Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Background

Single-Atom Catalysts (SACs) are heterogeneous catalysts that demonstrate exceptional efficiency and selectivity due to the use of individual metal atoms at the atomic scale. The substantial number of patents filed on SACs underscore their commercial and technological importance, highlighting their potential across various industries. SACs are increasingly applied in areas such as energy generation, environmental applications, and chemical synthesis, reflecting their growing scientific and technical importance.

Objectives

The objective of this study was to conduct a comprehensive evaluation of existing literature on SACs and the use of bibliometric analysis to identify scientific output and topic patterns of research on SACs.

Methods

A bibliometric analysis was performed on 488 papers related to SACs, utilizing the Web of Science database of data collection. Analysis of Co-occurrence of keywords, trending research topics, Citation analysis, Publication areas, the five-year record of Publications, and funding sources were examined using VOS viewer, R software, and Microsoft Excel.

Results

The analysis indicates a steady growth in publication on SACs in recent years, with China leading in research output followed closely by the USA. The highlighting of the global impact and the collaborative nature of SAC research. The study reveals a diverse range of applications and emphasizes the increasing scientific and technical focus on this subject.

Conclusion

This study highlights the essential role of SACs in advancing catalytic science and maps key trends, collaborations, and applications within the field. The bibliometric insights provide valuable guidance for the researchers, pointing to potential applications in energy storage, environmental remediation, and sustainable chemical synthesis. Emerging challenges, such as stability, scalability, and the development of new materials, call for further investigation to unlock the full potential of SACs. These insights support future innovation and exploration in the expanding field of SAC research.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105347268250206063445
2025-02-24
2025-12-14
Loading full text...

Full text loading...

References

  1. ChenF. JiangX. ZhangL. LangR. QiaoB. Single-atom catalysis: Bridging the homo- and heterogeneous catalysis.Chin. J. Catal.201839589389810.1016/S1872‑2067(18)63047‑5
    [Google Scholar]
  2. XingY. GuoZ. SuW. WenW. WangX. ZhangH. A review of the hot spot analysis and the research status of single-atom catalysis based on the bibliometric analysis.New J. Chem.20214594253426910.1039/D0NJ05673A
    [Google Scholar]
  3. ZamanS. KashifM. ShahM. Investigating the enhanced photocatalytic degradation of bromophenol blue using Ni/Zn co-doped Strontium Oxide nanoparticles synthesized via hydrothermal method.Brazil J Sci20233110211410.14295/bjs.v3i1.460
    [Google Scholar]
  4. WangM. YeM. WangJ. Recent advances and applications of single atom catalysts based electrochemical sensors.Nano Res.20241742994301310.1007/s12274‑023‑6208‑7
    [Google Scholar]
  5. PerathonerS. GrossS. HensenE.J.M. WesselH. ChrayeH. CentiG. Looking at the future of chemical production through the European roadmap on science and technology of catalysis the EU effort for a long-term vision.ChemCatChem20179690490910.1002/cctc.201601641
    [Google Scholar]
  6. ShahN. ShahM. KhanF. Fabrication and characterization of montmorillonite Clay/Agar-based magnetic composite and its biological and electrical conductivity evaluation.ACS Omega2024914159041591410.1021/acsomega.3c08708 38617699
