Skip to content
2000
Volume 19, Issue 2
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Background

The distinct anatomy and physiology of the eye represent it as a specialized organ. The noumenal physiological barriers, whose prominent role is to prevent the entrance of extracellular substances, reduce the bioavailability of medicines taken locally. Nanocarriers offer many advantages, such as site-specific drug delivery, reduced dose-related side effects, more drug loading capacity, . Nanoparticles, nano micelles, Nanostructured Lipid Carriers (NLCs), Solid Lipid Nanoparticles (SLNs), liposomes, polymeric nanoparticles, microspheres, microemulsions, ., have all undergone significant analysis to overcome numerous static and dynamic obstacles.

Objective

Among the several methods of delivering drugs, one of the most captivating and demanding is ocular drug delivery (ODD). The intent of developing formulations for an extended period can be partially achieved thermoresponsive hydrogels. It is feasible to store fluids inside a cross-linked gel system for efficient long-term administration owing to hydrogels, which are hydrophilic polymeric networks with excellent three-dimensional structures and water or biological fluid absorption capacities. Hydrogels can be incorporated into nanocarriers to achieve site-specific action and prolonged release.

Methods

Related patents and research reports with various platforms like Science Direct, Springer, PubMed, Google Scholar, Shodhganga, and Patseer were used to gather the data, and a search methodology was availed.

Results

The paper thoroughly summarizes the strategies for incorporating drugs with hydrogel into a nanocarrier to provide sustained release and prolonged therapeutic effects. According to the comprehensive review of literature and patents like (US2015374633A1), (US10980882B2), and (WO2011018800A2), nanocarrier-loaded thermoresponsive hydrogels show promising results.

Conclusion

Due to their propensity to alter state in reaction to temperature changes, thermoresponsive hydrogels can improve medication bioavailability. Intervening nanocarriers loaded hydrogels directly on the targeted site displays local intervention and site-specificity. Thus, the use of nanocarriers in ocular drug delivery is encouraging.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/1872210517666230731102130
2023-09-27
2025-06-16
Loading full text...

Full text loading...

