Skip to content
2000
Volume 19, Issue 4
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Background

Thermal spray coatings have emerged as a pivotal technology in materials engineering, primarily for augmenting the characteristics related to wear and tribology of metallic substrates.

Methods

This study aims to develop into applying High-Velocity Oxygen Fuel (HVOF) thermal-sprayed WC-Co nanocoatings on Titanium Grade-5 alloy (Ti64). The coating process, utilizing nano-sized WC-Co powder, undergoes systematic optimization of HVOF parameters, encompassing the flow rate of carrier gas, powder feed rate, and nozzle distance. Experimental assessments Pin-on-Disc (PoD) tests encompass Loss of Wear (WL), Friction Coefficient (CoF), and Frictional Force (FF). Later, an exhaustive optimization of responses is conducted using the Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) method and the golden jack optimization algorithm (GJOA).

Results

Outcomes show a substantial increase in WL, CoF, and FF with a rise in the carrier gas and powder feed rate. However, with increasing spraying distance of powder, the WL, CoF, and FF tend to lower due to higher bonding, which leads to increased wear resistance. The ideal parametric settings achieved from TOPSIS and GJOA are 245 mm of spray distance, 30 gpm rate of powder feed, and 11 lpm of carrier gas flow rate. The powder feed rate contributes 88.99% to the control action, as seen from ANOVA.

Conclusion

The confirmation experiment presents that the WL, CoF, and FF output responses are 42.33, 27.97, and 9.38% less than the mean of experimental data. These results highlight the HVOF process in spraying WC-Co nanocoatings to fortify the durability and performance of Ti64 alloy that can be patented for diverse engineering applications.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105306841240808092616
2024-08-21
2025-09-27
Loading full text...

Full text loading...

References

  1. MallS. NicholsT. Titanium matrix composites: Mechanical behavior.CRC Press2020Available from: https://books.google.co.in/books?id=Hd_SDwAAQBAJ
    [Google Scholar]
  2. BrewerW.D. BirdR.K. WallaceT.A. Titanium alloys and processing for high speed aircraft.Mater. Sci. Eng. A19982431-229930410.1016/S0921‑5093(97)00818‑6
    [Google Scholar]
  3. FallerK. F.H. (Sam) Froes, The use of titanium in family automobiles: Current trends.JOM200153272810.1007/s11837‑001‑0143‑3
    [Google Scholar]
  4. LiuX. ChuP. DingC. Surface modification of titanium, titanium alloys, and related materials for biomedical applications.Mater. Sci. Eng. Rep.2004473-44912110.1016/j.mser.2004.11.001
    [Google Scholar]
  5. BudinskiK.G. Tribological properties of titanium alloys.Wear1991151220321710.1016/0043‑1648(91)90249‑T
    [Google Scholar]
  6. MolinariA. StraffeliniG. TesiB. BacciT. Dry sliding wear mechanisms of the Ti6Al4V alloy.Wear19972081-210511210.1016/S0043‑1648(96)07454‑6
    [Google Scholar]
  7. PerumalG. SenthilkumarN. SubramaniyanC. RamasamyR. SatheshkumarD. Tailoring the mechanical and tribological properties of Ti-6Al-4 V alloy through duplex heat treatment.J. Mater. Eng. Perform.20231810.1007/s11665‑023‑08586‑x
    [Google Scholar]
  8. SenthilkumarN. PerumalG. SivaguruS. AnandhakumarS. Optimization of duplex heat treatment settings with the MOORA-PCA technique to customize the mechanical and wear response of Ti6Al4V alloy.Tribol. Int.202419210923210.1016/j.triboint.2023.109232
    [Google Scholar]
  9. RoyS. BoseG.K. Advanced surface coating techniques for modern industrial applications.IGI Global2020Available from: https://books.google.co.in/books?id=aLkIEAAAQBAJ
