Skip to content
2000
Volume 19, Issue 4
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Background

Recently, progress has been made toward understanding the efficiency of polymer composites with natural fibres. With the hope of enhancing the characteristics of polymer composites supplemented with natural fibres in a watery environment, TiO nanoparticles have been used to improve their performance in the field.

Methods

These nanoparticles were filled in luffa-epoxy components at 1, 3, and 5% volume fractions. A combination of çx-ray diffraction and Fourier transform infrared spectroscopy was utilized to conduct the structural examinations. The nanoparticle spread was captured by field emission scanning electron microscopy.

Results

Results show that dry nanocomposite's tensile strength and modulus have increased by 74% and, 13%, 137%, and 50% compared with epoxy and 40 vol% luffa-epoxy (E/L) composites, respectively. In wet nanocomposites, maximum reduction in tensile strength and modulus were observed as 27.4% and 16.54%, respectively. The diminished water absorption and thickness swelling percentage of nanocomposites were recorded as 98% and 91.8%, respectively. The onset temperature of these nanocomposites was scattered in the range of 379-393°C, with a maximum char residue of 38%.

Conclusion

The increase in the percentage of residue indicates the effectiveness of epoxy's flame retardant, improved thermal stability, diminished water absorption (approximately 2%), and 95% retention of wet composites' tensile properties. These results provided data support for improving the application of nanocomposites in the automobile field and to develop possible patents on the new material development.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105295445240418064351
2024-04-29
2025-10-07
Loading full text...

Full text loading...