References

  1. Blindness and Vision Impairment. https://www.cdc.gov/healthcommunication/ToolsTemplates/EntertainmentEd/Tips/Blindness.html 2011
  2. KumarN. PahujaS. SharmaR. Occular drug delivery system – A review.Int. J. Drug Deliv.20199114119
    [Google Scholar]
  3. PatelA. CholkarK. AgrahariV. MitraA.K. Ocular drug delivery systems: An overview.World J. Pharmacol.201322476410.5497/wjp.v2.i2.47 25590022
    [Google Scholar]
  4. CholkarK. DasariS.R. PalD. MitraA.K. Eye: Anatomy, physiology and barriers to drug delivery. In: Ocular Transporters and Receptors.Their Role in Drug Delivery201313610.1533/9781908818317.1
    [Google Scholar]
  5. GaudanaR. AnanthulaH.K. ParenkyA. MitraA.K. Ocular drug delivery.AAPS J.201012334836010.1208/s12248‑010‑9183‑3 20437123
    [Google Scholar]
  6. DesireddyR. TarakaL.K.C. NagaS.G. SowjanyaT. LavanyaL.R.K. Occular drug delivery system - emerging trends.Int. J. Pharm. Sci. Rev. Res.2012162933
    [Google Scholar]
  7. YavuzB. KompellaU.B. Ocular drug delivery. In: Handbook of Experimental Pharmacology.20175793
    [Google Scholar]
  8. PatelG. PatelR. YadavB.K. Progresses in nano-enabled platforms for the treatment of vaginal disorders.Recent Pat. Nanotechnol.202317320822710.2174/1872210516666220628150447 35762539
    [Google Scholar]
  9. GanesanP. SoundararajanR. ShanmugamU. RamuV. Development, characterization and solubility enhancement of comparative dissolution study of second generation of solid dispersions and microspheres for poorly water soluble drug.Asian J. Pharm.201510543344110.1016/j.ajps.2015.05.001
    [Google Scholar]
  10. AlmomenA. ChoS. YangC.H. Thermosensitive progesterone hydrogel: A safe and effective new formulation for vaginal application.Pharm. Res.20153272266227910.1007/s11095‑014‑1616‑8 25609012
    [Google Scholar]
  11. AokiS. BIORENDER https://www.biorender.com. 2017
  12. SinghV. BushettiS.S. AppalaR. ShareefA. ImamS. SinghM. Stimuli-sensitive hydrogels: A novel ophthalmic drug delivery system.Indian J. Ophthalmol.201058647748110.4103/0301‑4738.71677 20952830
    [Google Scholar]
  13. QiuY. ParkK. Environment-sensitive hydrogels for drug delivery.Adv. Drug Deliv. Rev.201264496010.1016/j.addr.2012.09.024
    [Google Scholar]
  14. Kang-MielerJ.J. MielerW.F. Thermo-responsive hydrogels for ocular drug delivery.Dev. Ophthalmol.20165510411110.1159/000434694 26502091
    [Google Scholar]
  15. OmidianH. ParkK. Hydrogels. In: Fundamentals and Applications of Controlled Release Drug Delivery.201275105
    [Google Scholar]
  16. SaradaK. FirozS. PadminiK. In-situ gelling system: A review.Int. J. Curr. Pharm. Res.201557690
    [Google Scholar]
  17. MujeebuM.A. Nano aerogel windows and glazing units for buildings’ energy efficiency. In: Nanotechnology in Eco-efficient Construction.Materials, Processes and Applications2018417439
    [Google Scholar]
  18. HeC. KimS.W. LeeD.S. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery.J. Control. Release2008127318920710.1016/j.jconrel.2008.01.005 18321604
    [Google Scholar]
  19. SoniyaR. An overview of in situ gelling systems.Pharm Biol Eval2016316069
    [Google Scholar]
  20. SapinoS. ChirioD. PeiraE. Ocular drug delivery: A special focus on the thermosensitive approach.Nanomaterials20199688410.3390/nano9060884
    [Google Scholar]
  21. NikodeS. DixitG. UpadhyaK. In situ gel: Application and uses of polymers.World J. Pharm. Pharm. Sci.20165716381658
    [Google Scholar]
  22. ViganiB. RossiS. SandriG. BonferoniM.C. CaramellaC.M. FerrariF. Recent advances in the development of in situ gelling drug delivery systems for non-parenteral administration routes.Pharmaceutics202012985910.3390/pharmaceutics12090859 32927595
    [Google Scholar]
  23. KamaleddinM.A. Nano-ophthalmology: Applications and considerations.Nanomedicine20171341459147210.1016/j.nano.2017.02.007 28232288
    [Google Scholar]
  24. OmerovićN. VranićE. Application of nanoparticles in ocular drug delivery systems.Health Technol.2020101617810.1007/s12553‑019‑00381‑w
    [Google Scholar]
  25. Crossing biological barriers for better drug delivery – Harvard Gazette. https://news.harvard.edu/gazette/story/2018/07/crossing-biological-barriers-for-better-drug-delivery/
  26. NanceE. PunS.H. SaigalR. SellersD.L. Drug delivery to the central nervous system.Nat. Rev. Mater.20217431433110.1038/s41578‑021‑00394‑w
    [Google Scholar]
