Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Background

Nanosuspension has emerged as an effective, lucrative, and unequalled approach for efficiently elevating the dissolution and bioavailability of aqueous soluble drugs. Diverse challenges persist within this domain, demanding further comprehensive investigation and exploration.

Objective

This study aims to design, develop, optimise formulation and process variables, and characterise the stabilised aqueous dissolvable nanosuspension using chlorthalidone as a BCS class-IV drug.

Methods

Nanosuspensions of the chlorthalidone drug were prepared using a combination of top-down and bottom-up approaches. Various polymers such as Pluronic L-64, F-68, F-127, and Synperonic F-108 were used as stabilisers in this research. All important processes and formulation variables, such as ultrasonication intensity and time, the concentration of the drug, organic solvent, and stabilisers that may critically influence the characteristics of the nanosuspensions, were optimised. Formulation screening was performed using the optimisation of process and formulation variables, and the optimised nanosuspension formulation was assessed for particle size, PDI, surface charge, morphology, drug release, and stability.

Results

To select an optimised nanosuspension formulation, the effects of formulation and process variables were investigated. These variables critically influence the development of a stabilised nanosuspension. The outcomes revealed that the nanosuspension formulation containing pluronic F-68 as a stabiliser in 0.6% w/v concentration and the drug in 4 mg/ml concentration were optimized. The particle size and zeta potential of the optimised preparation were 110 nm and -27.5 mV, respectively. The drug release of chlorthalidone drug from the optimised nanoformulation was increased up to 3-fold, approximately (88% in 90 min) compared with pure chlorthalidone drug (27% in 90 min) because of the decrease in particle size. Moreover, stability studies indicated that the crafted nanoformulation was stable at cold (4°C) as well as normal room temperature (25°C) for six months.

Conclusion

From the obtained results, it was concluded that the combination of top-down and bottom-up approaches employed for the fabrication of oral nanosuspension is a remunerative and lucrative approach to successfully resolve the perplexities associated with the dissolution rate of poorly aqueous soluble BCS class-IV drug moieties such as chlorthalidone. Moreover, various patents have been granted over this novel technology which have also summarized in the manuscript for the better understanding of readers.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105317594241025052905
2025-01-09
2025-12-14
Loading full text...

Full text loading...