References

  1. LauK. HungP. ZhuM-H. HuiD. Properties of natural fibre composites for structural engineering applications.Compos., Part B Eng.201813622223310.1016/j.compositesb.2017.10.038
    [Google Scholar]
  2. SeshanandanG. RavindranD. SornakumarT. Mechanical properties of nano titanium oxide particles - hybrid jute-glass FRP composites.Mater. Today Proc.2016361383138810.1016/j.matpr.2016.04.019
    [Google Scholar]
  3. VäisänenT. DasO. TomppoL. A review on new bio-based constituents for natural fiber-polymer composites.J. Clean. Prod.201714958259610.1016/j.jclepro.2017.02.132
    [Google Scholar]
  4. FarukO. BledzkiA.K. FinkH.P. SainM. Biocomposites reinforced with natural fibers: 2000–2010.Prog. Polym. Sci.201237111552159610.1016/j.progpolymsci.2012.04.003
    [Google Scholar]
  5. PărpăriţăE. DarieR.N. PopescuC.M. Structure–morphology–mechanical properties relationship of some polypropylene/lignocellulosic composites.Mater. Des.2014567632
    [Google Scholar]
  6. PriyaI.I.M. PalanikumarK. SenthilkumarN. PrabhaP.S. SInvestigation of delamination and surface roughness in end milling of glass fibre reinforced polymer composites using fuzzy model and grey wolf optimizer.Int J Interact Des Manuf202418749769
    [Google Scholar]
  7. WainiI. KhanU. ZaibA. IshakA. PopI. Inspection of TiO2-CoFe2O4 nanoparticles on MHD flow toward a shrinking cylinder with radiative heat transfer.J. Mol. Liq.202236111961510.1016/j.molliq.2022.119615
    [Google Scholar]
  8. AbdulrahmanA. GamaounF. Varun KumarR.S. Study of thermal variation in a longitudinal exponential porous fin wetted with TiO2 − SiO2/hexanol hybrid nanofluid using hybrid residual power series method.Case Stud. Therm. Eng.20234310277710.1016/j.csite.2023.102777
    [Google Scholar]
  9. WainiI. KhanU. ZaibA. IshakA. PopI. Thermophoresis particle deposition of CoFe2O4 -TiO2 hybrid nanoparticles on micropolar flow through a moving flat plate with viscous dissipation effects.Int. J. Numer. Methods Heat Fluid Flow202232103259328210.1108/HFF‑12‑2021‑0767
    [Google Scholar]
  10. KhanU. ZaibA. IshakA. Dynamics of bio-convection agrawal axisymmetric flow of water-based Cu-TiO2 hybrid nanoparticles through a porous moving disk with zero mass flux.Chem. Phys.202256111159910.1016/j.chemphys.2022.111599
    [Google Scholar]
  11. YaseenM. RawatS.K. KhanU. Inspection of unsteady buoyancy and stagnation point flow incorporated by Ag-TiO2 hybrid nanoparticles towards a spinning disk with Hall effects.Case Stud. Therm. Eng.20234410288910.1016/j.csite.2023.102889
    [Google Scholar]
  12. GuimarãesJ.L. FrolliniE. da SilvaC.G. WypychF. SatyanarayanaK.G. Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil.Ind. Crops Prod.200930340741510.1016/j.indcrop.2009.07.013
    [Google Scholar]
  13. AnbukarasiK KalaiselvamS Study of effect of fibre volume and dimension on mechanical, thermal, and water absorption behaviour of luffa reinforced epoxy composites.Mater Des (1980-2015)2015663213010.1016/j.matdes.2014.10.078
    [Google Scholar]
  14. AnbukarasiK. HussainS.I. RoselineA.A. KalaiselvamS. Effect of SiO2 nanospheres on mechanical, thermal and water absorption behaviours of luffa-coir/epoxy hybrid composites.Mater. Res. Express201961212561810.1088/2053‑1591/ab5d6c
    [Google Scholar]
  15. WangH. XianG. LiH. Grafting of nano-TiO2 onto flax fibers and the enhancement of the mechanical properties of the flax fiber and flax fiber/epoxy composite.Compos., Part A Appl. Sci. Manuf.20157617218010.1016/j.compositesa.2015.05.027
    [Google Scholar]
  16. HakamyA. ShaikhF.U.A. LowI.M. Thermal and mechanical properties of NaOH treated hemp fabric and calcined nanoclay-reinforced cement nanocomposites.Mater. Des.201580708110.1016/j.matdes.2015.05.003
    [Google Scholar]
  17. KumarA. KumarK. GhoshP.K. YadavK.L. MWCNT/TiO2 hybrid nano filler toward high-performance epoxy composite.Ultrason. Sonochem.201841374610.1016/j.ultsonch.2017.09.005 29137763
    [Google Scholar]
  18. PatelV.K. DhanolaA. Influence of CaCO3, Al2O3, and TiO2 microfillers on physico-mechanical properties of Luffa cylindrica/polyester composites. Eng Sci Technol.Int. J.2016192676683