    [Google Scholar]
  10. PerumalG. GeethaM. AsokamaniR. AlagumurthiN. A comparative study on the wear behavior of Al2O3 and SiC coated Ti-6Al-4V alloy Developed using plasma spraying technique.Trans. Indian Inst. Met.201366210911510.1007/s12666‑012‑0234‑6
    [Google Scholar]
  11. PerumalG. GeethaM. AsokamaniR. AlagumurthiN. Wear studies on plasma sprayed Al2O3–40 wt% 8YSZ composite ceramic coating on Ti–6Al–4V alloy used for biomedical applications.Wear20143111-210111310.1016/j.wear.2013.12.027
    [Google Scholar]
  12. A.S.M.International.H. Committee, R.C. Tucker, A.S. for Metals.T.S. Division, ASM Handbook, Volume 5A: Thermal Spray Technology, ASM International, 2013. Available from: https://books.google.co.in/books?id=VfU7swEACAAJ
  13. XiongY. LauK. ZhouX. SchoenungJ.M. A streamlined life cycle assessment on the fabrication of WC–Co cermets.J. Clean. Prod.200816101118112610.1016/j.jclepro.2007.05.007
    [Google Scholar]
  14. CramerC.L. NandwanaP. LowdenR.A. ElliottA.M. Infiltration studies of additive manufacture of WC with Co using binder jetting and pressureless melt method.Addit. Manuf.20192833334310.1016/j.addma.2019.04.009
    [Google Scholar]
  15. LynamA. RomeroA.R. XuF. WellmanR.W. HussainT. Thermal spraying of ultra-high temperature ceramics: A review on processing routes and performance.J Thermal Spray Technol202231474577910.1007/s11666‑022‑01381‑5
    [Google Scholar]
  16. PalanisamyK. GangoluS. Mangalam AntonyJ. Effects of HVOF spray parameters on porosity and hardness of 316L SS coated Mg AZ80 alloy.Surf. Coat. Tech.202244812889810.1016/j.surfcoat.2022.128898
    [Google Scholar]
  17. MuruganK. RagupathyA. BalasubramanianV. SridharK. Optimizing HVOF spray process parameters to attain minimum porosity and maximum hardness in WC–10Co–4Cr coatings.Surf. Coat. Tech.20142479010210.1016/j.surfcoat.2014.03.022
    [Google Scholar]
  18. KoutsomichalisA. VardavouliasM. VaxevanidisN. HVOF Sprayed WC-CoCr coatings on aluminum: Tensile and tribological properties. IOP conf Seri.Mater. Sci. Eng.201717401206210.1088/1757‑899X/174/1/012062
    [Google Scholar]
  19. VigneshS. ShanmugamK. BalasubramanianV. SridharK. Identifying the optimal HVOF spray parameters to attain minimum porosity and maximum hardness in iron based amorphous metallic coatings.Defence Technology201713210111010.1016/j.dt.2017.03.001
    [Google Scholar]
  20. SharmaR.K. DasR.K. KumarS.R. Effect of HVOF spraying parameters on fracture, erosion and thermal properties of Fe alloy-based coating materials. Proceedings of the institution of mechanical engineers.J Mat Design App202123571703171110.1177/1464420721999682
    [Google Scholar]
  21. ReddyN.C. KumarB.S.A. ReddappaH.N. RameshM.R. KoppadP.G. KordS. HVOF sprayed Ni3Ti and Ni3Ti+(Cr3C2+20NiCr) coatings: Microstructure, microhardness and oxidation behaviour.J. Alloys Compd.201873623624510.1016/j.jallcom.2017.11.131
    [Google Scholar]
  22. MontgomeryD.C. Design and analysis of experimentsWiley2021Available from: https://books.google.co.in/books?id=19ywzgEACAAJ
    [Google Scholar]
  23. RibuD.C. RajeshR. ThirumalaikumarasamyD. KaladgiA.R. SaleelC.A. NisarK.S. ShaikS. AfzalA. Experimental investigation of erosion corrosion performance and slurry erosion mechanism of HVOF sprayed WC-10Co coatings using design of experiment approach.J. Mater. Res. Technol.20221829331410.1016/j.jmrt.2022.01.134
    [Google Scholar]
  24. ThiruvikramanC. BalasubramanianV. SridharK. Optimizing HVOF spray parameters to maximize bonding strength of WC-CrC-Ni Coatings on AISI 304L stainless steel.J Thermal Spray Technol201423586087510.1007/s11666‑014‑0091‑4
    [Google Scholar]