    [Google Scholar]
  7. ChabiraF. AliS. KhanA. HumayunM. BououdinaM. Comprehensive review on single-atom catalysts in electrochemical hydrogen-evolution reaction: Computational modelling and experimental investigation.Philos. Mag. Lett.20241041234366510.1080/09500839.2024.2343665
    [Google Scholar]
  8. AltafA. KhanI. KhanA. Metal/covalent organic framework encapsulated lead-free halide perovskite hybrid nanocatalysts: Multifunctional applications, design, recent trends, challenges, and prospects.ACS Omega2024932342203424210.1021/acsomega.4c04532 39157131
    [Google Scholar]
  9. YaseenM. Recent trends in Photoelectrocatalysts: Types, influencing factors, and versatile applications: A comprehensive review Sustainable.Mater. Technol.202441e01067
    [Google Scholar]
  10. KmentŠ. BakandritsosA. TantisI. Single atom catalysts based on earth-abundant metals for energy-related applications.Chem. Rev.202412421117671184710.1021/acs.chemrev.4c00155 38967551
    [Google Scholar]
  11. LiJ. StephanopoulosM.F. XiaY. Introduction: Heterogeneous single-atom catalysis.ACS Publications20201169911702
    [Google Scholar]
  12. GuoW. WangZ. WangX. WuY. General design concept for single-atom catalysts toward heterogeneous catalysis.Adv. Mater.20213334200428710.1002/adma.202004287 34235782
    [Google Scholar]
  13. CuiT. LiL. YeC. Heterogeneous single atom environmental catalysis: Fundamentals, applications, and opportunities.Adv. Funct. Mater.2022329210838110.1002/adfm.202108381
    [Google Scholar]
  14. ShahN. ShahM. RehanT. Molecularly imprinted polymer composite membranes: From synthesis to diverse applications.Heliyon20241016e3618910.1016/j.heliyon.2024.e36189 39253174
    [Google Scholar]
  15. LangR. DuX. HuangY. Single-atom catalysts based on the metal–oxide interaction.Chem. Rev.202012021119861204310.1021/acs.chemrev.0c00797 33112599
    [Google Scholar]
  16. YangX.F. WangA. QiaoB. LiJ. LiuJ. ZhangT. Single-atom catalysts: A new frontier in heterogeneous catalysis.Acc. Chem. Res.20134681740174810.1021/ar300361m 23815772
    [Google Scholar]
  17. ZhuoH.Y. ZhangX. LiangJ.X. YuQ. XiaoH. LiJ. Theoretical understandings of graphene-based metal single-atom catalysts: Stability and catalytic performance.Chem. Rev.202012021123151234110.1021/acs.chemrev.0c00818 33112608
    [Google Scholar]
  18. ZhangZ. LiuJ. WangJ. Single-atom catalyst for high-performance methanol oxidation.Nat. Commun.2021121523510.1038/s41467‑021‑25562‑y 34475400
    [Google Scholar]
  19. DaelmanN. Capdevila-CortadaM. LópezN. Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts.Nat. Mater.201918111215122110.1038/s41563‑019‑0444‑y 31384029
    [Google Scholar]
  20. ChenY. LinJ. WangX. Noble-metal based single-atom catalysts for the water-gas shift reaction.Chem. Commun.202158220822210.1039/D1CC04051K 34878466
    [Google Scholar]
  21. ChoiJ. ChoiH. LeeJ.H. Controlling mechanism of the water–gas shift reaction activity catalyzed by au single atoms supported on multicomponent oxides.J. Phys. Chem. C202412827111761118210.1021/acs.jpcc.4c01559
    [Google Scholar]
  22. JinZ. XuY. ChhetriM. Recent developments of single atom alloy catalysts for electrocatalytic hydrogenation reactions.Chem. Eng. J.202449115207210.1016/j.cej.2024.152072
    [Google Scholar]
  23. LiY. XuY. ChenS. Tuning the electronic structures of anchor sites to achieve zero-valence single-atom catalysts for advanced hydrogenation.Angew. Chem. Int. Ed.20246335e20240626210.1002/anie.202406262 38787604
    [Google Scholar]