    [Google Scholar]
  19. ZhouY. WhiteE. HosurM. JeelaniS. Effect of particle size and weight fraction on the flexural strength and failure mode of TiO2 particles reinforced epoxy.Mater. Lett.201064780680910.1016/j.matlet.2010.01.016
    [Google Scholar]
  20. LaiS.M. KaoY.H. LiuY.K. ChiuF.C. Preparation and properties of luffa fiber- and kenaf fiber-filled poly(butylene succinate-co-lactate)/starch blend-based biocomposites.Polym. Test.20165019119910.1016/j.polymertesting.2016.01.015
    [Google Scholar]
  21. AlamriH. LowI.M. Mechanical properties and water absorption behaviour of recycled cellulose fibre reinforced epoxy composites.Polym. Test.201231562062810.1016/j.polymertesting.2012.04.002
    [Google Scholar]
  22. AravindM. AmalanathanM. MaryM.S.M. Synthesis of TiO2 nanoparticles by chemical and green synthesis methods and their multifaceted properties.SN Appl Sci20213440910.1007/s42452‑021‑04281‑5
    [Google Scholar]
  23. YazidS.A. RosliZ.M. JuoiJ.M. Effect of titanium (IV) isopropoxide molarity on the crystallinity and photocatalytic activity of titanium dioxide thin film deposited via green sol–gel route.J. Mater. Res. Technol.2019811434143910.1016/j.jmrt.2018.10.009
    [Google Scholar]
  24. RamuS. SenthilkumarN. RajendranS. Macrostructure and fracture behaviour of rice husk and MWCNT dispersion strengthened alkali treated banana fiber matrix hybrid composites.Mater. Sci. Forum20231082647310.4028/p‑t5v49h
    [Google Scholar]
  25. PrabhuR. MendoncaS. BellairuP.K. D’SouzaR.C. BhatT. Optimization of dry sliding wear performance of TiO2 filled bamboo and flax fiber reinforced epoxy composites using Taguchi approach.World J. Eng.202421588289210.1108/WJE‑01‑2023‑0008
    [Google Scholar]
  26. ThirumalvalavanS. SenthilkumarN. DeepanrajB. Syam SundarL. Assessment of mechanical properties of flax fiber reinforced with Delrin polymer composite.Mater. Today Proc.202310.1016/j.matpr.2023.03.087
    [Google Scholar]
  27. JawadA. AhmedS. Studying the influence of the addition of nano-titanium dioxide on the rheological, mechanical, thermal, and electrical properties of polycarbonate/wood flour.J Thermoplast Compos Mater202336124874490410.1177/08927057231162018
    [Google Scholar]
  28. PalmiyantoM.H. SurojoE. AriawanD. ImaduddinF. E-glass/kenaf fibre reinforced thermoset composites fiiled with MCC and immersion in a different fluid.Sci. Rep.20221212033210.1038/s41598‑022‑24506‑w 36434046
    [Google Scholar]
  29. BeraT. MohantaN. PrakashV. PradhanS. AcharyaS.K. Moisture absorption and thickness swelling behaviour of luffa fibre/epoxy composite.J. Reinf. Plast. Compos.20193819-2092393710.1177/0731684419856703
    [Google Scholar]
  30. SanjayM.R. MadhuP. JawaidM. SenthamaraikannanP. SenthilS. PradeepS. Characterization and properties of natural fiber polymer composites: A comprehensive review.J. Clean. Prod.201817256658110.1016/j.jclepro.2017.10.101
    [Google Scholar]
  31. HusseinE.M. DesokyW.M. HanafyM.F. GuirguisO.W. Effect of TiO2 nanoparticles on the structural configurations and thermal, mechanical, and optical properties of chitosan/TiO2 nanoparticle composites.J. Phys. Chem. Solids202115210998310.1016/j.jpcs.2021.109983
    [Google Scholar]
  32. CazanC. EnescaA. AndronicL. Synergic effect of TiO2 filler on the mechanical properties of polymer nanocomposites.Polymers (Basel)20211312201710.3390/polym13122017 34203085
    [Google Scholar]
  33. GohK.L. ThomasS. De SilvaR.T. InterfacesK.A.M. Interfaces in particle and fibre reinforced composites: Current perspectives on polymer, ceramic, metal and extracellular Matrices.Amsterdam, The NetherlandsElsevier Science2019582
    [Google Scholar]
  34. IyerT. NayakS.Y. HiremathA. HeckadkaS.S. JaideepJ.P. Influence of TiO2 nanoparticle modification on the mechanical properties of basalt-reinforced epoxy composites.Cogent Eng.2023101222739710.1080/23311916.2023.2227397
    [Google Scholar]
  35. Sathish KumarR. Vandhana DeviV. NivedhithaD.M. Effect of nanoparticles in natural fiber reinforced polymer composites.Mater. Today Proc.202310.1016/j.matpr.2023.04.130