  25. GadakhV.S. Parametric optimization of wire electrical discharge machining using TOPSIS method.Adv. Prod. Eng. Manag.20127315716410.14743/apem2012.3.138
    [Google Scholar]
  26. PrabhuS. VinayagamB.K. Multiresponse optimization of edm process with nanofluids using topsis method and genetic algorithm.Archive of Mechanical Engineering 2016457110.1515/meceng‑2016‑0003
    [Google Scholar]
  27. RezaieM. karamnejadi azarK. kardan saniA. AkbariE. GhadimiN. RazmjooyN. GhadamyariM. Model parameters estimation of the proton exchange membrane fuel cell by a Modified Golden Jackal Optimization.Sustain. Energy Technol. Assess.20225310265710.1016/j.seta.2022.102657
    [Google Scholar]
  28. LouT. YueZ. JiaoY. HeZ. A hybrid strategy-based GJO algorithm for robot path planning.Expert Syst. Appl.202423812197510.1016/j.eswa.2023.121975
    [Google Scholar]
  29. FeniF.K. Ternary Ti–Mn–Nb alloys produced via powder metallurgy.MRS Bull.202348770370310.1557/s43577‑023‑00563‑y
    [Google Scholar]
  30. AffatatoS. Advanced biomaterials for orthopaedic application: The challenge of new composites and alloys used as medical devices.Mdpi AG2020Available from: https://books.google.co.in/books?id=3x_sDwAAQBAJ
    [Google Scholar]
  31. SainiA. PablaB.S. DhamiS.S. Developments in cutting tool technology in improving machinability of Ti6Al4V alloy: A review.Proc. Inst. Mech. Eng., B J. Eng. Manuf.2016230111977198910.1177/0954405416640176
    [Google Scholar]
  32. TorkashvandK. JoshiS. GuptaM. Advances in thermally sprayed WC-based wear-resistant coatings: Co-free binders, processing routes and tribological behavior.J Thermal Spray Technol202231334237710.1007/s11666‑022‑01358‑4
    [Google Scholar]
  33. OkamotoS. NakazonoY. OtsukaK. ShimoitaniY. TakadaJ. Mechanical properties of WC/Co cemented carbide with larger WC grain size.Mater. Charact.2005554-528128710.1016/j.matchar.2005.06.001
    [Google Scholar]
  34. CavaliereP. Cold-spray coatings: recent trends and future perspectives.Springer International Publishing2017Available from: https://books.google.co.in/books?id=dcI9DwAAQBAJ
    [Google Scholar]
  35. BoulosM.I. FauchaisP.L. HeberleinJ.V.R. Heberlein, thermal spray fundamentals: from powder to part.Springer International Publishing2021Available from: https://books.google.co.in/books?id=K3BJEAAAQBAJ
    [Google Scholar]
  36. ThakurL. VasudevH. Thermal spray coatings.CRC Press2021Available from: https://books.google.co.in/books?id=YehEEAAAQBAJ
    [Google Scholar]
  37. ThakurL. AroraN. A study on erosive wear behavior of HVOF sprayed nanostructured WC-CoCr coatings.J. Mech. Sci. Technol.20132751461146710.1007/s12206‑013‑0326‑1
    [Google Scholar]
  38. DongmoE. WenzelburgerM. GadowR. Analysis and optimization of the HVOF process by combined experimental and numerical approaches.Surf. Coat. Tech.2008202184470447810.1016/j.surfcoat.2008.04.029
    [Google Scholar]
  39. PhadkeM. Quality engineering using robust design.Phadke Associates, Incorporated2021Available from: https://books.google.co.in/books?id=nGCKzgEACAAJ
    [Google Scholar]
  40. TamizharasanT. SenthilkumarN. SelvakumarV. DineshS. Taguchi’s methodology of optimizing turning parameters over chip thickness ratio in machining P/M AMMC.SN Applied Sciences20191216010.1007/s42452‑019‑0170‑8
    [Google Scholar]
  41. SelvakumarV. MuruganandamS. TamizharasanT. SenthilkumarN. Machinability evaluation of Al–4%Cu–7.5%SiC metal matrix composite by Taguchi–Grey relational analysis and NSGA-II.Sadhana201641101219123410.1007/s12046‑016‑0546‑z
    [Google Scholar]