  24. RossiK. Ruiz-FerrandoA. AklD.F. Quantitative description of metal center organization and interactions in single-atom catalysts.Adv. Mater.2024365230799110.1002/adma.202307991 37757786
    [Google Scholar]
  25. WangX. KangZ. WangD. Electronic structure regulation of the Fe-based single-atom catalysts for oxygen electrocatalysis.Nano Energy202412110926810.1016/j.nanoen.2024.109268
    [Google Scholar]
  26. SinghB. SharmaV. GaikwadR.P. FornasieroP. ZbořilR. GawandeM.B. Single‐atom catalysts: A sustainable pathway for the advanced catalytic applications.Small20211716200647310.1002/smll.202006473 33624397
    [Google Scholar]
  27. WeonS. Environmental materials beyond and below the nanoscale: Single-atom catalysts.ACS ES T Engineering202012157172
    [Google Scholar]
  28. LiD. ZhangS. LiS. TangJ. HuaT. LiF. Mechanism of the application of single-atom catalyst-activated PMS/PDS to the degradation of organic pollutants in water environment: A review.J. Clean. Prod.202339713646810.1016/j.jclepro.2023.136468
    [Google Scholar]
  29. SinghB. GawandeM.B. KuteA.D. Single-atom (iron-based) catalysts: Synthesis and applications.Chem. Rev.202112121136201369710.1021/acs.chemrev.1c00158 34644065
    [Google Scholar]
  30. YanH. SuC. HeJ. ChenW. Single-atom catalysts and their applications in organic chemistry.J. Mater. Chem. A Mater. Energy Sustain.20186198793881410.1039/C8TA01940A
    [Google Scholar]
  31. DonthuN. KumarS. MukherjeeD. PandeyN. LimW.M. How to conduct a bibliometric analysis: An overview and guidelines.J. Bus. Res.202113328529610.1016/j.jbusres.2021.04.070
    [Google Scholar]
  32. RanaI.A. Disaster and climate change resilience: A bibliometric analysis.Int. J. Disaster Risk Reduct.20205010183910.1016/j.ijdrr.2020.101839
    [Google Scholar]
  33. AlsharifA.H. SallehN. BaharunR. Bibliometric analysis.J. Theor. Appl. Inf. Technol.2020981529482962
    [Google Scholar]
  34. HayatM. ShangK-C. LirnT-C. A bibliometric study based on seafarers’ psychological issues: Hotspots research and future agenda.Marit. Policy Manage.202411910.1080/03088839.2024.2369600
    [Google Scholar]
  35. ArrudaH. SilvaE.R. LessaM. ProençaD.Jr BartholoR. VOSviewer and bibliometrix.J. Med. Libr. Assoc.2022110339239510.5195/jmla.2022.1434 36589296
    [Google Scholar]
  36. VOSviewer2024Available from: https://www.vosviewer.com/
  37. OkoyeK. HosseiniS. Introduction to R programming and R studio integrated development environment (IDE).SingaporeSpringer2024
    [Google Scholar]
  38. KumarL. TyagiV. Understanding the concepts of tools and techniques for data analysis using R studio.In: Recent Trends and Future Direction for Data Analytics.IGI Global202419721310.4018/979‑8‑3693‑3609‑0.ch008
    [Google Scholar]
  39. Moreno-GuerreroA.J. Gómez-GarcíaG. López-BelmonteJ. Rodríguez-JiménezC. Internet addiction in the web of science database: A review of the literature with scientific mapping.Int. J. Environ. Res. Public Health2020178275310.3390/ijerph17082753 32316177
    [Google Scholar]
  40. SarkarA. WangH. RahmanA. MemonW.H. QianL. A bibliometric analysis of sustainable agriculture: Based on the Web of Science (WOS) platform.Environ. Sci. Pollut. Res. Int.20222926389283894910.1007/s11356‑022‑19632‑x 35301629
    [Google Scholar]
  41. ZouJ. ZhangL. JiangX. Single-atom catalyst for activation of persulfate to generate pure singlet oxygen as well as preparation method and application thereof.US Patent 11629052B22023
  42. YooS.J. JangI. ParkH-Y. Metal single-atom catalyst and method for preparing the same.US Patent 11173481B22021
    [Google Scholar]
