CN Patent 114293321B2021
  24. NiW. Preparation method of porous nano vanadium oxide, porous nano vanadium oxide and application.CN Patent 116119713A2022
  25. NiW. Low-dimensional vanadium-based high-voltage cathode materials for promising rechargeable alkali-ion batteries.Materials202417358710.3390/ma17030587 38591436
    [Google Scholar]
  26. NiW. Green, sustainable and massive synthesis of sodium vanadate nanowires toward industrialization.Prog. Nat. Sci.202333691892310.1016/j.pnsc.2024.01.004
    [Google Scholar]
  27. NiW. Hydrated sodium polyvanadate, sodium vanadium oxide nanofiber and aggregate and preparation method.CN Patent 117187987A2023
  28. NiW. Method for preparing sodium polyvanadate nanowire balls in large scale.CN Patent 117208961A2023
  29. NiW. PengB. Study on the optimized preparation of high-purity V2O5 nanowire nonwoven.Iron Steel Vanadium Titanium202243687210.7513/j.issn.1004‑7638.2022.02.011
    [Google Scholar]
  30. KnöllerA. LampaC.P. CubeF. Strengthening of ceramic-based artificial nacre via synergistic interactions of 1D vanadium pentoxide and 2D graphene oxide building blocks.Sci. Rep.2017714099910.1038/srep40999 28102338
    [Google Scholar]
  31. WickleinB. DiemA.M. KnöllerA. Dual‐fiber approach toward flexible multifunctional hybrid materials.Adv. Funct. Mater.20182827170427410.1002/adfm.201704274
    [Google Scholar]
  32. KnöllerA. KilperS. DiemA.M. Ultrahigh damping capacities in lightweight structural materials.Nano Lett.20181842519252410.1021/acs.nanolett.8b00194 29558622
    [Google Scholar]
  33. KnöllerA. RunčevskiT. DinnebierR.E. BillJ. BurghardZ. Cuttlebone-like V2O5 nanofibre scaffolds – advances in structuring cellular solids.Sci. Rep.2017714295110.1038/srep42951 28218301
    [Google Scholar]
  34. DiemA.M. BillJ. BurghardZ. Creasing highly porous V2O5 scaffolds for high energy density aluminum-ion batteries.ACS Appl. Energy Mater.2020344033404210.1021/acsaem.0c00455
    [Google Scholar]
  35. SajithaS. AparnaU. DebB. Ultra‐thin manganese dioxide‐encrusted vanadium pentoxide nanowire mats for electrochromic energy storage applications.Adv. Mater. Interfaces2019621190103810.1002/admi.201901038
    [Google Scholar]
  36. MaiL. XuX. XuL. HanC. LuoY. Vanadium oxide nanowires for Li-ion batteries.J. Mater. Res.201126172175218510.1557/jmr.2011.171
    [Google Scholar]
  37. ZhouY. PanQ. ZhangJ. HanC. WangL. XuH. Insights into synergistic effect of acid on morphological control of vanadium oxide: Toward high lithium storage.Adv. Sci. (Weinh.)202182200257910.1002/advs.202002579 33511012
    [Google Scholar]
  38. QinX. WangX. SunJ. LuQ. OmarA. MikhailovaD. Polypyrrole wrapped V2O5 nanowires composite for advanced aqueous zinc-ion batteries.Front. Energy Res.2020819910.3389/fenrg.2020.00199
    [Google Scholar]
  39. ChenK. ZhangG. XiaoL. Polyaniline encapsulated amorphous V2O5 nanowire‐modified multi‐functional separators for lithium–sulfur batteries.Small Methods202153200105610.1002/smtd.202001056 34927835
    [Google Scholar]
  40. GuoY. ZhangY. ZhangY. Interwoven V2O5 nanowire/graphene nanoscroll hybrid assembled as efficient polysulfide-trapping-conversion interlayer for long-life lithium–sulfur batteries.J. Mater. Chem. A Mater. Energy Sustain.2018640193581937010.1039/C8TA06610H
    [Google Scholar]
  41. LiH. HeJ. CaoX. All solid-state V2O5-based flexible hybrid fiber supercapacitors.J. Power Sources2017371182510.1016/j.jpowsour.2017.10.031
    [Google Scholar]
  42. DongJ. JiangY. WeiQ. Strongly coupled pyridine‐V2O5 ·] n H2O nanowires with intercalation pseudocapacitance and stabilized layer for high energy sodium ion capacitors.Small20191522190037910.1002/smll.201900379 31018042
    [Google Scholar]
  43. LeroyC.M. AchardM.F. BabotO. Designing nanotextured vanadium oxide-based macroscopic fibers: Application as alcoholic sensors.Chem. Mater.200719163988399910.1021/cm0711966
    [Google Scholar]
  44. QiX. LuZ. YouE.M. Nanocombing effect leads to nanowire-based, in-plane, uniaxial thin films.ACS Nano20181212127011271210.1021/acsnano.8b07671 30543280