    [Google Scholar]
  36. ChoiY.M. HwangboS.A. LeeT.G. HamY.B. Effect of particle size on the mechanical properties of TiO2–epoxy nanocomposites.Materials (Basel)20211411286610.3390/ma14112866 34071833
    [Google Scholar]
  37. PsarraE. PapanicolaouG.C. Luffa Cylindrica as a durable biofiber reinforcement for epoxy systems.Compos. Sci. Technol.202120310859710.1016/j.compscitech.2020.108597
    [Google Scholar]
  38. VasanthkumarP. BalasundaramR. SenthilkumarN. PalanikumarK. LeninK. DeepanrajB. Thermal and thermo-mechanical studies on seashell incorporated Nylon-6 polymer composites.J. Mater. Res. Technol.2022213154316810.1016/j.jmrt.2022.10.117
    [Google Scholar]
  39. DharmalingamS. MeenakshisundaramO. KugarajahV. Effect of degree of silanization of luffa on the properties of luffa-epoxy composites.Colloids Surf. A Physicochem. Eng. Asp.202060312527310.1016/j.colsurfa.2020.125273
    [Google Scholar]
  40. NguyenT.A. Research on fabrication of flame retardant nanocomposite coating to protect steel structures on epikote 240 epoxy resin base with the synergy of mwcnts and fly ash.Int. J. Chem. Eng.2021202111210.1155/2021/9961321
    [Google Scholar]
  41. MishraT MandalP RoutAK SahooD A state-of-the-art review on potential applications of natural fiber-reinforced polymer composite filled with inorganic nanoparticle.Composites Part C: Open Access2022910029810.1016/j.jcomc.2022.100298
    [Google Scholar]
  42. SahuP. GuptaM.K. Water absorption behavior of cellulosic fibres polymer composites: A review on its effects and remedies.J. Ind. Text.2022515Suppl.7480S7512S10.1177/1528083720974424
    [Google Scholar]
  43. KorkeesF. Moisture absorption behavior and diffusion characteristics of continuous carbon fiber reinforced epoxy composites: A review.Polym Plast Technol Mater202362141789182210.1080/25740881.2023.2234461
    [Google Scholar]
  44. MurugapandianR. ClementS. UthirapathyV. Fabrication and In vitro drug delivery evaluation of cephalexin monohydrate-loaded PLA:PVA/HAP:TiO2 fibrous scaffolds for bone regeneration.ACS Omega2023855017503210.1021/acsomega.2c07701 36777593
    [Google Scholar]
  45. MohammedM. RahmanR. MohammedA.M. Surface treatment to improve water repellence and compatibility of natural fiber with polymer matrix: Recent advancement.Polym. Test.202211510770710.1016/j.polymertesting.2022.107707
    [Google Scholar]
  46. GhalehnoM.D. KordB. SheshkalB.N. Mechanical and physical properties of wood/polyethylene composite reinforced with TiO2 nanoparticles.Cerne202026447448110.1590/01047760202026042753
    [Google Scholar]
  47. WidiastutiI. PratiwiY.R. CahyoD.N. A study on water absorption and mechanical properties in epoxy-bamboo laminate composite with varying immersion temperatures.Open Eng.202010181481910.1515/eng‑2020‑0091
    [Google Scholar]
  48. GulogluG.E. AltanM.C. Moisture absorption of carbon/epoxy nanocomposites.J Compos Sci2020412110.3390/jcs4010021
    [Google Scholar]
  49. AlhijaziM. SafaeiB. ZeeshanQ. AsmaelM. EyvazianA. QinZ. Recent developments in luffa natural fiber composites: Review.Sustainability (Basel)20201218768310.3390/su12187683
    [Google Scholar]
  50. SanusiO.M. BenelfellahA. BikiarisD.N. Aït HocineN. Effect of rigid nanoparticles and preparation techniques on the performances of poly(lactic acid) nanocomposites: A review.Polym. Adv. Technol.202132244446010.1002/pat.5104
    [Google Scholar]
  51. ChakkourM. Ould MoussaM. KhayI. BalliM. Ben ZinebT. Long-term water aging effects on the durability of alkali-treated bamboo fiber reinforced composite.Cellulose20233018115891160410.1007/s10570‑023‑05598‑7
    [Google Scholar]
  52. JianQ LongB Carbon-based material loaded with titanium oxide nanoparticles, preparation method therefor, and application thereof.WO Patent 2023115426A12023
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105295445240418064351
Loading
/content/journals/nanotec/10.2174/0118722105295445240418064351
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test