  43. ZhuT. LiuX. ShiH. ZouY. Supported copper-based single-atom catalyst and preparation method and use thereof.US Patent 2024207825A12024
  44. WangC XieP PU T Method for preparation of nanoceria supported atomic noble metal catalysts and the application of platinum single atom catalysts for direct methane conversion.WO Patent 2019164797A12019
  45. LiuB. YangH. HuangY. LiuS. ZhangT. Graphene material inlaid with single metal atoms and preparing method and application thereof.US Patent 11105009B22021
  46. MilletM.M. Algara-SillerG. WrabetzS. Ni single atom catalysts for CO2 activation.J. Am. Chem. Soc.201914162451246110.1021/jacs.8b11729 30640467
    [Google Scholar]
  47. GuoR. BiZ. XiB. Co single-atom catalyst outperforms its homogeneous counterpart for peroxymonosulfate activation to achieve efficient and rapid removal of nitenpyram.Chem. Eng. J.202448314926910.1016/j.cej.2024.149269
    [Google Scholar]
  48. TianH. CuiK. ChenX. LiuJ. ZhangQ. Size-matched hierarchical porous carbon materials anchoring single-atom Fe-N4 sites for PMS activation: An in-depth study of key active species and catalytic mechanisms.J. Hazard. Mater.202446113264710.1016/j.jhazmat.2023.132647 37788555
    [Google Scholar]
  49. ZhangY. YangJ. GeR. The effect of coordination environment on the activity and selectivity of single-atom catalysts.Coord. Chem. Rev.202246121449310.1016/j.ccr.2022.214493
    [Google Scholar]
  50. WangZ. AlmatrafiE. WangH. Cobalt single atoms anchored on oxygen-doped tubular carbon nitride for efficient peroxymonosulfate activation: Simultaneous coordination structure and morphology modulation.Angew. Chem. Int. Ed.20226129e20220233810.1002/anie.202202338 35514041
    [Google Scholar]
  51. WuZ.Y. KaramadM. YongX. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst.Nat. Commun.2021121287010.1038/s41467‑021‑23115‑x 34001869
    [Google Scholar]
  52. TavakkoliM. FlahautE. PeljoP. Mesoporous single-atom-doped graphene–carbon nanotube hybrid: Synthesis and tunable electrocatalytic activity for oxygen evolution and reduction reactions.ACS Catal.20201084647465810.1021/acscatal.0c00352
    [Google Scholar]
  53. CaoB. HuM. ChengY. Tailoring the d-band center of N-doped carbon nanotube arrays with Co4N nanoparticles and single-atom Co for a superior hydrogen evolution reaction.NPG Asia Mater.2021131110.1038/s41427‑020‑00264‑x
    [Google Scholar]
  54. ZhangT. HanX. YangH. Atomically dispersed nickel (I) on an alloy-encapsulated nitrogen-doped carbon nanotube array for high-performance electrochemical CO2 reduction reaction.Angew. Chem. Int. Ed.20205929120551206110.1002/anie.202002984 32329173
    [Google Scholar]
  55. SenthamaraikannanT.G. LimD.H. Nitrogen reduction reaction enhanced by single-atom transition metal catalysts on functionalized graphene: A first-principles study.Int. J. Hydrogen Energy20247244946110.1016/j.ijhydene.2024.05.408
    [Google Scholar]
  56. SunJ.K. PanY-W. XuM-Q. Heteroatom doping regulates the catalytic performance of single-atom catalyst supported on graphene for ORR.Nano Res.20241731086109310.1007/s12274‑023‑5898‑1
    [Google Scholar]
  57. WangL. ZhuC. XuM. Boosting activity and stability of metal single-atom catalysts via regulation of coordination number and local composition.J. Am. Chem. Soc.202114345188541885810.1021/jacs.1c09498 34730347
    [Google Scholar]
  58. ZhaoJ. RenX. LiuX. Zn single atom on N-doped carbon: Highly active and selective catalyst for electrochemical reduction of nitrate to ammonia.Chem. Eng. J.202345213953310.1016/j.cej.2022.139533
    [Google Scholar]
  59. ChenR. ChenS. WangL. WangD. Nanoscale metal particle modified single-atom catalyst: Synthesis, characterization, and application.Adv. Mater.2024362230471310.1002/adma.202304713 37439396