References

  1. GoelS. SachdevaM. AgarwalV. Development and characterization of oral nanosuspension using esomeprazole magnesium trihydrate.Nano Sci Nanotech Asia2020619
    [Google Scholar]
  2. HuangY. LuoX. YouX. XiaY. SongX. YuL. The preparation and evaluation of water-soluble SKLB610 nanosuspensions with improved bioavailability.AAPS PharmSciTech20131431236124310.1208/s12249‑013‑0005‑7 23934433
    [Google Scholar]
  3. Al-KassasR. BansalM. ShawJ. Nanosizing techniques for improving bioavailability of drugs.J. Control. Release201726020221210.1016/j.jconrel.2017.06.003 28603030
    [Google Scholar]
  4. GhadiR. DandN. BCS class IV drugs: Highly notorious candidates for formulation development.J. Control. Release2017248719510.1016/j.jconrel.2017.01.014 28088572
    [Google Scholar]
  5. GeethaG. PoojithaU. KhanU. Various techniques for preparation of nanosuspension- A review.Int. J. Pharma Res. Rev.201433037
    [Google Scholar]
  6. FasinuP. PillayV. NdesendoV.M.K. du ToitL.C. ChoonaraY.E. Diverse approaches for the enhancement of oral drug bioavailability.Biopharm. Drug Dispos.201132418520910.1002/bdd.750 21480294
    [Google Scholar]
  7. NakaraniM. MisraA.K. PatelJ.K. VaghaniS.S. Itraconazole nanosuspension for oral delivery: Formulation, characterization and in vitro comparison with marketed formulation.Daru20101828490 22615599
    [Google Scholar]
  8. PawarR.N. ChavanS.N. MenonM.D. Development, characterization and evaluation of tinidazole nanosuspension for treatment of amoebiasis.J. Nanomed. Nanotechnol.20167614
    [Google Scholar]
  9. NagareS.K. GhughureSM SalunkeSB JadhavSG DhoreRJ A review on Nanosuspension: An innovative acceptable approach in novel delivery system.Univ J Pharm2012111931
    [Google Scholar]
  10. BhowmikD HarishG DuraivelS KumarBP RaghuvanshiV KumarKS Nanosuspension–A novel approaches in drug delivery system.Pharm. Innov J20121125063
    [Google Scholar]
  11. KambleV.A. JagdaleDM KadamVJ Nanosuspension: A novel drug delivery system.Int. J. Pharma Bio Sci.201014352360
    [Google Scholar]
  12. SoniS. PatelT ThakarB PandyaV BharadiaP Nanosuspension: An approach to enhance solubility of drugs.IJPI’s J Pharm Cos2012295063
    [Google Scholar]
  13. WaghK.S. PatilS.K. AkarteA.K. Nanosuspension-A new approach of bioavailability enhancement.Int. J. Pharm. Sci. Rev. Res.201186165
    [Google Scholar]
  14. ChogaleM. GhodakeV. PatravaleV. Performance parameters and characterizations of nanocrystals: A brief review.Pharmaceutics2016832610.3390/pharmaceutics8030026 27589788
    [Google Scholar]
  15. ElsayedI. AbdelbaryA.A. ElshafeeyA.H. Nanosizing of a poorly soluble drug: Technique optimization, factorial analysis, and pharmacokinetic study in healthy human volunteers.Int. J. Nanomedicine2014929432953 24971006
    [Google Scholar]
  16. ChanH.K. KwokP.C.L. Production methods for nanodrug particles using the bottom-up approach.Adv. Drug Deliv. Rev.201163640641610.1016/j.addr.2011.03.011 21457742
    [Google Scholar]
  17. JarvisM. KrishnanV. MitragotriS. Nanocrystals: A perspective on translational research and clinical studies.Bioeng. Transl. Med.20194151610.1002/btm2.10122 30680314
    [Google Scholar]
  18. PardeikeJ. StrohmeierD.M. SchrödlN. Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines.Int. J. Pharm.201142019310010.1016/j.ijpharm.2011.08.033 21889582
    [Google Scholar]
  19. LaiF. PiniE. AngioniG. Nanocrystals as tool to improve piroxicam dissolution rate in novel orally disintegrating tablets.Eur. J. Pharm. Biopharm.201179355255810.1016/j.ejpb.2011.07.005 21820052
    [Google Scholar]
  20. SharmaP. DennyW.A. GargS. Effect of wet milling process on the solid state of indomethacin and simvastatin.Int. J. Pharm.20093801-2404810.1016/j.ijpharm.2009.06.029 19576976
    [Google Scholar]
  21. VermaS. GokhaleR. BurgessD.J. A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions.Int. J. Pharm.20093801-221622210.1016/j.ijpharm.2009.07.005 19596059
    [Google Scholar]
  22. RoushG.C. AbdelfattahR. SongS. ErnstM.E. SicaD.A. KostisJ.B. Hydrochlorothiazide vs chlorthalidone, indapamide, and potassium‐sparing/hydrochlorothiazide diuretics for reducing left ventricular hypertrophy: A systematic review and meta‐analysis.J. Clin. Hypertens. (Greenwich)201820101507151510.1111/jch.13386 30251403
    [Google Scholar]
  23. DinevaS. UzunovaK. PavlovaV. FilipovaE. KalinovK. VekovT. Comparative efficacy and safety of chlorthalidone and hydrochlorothiazide—meta-analysis.J. Hum. Hypertens.2019331176677410.1038/s41371‑019‑0255‑2 31595024
    [Google Scholar]
  24. JadhavS.P. DhakadP.K. GuptaT. GilhotraR. Formulation development and evaluation of paliperidone nanosuspension for solubility enhancement.Inter J App Pharm202416417318110.22159/ijap.2024v16i4.51218
    [Google Scholar]