  27. DastidarD.G. GhoshD. DasA. Recent developments in nanocarriers for cancer chemotherapy.OpenNano2022810008010.1016/j.onano.2022.100080
    [Google Scholar]
  28. ChamundeeswariM. JeslinJ. VermaM.L. Nanocarriers for drug delivery applications.Environ. Chem. Lett.2018172849865
    [Google Scholar]
  29. GaoW. ZhangY. ZhangQ. ZhangL. Nanoparticle-hydrogel: A hybrid biomaterial system for localized drug delivery.Ann. Biomed. Eng.20164462049206110.1007/s10439‑016‑1583‑9
    [Google Scholar]
  30. PatelR. ShahR. PatelA. HadiyaK. ParmarJ. PatelG. Off-Label use of Raloxifene hydrochloride in uterine fibroids: A novel insert-based formulation approach and in-vivo preclinical evaluation.J. Drug Deliv. Sci. Technol.20238410455210.1016/j.jddst.2023.104552
    [Google Scholar]
  31. AlshawwaS.Z. KassemA.A. FaridR.M. MostafaS.K. LabibG.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence.Pharmaceutics202214488310.3390/pharmaceutics14040883 35456717
    [Google Scholar]
  32. HeH. WuM. ZhuJ. YangY. GeR. YuD.G. Engineered spindles of little molecules around electrospun nanofibers for biphasic drug release.Adv Fiber Mater20224230531710.1007/s42765‑021‑00112‑9
    [Google Scholar]
  33. LiX. YeM. GaoY.E. HouS. JiaP. XueP. The systematic evaluation of physicochemical and biological properties in vitro and in vivo for natural silk fibroin nanoparticles.Adv Fiber Mater2022451141115210.1007/s42765‑022‑00167‑2
    [Google Scholar]
  34. WangC. HouY. WangX. LiW. ZhangY. WangS. Structural and interfacial effects on drug release kinetics of liquid-based fibrous catheter.Adv Fiber Mater2022461645165510.1007/s42765‑022‑00201‑3
    [Google Scholar]
  35. GiulianoE. PaolinoD. FrestaM. CoscoD. Drug-loaded biocompatible nanocarriers embedded in poloxamer 407 hydrogels as therapeutic formulations.Medicines2018617
    [Google Scholar]
  36. AnwekarH PatelS SinghaiAK Liposome-as drug carriers.Int J Pharm life Sci20112794551
    [Google Scholar]
  37. SinghR. LillardJ.W.Jr Nanoparticle-based targeted drug delivery.Exp. Mol. Pathol.200986321522310.1016/j.yexmp.2008.12.004 19186176
    [Google Scholar]
  38. ZielinskaA. CarreiróF. OliveiraA.M. NevesA. PiresB. NagasamyV.D. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology.Molecules202025163731
    [Google Scholar]
  39. BennetD. KimS. Polymer nanoparticles for smart drug delivery. In: Application of Nanotechnology in Drug Delivery.InTech201410.5772/58422
    [Google Scholar]
  40. DuanY. DharA. PatelC. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems.RSC Advances20201045267772679110.1039/D0RA03491F 35515778
    [Google Scholar]
  41. MishraB. SinghJ. Novel drug delivery systems and significance in respiratory diseases.Target Chronic Inflamm Lung Dis Using Adv Drug Deliv Syst20201579510.1016/B978‑0‑12‑820658‑4.00004‑2
    [Google Scholar]
  42. ChavdaV.P. Nanobased nano drug delivery: A comprehensive review. In: Applications of Targeted Nano Drugs and Delivery Systems.20186992
    [Google Scholar]
  43. Nobari AzarF.A. PezeshkiA. GhanbarzadehB. HamishehkarH. MohammadiM. Nanostructured lipid carriers: Promising delivery systems for encapsulation of food ingredients.J Agric Food Res2020210008410.1016/j.jafr.2020.100084
    [Google Scholar]
  44. KumariA. SinglaR. GulianiA. YadavS.K. Nanoencapsulation for drug delivery.EXCLI J.201413265
    [Google Scholar]
  45. LammariN. TarhiniM. MiladiK. LouaerO. MeniaiA.H. SfarS. Encapsulation methods of active molecules for drug delivery.Drug Deliv Devices Ther Syst2021128930610.1016/B978‑0‑12‑819838‑4.00008‑0
    [Google Scholar]
  46. WangL. PanH. GuD. LiP. SuY. PanW. A composite system combining self-targeted carbon dots and thermosensitive hydrogels for challenging ocular drug delivery.J. Pharm. Sci.202211151391140010.1016/j.xphs.2021.09.026 34563534
    [Google Scholar]
  47. ChengY.H. ChangY.F. KoY.C. LiuC.J. Development of a dual delivery of levofloxacin and prednisolone acetate via PLGA nanoparticles/thermosensitive chitosan-based hydrogel for postoperative management: An in-vitro and ex-vivo study.Int. J. Biol. Macromol.202118036537410.1016/j.ijbiomac.2021.03.017 33676980
    [Google Scholar]
  48. WeiY. LiC. ZhuQ. ZhangX. GuanJ. MaoS. Comparison of thermosensitive in situ gels and drug-resin complex for ocular drug delivery: In vitro drug release and in vivo tissue distribution.Int. J. Pharm.202057811918410.1016/j.ijpharm.2020.119184 32112932
    [Google Scholar]