  42. KumarR. SharmaS. SinghJ.P. GulatiP. SinghG. DwivediS.P. LiC. KumarA. Tag-EldinE.M. AbbasM. Enhancement in wear-resistance of 30MNCRB5 boron steel-substrate using HVOF thermal sprayed WC–10%Co–4%Cr coatings: a comprehensive research on microstructural, tribological, and morphological analysis.J. Mater. Res. Technol.2023271072109610.1016/j.jmrt.2023.09.265
    [Google Scholar]
  43. FellahM. LabaïzM. AssalaO. DekhilL. TalebA. RezagH. IostA. Tribological behavior of Ti-6Al-4V and Ti-6Al-7Nb alloys for total hip prosthesis.Adv. Tribol.2014201411310.1155/2014/451387
    [Google Scholar]
  44. HwangC.-L. YoonK. Multiple attribute decision making, Springer Berlin Heidelberg198110.1007/978‑3‑642‑48318‑9
    [Google Scholar]
  45. YoonK.P. HwangC.L. Multiple attribute decision making: An introductionSAGE Publications1995Available from: https://books.google.co.in/books?id=dpB2AwAAQBAJ
    [Google Scholar]
  46. GuptaM.K. MiaM. PruncuC.I. KhanA.M. RahmanM.A. JamilM. SharmaV.S. Modeling and performance evaluation of Al2O3, MoS2 and graphite nanoparticle-assisted MQL in turning titanium alloy: An intelligent approach.J. Braz. Soc. Mech. Sci. Eng.202042420710.1007/s40430‑020‑2256‑z
    [Google Scholar]
  47. HolmbergK. ErdemirA. Influence of tribology on global energy consumption, costs and emissions.Friction20175326328410.1007/s40544‑017‑0183‑5
    [Google Scholar]
  48. BayerR.J. Mechanical Wear Fundamentals and Testing, Revised and Expanded.CRC Press200410.1201/9780203021798
    [Google Scholar]
  49. D’MelloG. PaiP.S. PuneetN.P. Optimization studies in high speed turning of Ti-6Al-4V.Appl. Soft Comput.20175110511510.1016/j.asoc.2016.12.003
    [Google Scholar]
  50. Mazaheri TehraniH. Shoja-RazaviR. ErfanmaneshM. HashemiS.H. BarekatM. Evaluation of the mechanical properties of WC-Ni composite coating on an AISI 321 steel substrate.Opt. Laser Technol.202012710613810.1016/j.optlastec.2020.106138
    [Google Scholar]
  51. TorkashvandK. GuptaM. BjörklundS. MarraF. BaiamonteL. JoshiS. Influence of nozzle configuration and particle size on characteristics and sliding wear behaviour of HVAF-sprayed WC-CoCr coatings.Surf. Coat. Tech.202142312758510.1016/j.surfcoat.2021.127585
    [Google Scholar]
  52. RajendranP.R. DuraisamyT. Chidambaram SeshadriR. MohankumarA. RanganathanS. BalachandranG. MuruganK. RenjithL. Optimisation of HVOF spray process parameters to achieve minimum porosity and maximum hardness in WC-10Ni-5Cr coatings.Coatings202212333910.3390/coatings12030339
    [Google Scholar]
  53. MahadeS. BaiamonteL. SadeghimereshtE. BjörklundS. MarraF. JoshiS. Novel utilization of powder-suspension hybrid feedstock in HVAF spraying to deposit improved wear and corrosion resistant coatings.Surf. Coat. Tech.202141212701510.1016/j.surfcoat.2021.127015
    [Google Scholar]
  54. GórnikM. JondaE. ŁatkaL. NowakowskaM. GodzierzM. Influence of spray distance on mechanical and tribological properties of HVOF sprayed WC-Co-Cr coatings.Mater. Sci. Pol.202139454555410.2478/msp‑2021‑0047
    [Google Scholar]
  55. KharanzhevskiyE.V. IpatovA.G. MakarovA.V. Gil’mutdinovF.Z. Towards eliminating friction and wear in plain bearings operating without lubrication.Sci. Rep.20231311736210.1038/s41598‑023‑44702‑637833347
    [Google Scholar]
  56. LiuM. YuZ. ZhangY. WuH. LiaoH. DengS. Prediction and analysis of high velocity oxy fuel (HVOF) sprayed coating using artificial neural network.Surf. Coat. Tech.201937812498810.1016/j.surfcoat.2019.124988
    [Google Scholar]
  57. VaratharajuluM. DuraiselvamM. KumarM.B. JayaprakashG. BaskarN. Multi criteria decision making through TOPSIS and COPRAS on drilling parameters of magnesium AZ91.J. Magnesium Alloys202210102857287410.1016/j.jma.2021.05.006
    [Google Scholar]