    [Google Scholar]
  45. GuG. SchmidM. ChiuP.W. V2O5 nanofibre sheet actuators.Nat. Mater.20032531631910.1038/nmat880 12704380
    [Google Scholar]
  46. MyungS. LeeM. KimG.T. HaJ.S. HongS. Large‐scale “surface‐programmed assembly” of pristine vanadium oxide nanowire‐based devices.Adv. Mater.200517192361236410.1002/adma.200500682
    [Google Scholar]
  47. MukherjeeA. ArdakaniH.A. YiT. CabanaJ. Shahbazian-YassarR. KlieR.F. Direct characterization of the Li intercalation mechanism into α- V2O5 nanowires using in-situ transmission electron microscopy.Appl. Phys. Lett.20171102121390310.1063/1.4984111
    [Google Scholar]
  48. De JesusL.R. HorrocksG.A. LiangY. Mapping polaronic states and lithiation gradients in individual V2O5 nanowires.Nat. Commun.2016711202210.1038/ncomms12022 27349567
    [Google Scholar]
  49. StrelcovE. CothrenJ. LeonardD. BorisevichA.Y. KolmakovA. In situ SEM study of lithium intercalation in individual V2O5 nanowires.Nanoscale2015773022302710.1039/C4NR06767C 25600354
    [Google Scholar]
  50. AliahmadN. LiuY. XieJ. AgarwalM. V2O5/graphene hybrid supported on paper current collectors for flexible ultrahigh-capacity electrodes for lithium-ion batteries.ACS Appl. Mater. Interfaces20181019164901649910.1021/acsami.8b02721 29688002
    [Google Scholar]
  51. YaseenM.W. MamanM.P. MishraS. MohammadI. LiX. Strategies to alleviate distortive phase transformations in Li-ion intercalation reactions: An example with vanadium pentoxide.Nanoscale202416209710972710.1039/D3NR06138H 38682562
    [Google Scholar]
  52. LuoY. RezaeiS. SantosD.A. Cation reordering instead of phase transitions: Origins and implications of contrasting lithiation mechanisms in 1D ζ- and 2D α-V2O5.Proc. Natl. Acad. Sci.20221194e211507211910.1073/pnas.2115072119 35064084
    [Google Scholar]
  53. ZhuY.H. ZhangQ. YangX. Reconstructed orthorhombic V2O5 polyhedra for fast ion diffusion in K-ion batteries.Chem20195116817910.1016/j.chempr.2018.10.004
    [Google Scholar]
  54. HuangX. RuiX. HngH.H. YanQ. Vanadium pentoxide‐based cathode materials for lithium‐ion batteries: Morphology control, carbon hybridization, and cation doping.Part. Part. Syst. Charact.201532327629410.1002/ppsc.201400125
    [Google Scholar]
  55. ZhangY. WangY. XiongZ. V2O5 nanowire composite paper as a high-performance lithium-ion battery cathode.ACS Omega20172379379910.1021/acsomega.7b00037 31457471
    [Google Scholar]
  56. SengK.H. LiuJ. GuoZ.P. ChenZ.X. JiaD. LiuH.K. Free-standing V2O5 electrode for flexible lithium ion batteries.Electrochem. Commun.201113538338610.1016/j.elecom.2010.12.002
    [Google Scholar]
  57. WangL. ShuT. GuoS. Fabricating strongly coupled V2O5@PEDOT nanobelts/graphene hybrid films with high areal capacitance and facile transferability for transparent solid-state supercapacitors.Energy Storage Mater.20202715015810.1016/j.ensm.2020.01.026
    [Google Scholar]
  58. GittlesonF.S. HwangD. RyuW.H. Ultrathin nanotube/nanowire electrodes by spin–spray layer-by-layer assembly: A concept for transparent energy storage.ACS Nano2015910100051001710.1021/acsnano.5b03578 26344174
    [Google Scholar]
  59. GuS. WangH. WuC. BaiY. LiH. WuF. Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery.Energy Storage Mater.2017691710.1016/j.ensm.2016.09.001
    [Google Scholar]
  60. TepavcevicS. LiuY. ZhouD. Nanostructured layered cathode for rechargeable Mg-ion batteries.ACS Nano2015988194820510.1021/acsnano.5b02450 26169073
    [Google Scholar]
  61. MorettiA. PasseriniS. Bilayered nanostructured V2O5 · n H2O for metal batteries.Adv. Energy Mater.2016623160086810.1002/aenm.201600868
    [Google Scholar]
  62. AlcántaraR. LavelaP. EdströmK. Metal-ion intercalation mechanisms in vanadium pentoxide and its new perspectives.Nanomaterials20231324314910.3390/nano13243149 38133046
    [Google Scholar]
  63. DiemA.M. FenkB. BillJ. BurghardZ. Binder-free V2O5 cathode for high energy density rechargeable aluminum-ion batteries.Nanomaterials (Basel)202010224710.3390/nano10020247 32019197