    [Google Scholar]
  60. LiX. XuW. FangY. Single-atom catalyst application in distributed renewable energy conversion and storage.SusMat20233216017910.1002/sus2.114
    [Google Scholar]
  61. FooJ.J. NgS.F. XiongM. OngW.J. Mechanistic study of the competition between carbon dioxide reduction and hydrogen evolution reaction and selectivity tuning via loading single-atom catalysts on graphitic carbon nitride.Nanoscale20241634160151602510.1039/D4NR01932F 39012281
    [Google Scholar]
  62. GaikwadR.P. WarkadI.R. ChaudhariD.S. Harnessing photocatalytic activity of mesoporous graphitic carbon nitride decorated by copper single-atom catalysts for oxidative dehydrogenation of N-heterocycles.J. Colloid Interface Sci.202467648549510.1016/j.jcis.2024.07.067 39047376
    [Google Scholar]
  63. ZhengY. YangQ. WangS. Adjacent MnOx clusters enhance the hydroformylation activity of rhodium single-atom catalysts. Applied Catalysis B.Environment and Energy2024350123923
    [Google Scholar]
  64. YangD. TaoS. ZhuH. Construction of Rh-N4 single atoms and Rh clusters dual-active sites for synergistic heterogeneous hydroformylation of olefins with ultra-high turnover frequency.Chem. Eng. J.202447914750510.1016/j.cej.2023.147505
    [Google Scholar]
  65. WuM. WeiZ. FeiK. Theoretical investigation of nonmetallic single-atom catalysts for polysulfide immobilization and kinetic enhancement in lithium–sulfur batteries.J. Phys. Chem. C2024128166551656110.1021/acs.jpcc.4c00063
    [Google Scholar]
  66. ZhouR. GuS. GuoM. XuS. ZhouG. Progresses and prospects of asymmetrically coordinated single atom catalysts for lithium−sulfur batteries.Energy Environ. Mater.202474e1270310.1002/eem2.12703
    [Google Scholar]
  67. RenL. LiuJ. ZhaoY. Regulating electronic structure of Fe–N4 single atomic catalyst via neighboring sulfur doping for high performance lithium–sulfur batteries.Adv. Funct. Mater.20233312221050910.1002/adfm.202210509
    [Google Scholar]
  68. TangQ.Q. FengL-F. LiZ-P. Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction.Chin. Chem. Lett.202435910945410.1016/j.cclet.2023.109454
    [Google Scholar]
  69. ShenL. WangL. YeY. LiZ. DaiQ. Creation of intrinsic defects on ZIF-8 particles to facilitate electrochemical reduction of CO2 over Fe single-atom catalyst.Chem. Eng. J.202449515307310.1016/j.cej.2024.153073
    [Google Scholar]
  70. GuoJ. YuF. YouY. ZhanJ. ZhangL-H. A linear correlation of p-band center with the performance of electrochemical CO2 reduction revealed by Sn single-atom catalysts.Appl. Catal. B202435512416010.1016/j.apcatb.2024.124160
    [Google Scholar]
  71. QuZ. HeG. ZhangT. Tricoordinated single-atom cobalt in zeolite boosting propane dehydrogenation.J. Am. Chem. Soc.2024146138939894810.1021/jacs.3c12584 38526452
    [Google Scholar]
  72. ZhangY. ShiS. WangZ. Propane dehydrogenation on Ir single-atom catalyst modified by atomically dispersed Sn promoters in silicalite-1 zeolite.AIChE J.2024706e1843110.1002/aic.18431
    [Google Scholar]
  73. ChaiY. DaiH. DuanX. Elucidation of the mechanistic origin of spin-state-dependent P-doped Fe single-atom catalysts for the oxidation of organic pollutants through peroxymonosulfate activation.Appl. Catal. B202434112328910.1016/j.apcatb.2023.123289
    [Google Scholar]
  74. ChoudharyN. ParsaiP. ShaikhM.M. 3d transition metal-based single-atom catalyst as an emerging field for environmentally benign organic transformation reactions.Molecular Catalysis202456511436010.1016/j.mcat.2024.114360
    [Google Scholar]