  58. ShastriA. NargundkarA. KulkarniA.J. BenedicentiL. Optimization of process parameters for turning of titanium alloy (Grade II) in MQL environment using multi-CI algorithm.SN Applied Sciences20213222610.1007/s42452‑021‑04197‑0
    [Google Scholar]
  59. TamiloliN. VenkatesanJ. MuraliG. KodaliS.P. Sampath KumarT. ArunkumarM.P. Optimization of end milling on Al–SiC-fly ash metal matrix composite using Topsis and fuzzy logic.SN Appl. Sci.2019110120410.1007/s42452‑019‑1191‑z
    [Google Scholar]
  60. RajP. BijuP.L. DeepanrajB. SenthilkumarN. Optimizing the machining conditions in turning hybrid aluminium nanocomposites adopting teaching–learning based optimization and MOORA technique.Inter. J. Inter. Des. Manufac. (IJIDeM)20241833089310110.1007/s12008‑023‑01450‑1
    [Google Scholar]
  61. QuJ. BlauP.J. WatkinsT.R. CavinO.B. KulkarniN.S. Friction and wear of titanium alloys sliding against metal, polymer, and ceramic counterfaces.Wear200525891348135610.1016/j.wear.2004.09.062
    [Google Scholar]
  62. SenthilkumarN. TamizharasanT. Experimental investigation of cutting zone temperature and flank wear correlation in turning AISI 1045 steel with different tool geometries.Indian J. Eng. Mater. Sci.201421
    [Google Scholar]
  63. AntonyJ. Design of experiments for engineers and scientists.Elsevier Science2023Available from: https://books.google.co.in/books?id=cmilEAAAQBAJ
    [Google Scholar]
  64. KumarD. PandeyK. Optimization of the process parameters in generic thermal barrier coatings using the taguchi method and grey relational analysis, proceedings of the institution of mechanical engineersPart l: journal of materials: design and applications.201723160061010.1177/1464420715602727
    [Google Scholar]
  65. IacobucciD. Analysis of Variance, Experimental Design, and Multivariate ANOVA, 3e, Amazon Digital Services LLC - Kdp.2023Available from: https://books.google.co.in/books?id=Yv-mzwEACAAJ
  66. GamstG. MeyersL.S. GuarinoA.J. Analysis of Variance Designs.Cambridge University Press200810.1017/CBO9780511801648
    [Google Scholar]
  67. ChopraN. Mohsin AnsariM. Golden jackal optimization: A novel nature-inspired optimizer for engineering applications.Expert Syst. Appl.202219811692410.1016/j.eswa.2022.116924
    [Google Scholar]
  68. MohapatraS. MohapatraP. An improved golden jackal optimization algorithm using opposition-based learning for global optimization and engineering problemsInter J Comp Intel Syst202316114710.1007/s44196‑023‑00320‑8
    [Google Scholar]
  69. HashimF.A. HousseinE.H. HussainK. MabroukM.S. Al-AtabanyW. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems.Math. Comput. Simul.20221928411010.1016/j.matcom.2021.08.013
    [Google Scholar]
  70. Jalali AzizpourM. Tolouei-RadM. The effect of spraying temperature on the corrosion and wear behavior of HVOF thermal sprayed WC-Co coatings.Ceram. Int.20194511139341394110.1016/j.ceramint.2019.04.091
    [Google Scholar]
  71. ShipwayP.H. McCartneyD.G. SudaprasertT. Sliding wear behaviour of conventional and nanostructured HVOF sprayed WC–Co coatings.Wear20052597-1282082710.1016/j.wear.2005.02.059
    [Google Scholar]
  72. Al-MutairiS. HashmiM.S.J. YilbasB.S. StokesJ. Microstructural characterization of HVOF/plasma thermal spray of micro/nano WC–12%Co powders.Surf. Coat. Tech.201526417518610.1016/j.surfcoat.2014.12.050
    [Google Scholar]
  73. WangQ. ChenZ. LiL. YangG. The parameters optimization and abrasion wear mechanism of liquid fuel HVOF sprayed bimodal WC–12Co coating.Surf. Coat. Tech.20122068-92233224110.1016/j.surfcoat.2011.09.071
    [Google Scholar]