  49. YuY. XuS. YuS. A hybrid genipin-cross-linked hydrogel/nanostructured lipid carrier for ocular drug delivery: Cellular, ex vivo, and in vivo evaluation.ACS Biomater. Sci. Eng.2020631543155210.1021/acsbiomaterials.9b01800 33455373
    [Google Scholar]
  50. ArafaM.G. GirgisG.N.S. El-DahanM.S. Chitosan-coated PLGA nanoparticles for enhanced ocular anti-inflammatory efficacy of atorvastatin calcium.Int. J. Nanomedicine2020151335134710.2147/IJN.S237314 32184589
    [Google Scholar]
  51. TavakoliN. TaymouriS. SaeidiA. AkbariV. Thermosensitive hydrogel containing sertaconazole loaded nanostructured lipid carriers for potential treatment of fungal keratitis.Pharm. Dev. Technol.201924789190110.1080/10837450.2019.1616755 31062987
    [Google Scholar]
  52. AgrahariV. PatelS.P. DhallN. Nanoparticles in thermosensitive gel based composite nanosystem for ocular diseases.Drug Deliv. Transl. Res.20188242243510.1007/s13346‑017‑0435‑y 29181835
    [Google Scholar]
  53. KhanS. WaradeS. SinghaviD.J. Improvement in ocular bioavailability and prolonged delivery of tobramycin sulfate following topical ophthalmic administration of drug-loaded mucoadhesive microparticles incorporated in thermosensitive in situ gel.J. Ocul. Pharmacol. Ther.201834328729710.1089/jop.2017.0079 29211593
    [Google Scholar]
  54. MoZ. BanJ. ZhangY. Nanostructured lipid carriers-based thermosensitive eye drops for enhanced, sustained delivery of dexamethasone.Nanomedicine201813111239125310.2217/nnm‑2017‑0318 29949466
    [Google Scholar]
  55. PachisK. BlazakiS. TzatzarakisM. Sustained release of intravitreal flurbiprofen from a novel drug-in-liposome-in-hydrogel formulation.Eur. J. Pharm. Sci.201710932433310.1016/j.ejps.2017.08.028 28843864
    [Google Scholar]
  56. FabianoA. BizzarriR. ZambitoY. Thermosensitive hydrogel based on chitosan and its derivatives containing medicated nanoparticles for transcorneal administration of 5-fluorouracil.Int. J. Nanomedicine20171263364310.2147/IJN.S121642 28144144
    [Google Scholar]
  57. YangX. TrinhH.M. AgrahariV. ShengY. PalD. MitraA.K. Nanoparticle-based topical ophthalmic gel formulation for sustained release of hydrocortisone butyrate.AAPS PharmSciTech201617229430610.1208/s12249‑015‑0354‑5 26085051
    [Google Scholar]
  58. LiuR. SunL. FangS. Thermosensitive in situ nanogel as ophthalmic delivery system of curcumin: development, characterization, in vitro permeation and in vivo pharmacokinetic studies.Pharm. Dev. Technol.201621557658210.3109/10837450.2015.1026607 26024239
    [Google Scholar]
  59. YingfangF. ZhuangB. WangC. XuX. XuW. LvZ. Pimecrolimus micelle exhibits excellent therapeutic effect for Keratoconjunctivitis Sicca.Colloids Surf. B Biointerfaces201614011010.1016/j.colsurfb.2015.11.059 26731192
    [Google Scholar]
  60. YangX. ShahS.J. WangZ. AgrahariV. PalD. MitraA.K. Nanoparticle-based topical ophthalmic formulation for sustained release of stereoisomeric dipeptide prodrugs of ganciclovir.Drug Deliv.20162372399240910.3109/10717544.2014.996833 25564964
    [Google Scholar]
  61. Thermoresponsive hydrogel containing polymer microparticles for noninvasive ocular drug delivery.Patent US20150374633A1,2016
    [Google Scholar]
  62. На Примере Веб-Службы “Google Translate”.Научный Диалог2018
    [Google Scholar]
  63. A kind of temperature sensitive type eye cyclosporin hydrogel and preparation method thereof.Patent CN108245662A,2016
    [Google Scholar]
  64. Pemirolast Potassiu temperature sensitive hydrogel and preparation method thereof.Patent CN105147595B,2016
    [Google Scholar]
  65. Ophthalmic drug delivery system utilizing thermosetting gels.Patent US4474751A,2016
    [Google Scholar]
  66. Biodegradable microsphere-hydrogel ocular drug delivery system.Patent US10980882B2,2016
    [Google Scholar]
  67. HaugC. In situ gelling systems as sustained delivery for front of eye.Patent US20110082221A1,2016
    [Google Scholar]
  68. A novel in-situ gel forming solution for ocular drug delivery.Patent WO2011018800A2,2016
    [Google Scholar]
  69. KotrekaM. In-situ gel ophthalmic drug delivery system of estradiol or other estrogen for prevention of cataracts.Patent US20110082128A1,2010
    [Google Scholar]
  70. JianQY JizongG. XiaoH. ArchitS. Thermosensitive hydrogel composition and method.Patent US20120020932A1,2011
    [Google Scholar]
/content/journals/nanotec/10.2174/1872210517666230731102130
Loading
/content/journals/nanotec/10.2174/1872210517666230731102130
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test