  75. CaoF. NiW. ZhaoQ. Precisely manipulating the local coordination of cobalt single-atom catalyst boosts selective hydrogenation of nitroarenes.Appl Catal B: Environ Energy202434612376210.1016/j.apcatb.2024.123762
    [Google Scholar]
  76. HongW.X. WangW-H. ChangY-H. PourzolfagharH. TsengI-H. LiY-Y. A Ni-Fe layered double hydroxide anchored FeCo nanoalloys and Fe-Co dual single-atom electrocatalysts for rechargeable and flexible zinc-air and aluminum-air batteries.Nano Energy202412110923610.1016/j.nanoen.2023.109236
    [Google Scholar]
  77. ZhuangZ. KangQ. WangD. LiY. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries.Nano Res.20201371856186610.1007/s12274‑020‑2827‑4
    [Google Scholar]
  78. HuangB. TangT. ChenS.H. Near-infrared-IIb emitting single-atom catalyst for imaging-guided therapy of blood-brain barrier breakdown after traumatic brain injury.Nat. Commun.202314119710.1038/s41467‑023‑35868‑8 36639379
    [Google Scholar]
  79. MuravevV. SpezzatiG. SuY-Q. Interface dynamics of Pd–CeO2 single-atom catalysts during CO oxidation.Nat. Catal.20214646947810.1038/s41929‑021‑00621‑1
    [Google Scholar]
  80. ZhangH. Superior performance of formaldehyde complete oxidation at ambient temperature over Co single-atom catalysts.Appl Catal B: Environ Energy202333312277410.1016/j.apcatb.2023.122774
    [Google Scholar]
  81. YinK. WuR. ShangY. Microenvironment modulation of cobalt single-atom catalysts for boosting both radical oxidation and electron-transfer process in Fenton-like system.Appl. Catal. B202332912255810.1016/j.apcatb.2023.122558
    [Google Scholar]
  82. YinK. ShangY. ChenD. GaoB. YueQ. XuX. Redox potentials of pollutants determining the dominate oxidation pathways in manganese single-atom catalyst (Mn-SAC)/peroxymonosulfate system: Selective catalytic mechanisms for versatile pollutants.Appl. Catal. B202333812302910.1016/j.apcatb.2023.123029
    [Google Scholar]
  83. ChenD-L. LvC. Theoretical understandings on mechanisms of hydrogenation activities using graphene-based single-atom catalysts.ChemCatChem20241621e20240108410.1002/cctc.202401084
    [Google Scholar]
  84. WangZ. YuanX. GuoH. ZhangX. PengJ. PanY. Rational design principles of single-atom catalysts for hydrogen production and hydrogenation.Energy Environ. Sci.202417218019805610.1039/D4EE02763A
    [Google Scholar]
  85. CánovasM.A. GraciaA. SayósR. GamalloP. CO 2 Hydrogenation on Ru single-atom catalyst encapsulated in silicalite: A DFT and microkinetic modeling study.J. Phys. Chem. C202412839165511656210.1021/acs.jpcc.4c05941 39380971
    [Google Scholar]
  86. XuL. QinY. ZhangQ. Highly efficient acetylene semi-hydrogenation over Cun cluster stabilized Pd1 single-atom catalysts.Chem. Eng. J.202449515363210.1016/j.cej.2024.153632
    [Google Scholar]
  87. TamtajiM. KazemeiniM. AbdiJ. DFT and machine learning studies on a multi-functional single-atom catalyst for enhanced oxygen and hydrogen evolution as well as CO2 reduction reactions.Int. J. Hydrogen Energy2024801075108310.1016/j.ijhydene.2024.07.244
    [Google Scholar]
  88. LiY. LiuX. XuJ. ChenS. Ruthenium-based electrocatalysts for hydrogen evolution reaction: From nanoparticles to single atoms.Small20242045240284610.1002/smll.202402846 39072957
    [Google Scholar]
  89. KangN. LiaoL. ZhangX. Engineering the axial coordination of cobalt single atom catalysts for efficient photocatalytic hydrogen evolution.Nano Res.20241765114512110.1007/s12274‑024‑6411‑1
    [Google Scholar]
  90. ShuklaA. SharmaG. KrishnamurtyS. Single-atom-catalyst-implanted mbenes as efficient electrocatalysts for hydrogen evolution reaction as realized through computational screening.ACS Appl. Eng. Mater.20242242243010.1021/acsaenm.3c00732