  74. LekatouA. SioulasD. KarantzalisA.E. GrimanelisD. A comparative study on the microstructure and surface property evaluation of coatings produced from nanostructured and conventional WC–Co powders HVOF-sprayed on Al7075.Surf. Coat. Tech.201527653955610.1016/j.surfcoat.2015.06.017
    [Google Scholar]
  75. Suresh BabuP. BasuB. SundararajanG. Processing–structure–property correlation and decarburization phenomenon in detonation sprayed WC–12Co coatings.Acta Mater.200856185012502610.1016/j.actamat.2008.06.023
    [Google Scholar]
  76. GuilemanyJ.M. EspallargasN. SuegamaP.H. BenedettiA.V. FernándezJ. High-velocity oxyfuel Cr 3 C 2-NiCr replacing hard chromium coatings.J Thermal Spray Technol20051433534110.1361/105996305X59350
    [Google Scholar]
  77. GuilemanyJ.M. NinJ. Thermal spraying methods for protection against wear.Surface Coatings for Protection Against Wear.Elsevier200624930110.1533/9781845691561.249
    [Google Scholar]
  78. YinZ. TaoS. ZhouX. DingC. Tribological properties of plasma sprayed Al/Al2O3 composite coatings.Wear20072637-121430143710.1016/j.wear.2007.01.052
    [Google Scholar]
  79. PsyllakiP.P. JeandinM. PantelisD.I. Microstructure and wear mechanisms of thermal-sprayed alumina coatings.Mater. Lett.2001471-2778210.1016/S0167‑577X(00)00215‑9
    [Google Scholar]
  80. DejangN. LimpichaipanitA. WatcharapasornA. WirojanupatumpS. NiranatlumpongP. JiansirisomboonS. Fabrication and properties of plasma-sprayed Al2O3/ZrO2 composite coatings.J. Thermal Spray Technol.20112061259126810.1007/s11666‑011‑9672‑7
    [Google Scholar]
  81. HawthorneH.M. EricksonL.C. RossD. TaiH. TroczynskiT. The microstructural dependence of wear and indentation behaviour of some plasma-sprayed alumina coatings.Wear1997203-20470971410.1016/S0043‑1648(96)07399‑1
    [Google Scholar]
  82. Vijande-DiazR. BelzunceJ. FernandezE. RinconA. PérezM.C. Wear and microstructure in fine ceramic coatings.Wear1991148222123310.1016/0043‑1648(91)90286‑4
    [Google Scholar]
  83. McPhersonR. ShaferB.V. Interlamellar contact within plasma-sprayed coatings.Thin Solid Films198297320120410.1016/0040‑6090(82)90453‑9
    [Google Scholar]
  84. PrandoD. BrennaA. DiamantiM.V. BerettaS. BolzoniF. OrmelleseM. PedeferriM. Corrosion of titanium: Part 2: Effects of surface treatments.J. Appl. Biomater. Funct. Mater.201816131310.5301/jabfm.500039629192718
    [Google Scholar]
  85. CookeK.O. McleanJ. A review of recently patented work on thermal sprayed coatings used for wear and corrosion protection.Recent Pat. Corros. Sci.20122667410.2174/2210683911202010066
    [Google Scholar]
  86. HeimannR. LehmannH. Recently patented work on thermally sprayed coatings for protection against wear and corrosion of engineered structures.Recent Pat. Mater. Sci.200811415510.2174/1874464810801010041
    [Google Scholar]
  87. Ondrej RacekM Brad Beardsley MarkD. Thermal spray coating application, US20100080982A1.2008
    [Google Scholar]
  88. ProtasovaL.N. CroonM.H.J.M. HesselV. Review of patent publications from 1990 to 2010 on catalytic coatings on different substrates, including microstructured channels: Preparation, deposition techniques, applications.Recent Pat. Chem. Eng.201251284410.2174/2211334711205010028
    [Google Scholar]
  89. JohnD Method of applying a plasma spray coating, US3573090A.1968
    [Google Scholar]
  90. LehmannH. HeimannR. Thermally sprayed thermal barrier coating (TBC) systems: A survey of recent patents.Recent Pat. Mater. Sci.20081214015810.2174/1874464810801020140
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105306841240808092616
Loading
/content/journals/nanotec/10.2174/0118722105306841240808092616
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test