    [Google Scholar]
  64. XiaZ. LiS. WuG. Manipulating hierarchical orientation of wet‐spun hybrid fibers via rheological engineering for Zn‐ion fiber batteries.Adv. Mater.20223433220390510.1002/adma.202203905 35765207
    [Google Scholar]
  65. WangS. LiL. ShaoY. Transition‐metal oxynitride: A facile strategy for improving electrochemical capacitor storage.Adv. Mater.20193110180608810.1002/adma.201806088 30637832
    [Google Scholar]
  66. ChenZ. AugustynV. WenJ. High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites.Adv. Mater.201123679179510.1002/adma.201003658 21287644
    [Google Scholar]
  67. ChenZ. AugustynV. JiaX. XiaoQ. DunnB. LuY. High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites.ACS Nano2012654319432710.1021/nn300920e 22471878
    [Google Scholar]
  68. ChaoD. XiaX. LiuJ. A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: A high-rate, ultrastable, and freestanding cathode for lithium-ion batteries.Adv. Mater.201426335794580010.1002/adma.201400719 24888872
    [Google Scholar]
  69. ZhouH. ZhuG. DongS. Ethanol‐induced Ni2+ ‐intercalated cobalt organic frameworks on vanadium pentoxide for synergistically enhancing the performance of 3D‐printed micro‐supercapacitors.Adv. Mater.20233519221152310.1002/adma.202211523 36807415
    [Google Scholar]
  70. NiW. ShiL.Y. Microbatteries for advanced applications.Handbook of Energy Materials. GuptaR. Springer Singapore202212510.1007/978‑981‑16‑4480‑1_12‑1
    [Google Scholar]
  71. YanM. WangF. HanC. Nanowire templated semihollow bicontinuous graphene scrolls: Designed construction, mechanism, and enhanced energy storage performance.J. Am. Chem. Soc.201313548181761818210.1021/ja409027s 24219156
    [Google Scholar]
  72. XiaC. LinZ. ZhouY. Large intercalation pseudocapacitance in 2D VO2 (B): Breaking through the kinetic barrier.Adv. Mater.20183040180359410.1002/adma.201803594 30160318
    [Google Scholar]
  73. LiC. LiuH. WuJ. Cathode materials for thermal batteries: Properties, recent advances, and approaches to modification.J. Power Sources202462023525810.1016/j.jpowsour.2024.235258
    [Google Scholar]
  74. XuC. JinC. WangX. Structured confinement effects of hierarchical V2O5 cathodes to suppress flow of molten salt in high specific energy thermal batteries with binder-free MgO.Electrochim. Acta202240113949610.1016/j.electacta.2021.139496
    [Google Scholar]
  75. DengY. LiH. LiangJ. Excellent electrochromic properties of Ti4+-induced nanowires V2O5 films.Materials (Basel)202417194680https://www.mdpi.com/1996-1944/17/19/468010.3390/ma17194680
    [Google Scholar]
  76. MukherjeeA. SaN. PhillipsP.J. BurrellA. VaugheyJ. KlieR.F. Direct investigation of Mg intercalation into the orthorhombic V2O5 cathode using atomic-resolution transmission electron microscopy.Chem. Mater.20172952218222610.1021/acs.chemmater.6b05089
    [Google Scholar]
  77. JayaprakashN. DasS.K. ArcherL.A. The rechargeable aluminum-ion battery.Chem. Commun.20114747126101261210.1039/C1CC15779E
    [Google Scholar]
  78. ChikuM. TakedaH. MatsumuraS. HiguchiE. InoueH. Amorphous vanadium oxide/carbon composite positive electrode for rechargeable aluminum battery.ACS Appl. Mater. Interfaces2015744243852438910.1021/acsami.5b06420
    [Google Scholar]
  79. WangH. GuS. BaiY. Anion-effects on electrochemical properties of ionic liquid electrolytes for rechargeable aluminum batteries.J. Mater. Chem. A2015345226772268610.1039/C5TA06187C
    [Google Scholar]
  80. WangH. BiX. BaiY. Open-structured V2O5 ·nH2O nanoflakes as highly reversible cathode material for monovalent and multivalent intercalation batteries.Adv. Energy Mater.2017714160272010.1002/aenm.201602720
    [Google Scholar]
  81. WangH. BaiY. ChenS. Binder-free V2O5 cathode for greener rechargeable aluminum battery.ACS Appl. Mater. Interfaces201571808410.1021/am508001h
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105349485241028104311
Loading
/content/journals/nanotec/10.2174/0118722105349485241028104311
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test