    [Google Scholar]
  91. KaurJ. SharmaV. Kumar DasD. Single-Atom catalysts for oxygen reduction reaction and methanol oxidation reaction.Fuel202435813024110.1016/j.fuel.2023.130241
    [Google Scholar]
  92. YanW. ChenW. ChenY. Recent design strategies for M-N-C single-atom catalysts in oxygen reduction: An entropy increase perspective.Adv. Funct. Mater.20243436240102710.1002/adfm.202401027
    [Google Scholar]
  93. ZhangD. WangZ. LiuF. Unraveling the pH-dependent oxygen reduction performance on single-atom catalysts: From single-to dual-sabatier optima.J. Am. Chem. Soc.202414653210321910.1021/jacs.3c11246 38214275
    [Google Scholar]
  94. LyuL. HuX. LeeS. Oxygen reduction kinetics of Fe-N-C single atom catalysts boosted by pyridinic N vacancy for temperature-adaptive Zn–Air batteries.J. Am. Chem. Soc.202414674803481310.1021/jacs.3c13111 38335455
    [Google Scholar]
  95. GuoY. WangC. XiaoY. Stabilizing Fe single atom catalysts by implanting Cr atomic clusters to boost oxygen reduction reaction.Appl. Catal. B202434412367910.1016/j.apcatb.2023.123679
    [Google Scholar]
  96. ul Haq Mahmood. Derived-2D Nb4C3Tx sheets with interfacial self-assembled Fe-NC single-atom catalyst for electrocatalysis in water splitting and durable zinc-air battery Appl Catal B.Environ Energy2024344123632
    [Google Scholar]
  97. KaushikS. WuD. ZhangZ. Universal synthesis of single-atom catalysts by direct thermal decomposition of molten salts for boosting acidic water splitting.Adv. Mater.20243627240116310.1002/adma.202401163 38639567
    [Google Scholar]
  98. ChenW. YuM. LiuS. ZhangC. JiangS. DuanG. Recent progress of ru single-atom catalyst: Synthesis, modification, and energetic applications.Adv. Funct. Mater.20243422231330710.1002/adfm.202313307
    [Google Scholar]
  99. YanX. DuanC. YuS. DaiB. SunC. ChuH. Recent advances on CO2 reduction reactions using single-atom catalysts.Renew. Sustain. Energy Rev.202419011408610.1016/j.rser.2023.114086
    [Google Scholar]
  100. GandioncoK.A. KimJ. BekaertL. HubinA. LimJ. Single-atom catalysts for the electrochemical reduction of carbon dioxide into hydrocarbons and oxygenates.Carbon Energy202463e41010.1002/cey2.410
    [Google Scholar]
  101. LiuK. SunZ. ChenW. LangX. GaoX. ChenP. Ultra-fast pulsed discharge preparation of coordinatively unsaturated asymmetric copper single-atom catalysts for CO 2 reduction.Adv. Funct. Mater.20243416231258910.1002/adfm.202312589
    [Google Scholar]
  102. YuZ. ZhangS. ZhangL. Suppressing metal leaching and sintering in hydroformylation reaction by modulating the coordination of rh single atoms with reactants.J. Am. Chem. Soc.202414617119551196710.1021/jacs.4c01315 38640231
    [Google Scholar]
  103. ZhangH. ZhangX. WangX. Activity promotion of Rh1Ca x/Al2O3 single-atom catalyst in 1-octene hydroformylation: A volcano curve exists between Ca adding ratio and catalytic activity.Sci. China Chem.202416
    [Google Scholar]
  104. YuZ. ZhangL. TanY. PS-PPh2 tethered Pt single atoms promoted by SnCl2 as highly efficient and regio-selective catalysts for the hydroformylation of higher α-alkenes.Chin. J. Catal.20246031632610.1016/S1872‑2067(24)60029‑X
    [Google Scholar]
  105. LiuC. QiaoB. ZhangT. Integration of single atoms for tandem catalysis.JACS Au20244114129414010.1021/jacsau.4c00784
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105347268250206063445
Loading
/content/journals/nanotec/10.2174/0118722105347268250206063445
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test