  25. AldosariB.N. IbrahimM.A. AlqahtaniY. Abou El ElaA.E.S.F. Formulation and evaluation of Fluconazole Nanosuspensions: In vitro characterization and transcorneal permeability studies.Saudi Pharm. J.202432710210410.1016/j.jsps.2024.102104 38841107
    [Google Scholar]
  26. AmkarA.J. RaneB.R. JainA.S. Development and evaluation of nanosuspension loaded nanogel of nortriptyline hcl for brain delivery.Eng. Proc.2023565810.3390/ASEC2023‑15311
    [Google Scholar]
  27. ShindeM.E. SonawaneM.P. MaruA.D. Formulation and evaluation of nanosuspension as an alternative approach for solubility enhancement of simvastatin.Int. J. Pharm. Sci. Rev. Res.20217119710110.47583/ijpsrr.2021.v71i01.012
    [Google Scholar]
  28. JoshiD.R. AdhikariN. An overview on common organic solvents and their toxicity.J. Pharm. Res. Int.201928311810.9734/jpri/2019/v28i330203
    [Google Scholar]
  29. ThodetiS. BantikatlaH.B. KumarY.K. SathishB. Synthesis and characterization of ZnO nanostructures by oxidation technique.Int J Adv Res Sci Engr20176539544
    [Google Scholar]
  30. AgarwalV. BajpaiM. Preparation and optimization of esomeprazole nanosuspension using evaporative precipitation–ultrasonication.Trop. J. Pharm. Res.201413449750310.4314/tjpr.v13i4.2
    [Google Scholar]
  31. PapdiwalA.P. PandeV.V. AherS.J. Investigation of effect of different stabilizers on formulation of zaltoprofen nanosuspension.Int. J. Pharm. Sci. Rev. Res.2014272244249
    [Google Scholar]
  32. HidenoriO. YukioN. KazunoriK. PEG-ylated nanoparticles for biological and pharmaceutical application.Adv. Drug Deliv. Rev.200324403419
    [Google Scholar]
  33. WangY. ZhangD. LiuZ. In vitro and in vivo evaluation of silybin nanosuspensions for oral and intravenous delivery.Nanotechnology2010211515510410.1088/0957‑4484/21/15/155104 20332565
    [Google Scholar]
  34. SmithM.C. CristR.M. ClogstonJ.D. McNeilS.E. Zeta potential: A case study of cationic, anionic, and neutral liposomes.Anal. Bioanal. Chem.2017409245779578710.1007/s00216‑017‑0527‑z 28762066
    [Google Scholar]
  35. GoelS. SachdevaM. AgarwalV. Nanosuspension technology: Recent patents on drug delivery and their characterizations.Recent Pat. Drug Deliv. Formul.20191329110410.2174/1872211313666190614151615 31203813
    [Google Scholar]
  36. KaushikV. LahiriT. SinghaS. Exploring geometric properties of gold nanoparticles using TEM images to explain their chaperone like activity for citrate synthase.Bioinformation20117732032310.6026/97320630007320 22355230
    [Google Scholar]
  37. MathisU. KaegiR. MohrM. ZenobiR. TEM analysis of volatile nanoparticles from particle trap equipped diesel and direct-injection spark-ignition vehicles.Atmos. Environ.200438264347435510.1016/j.atmosenv.2004.04.016
    [Google Scholar]
  38. McConnachieL.A. KinmanL.M. KoehnJ. Long-acting profile of 4 drugs in 1 anti-HIV nanosuspension in nonhuman primates for 5 weeks after a single subcutaneous injection.J. Pharm. Sci.201810771787179010.1016/j.xphs.2018.03.005 29548975
    [Google Scholar]
  39. AgarwalV. BajpaiM. Investigation of formulation and process parameters for the production of esomeprazole nanosuspension by anti-solvent precipitation ultrasonication technique.Curr. Nanosci.20139677377910.2174/15734137113099990079
    [Google Scholar]
  40. HanafyA. SpahnlangguthH. VergnaultG. Pharmacokinetic evaluation of oral fenofibrate nanosuspensions and SLN in comparison to conventional suspensions of micronized drug.Adv. Drug Deliv. Rev.200759641942610.1016/j.addr.2007.04.005 17566595
    [Google Scholar]
  41. AllenT.M. ChengW.W.K. HareJ.I. LaginhaK.M. Pharmacokinetics and pharmacodynamics of lipidic nano-particles in cancer.Anticancer. Agents Med. Chem.20066651352310.2174/187152006778699121 17100556
    [Google Scholar]
  42. EtheridgeM.L. CampbellS.A. ErdmanA.G. HaynesC.L. WolfS.M. McCulloughJ. The big picture on nanomedicine: the state of investigational and approved nanomedicine products.Nanomedicine20139111410.1016/j.nano.2012.05.013 22684017
    [Google Scholar]
  43. NieS. Understanding and overcoming major barriers in cancer nanomedicine.Nanomedicine (Lond)20105452352810.2217/nnm.10.23 20528447
    [Google Scholar]
  44. de JongW.H. BormP.J.A. Drug delivery and nanoparticles: Applications and hazards.Int. J. Nanomedicine20083213314910.2147/IJN.S596 18686775
    [Google Scholar]
  45. D’SouzaS. FarajJ.A. DoratiR. DeLucaP.P. A short term quality control tool for biodegradable microspheres.AAPS PharmSciTech201415353054110.1208/s12249‑013‑0052‑0 24519488
    [Google Scholar]
  46. BuchP. HolmP. ThomassenJ.Q. IVIVC for fenofibrate immediate release tablets using solubility and permeability as in vitro predictors for pharmacokinetics.J. Pharm. Sci.201099104427443610.1002/jps.22148 20737642
    [Google Scholar]
  47. D’SouzaS. FarajJ.A. GiovagnoliS. DeLucaP.P. IVIVC from long acting olanzapine microspheres.Int. J. Biomater.2014201411110.1155/2014/407065 24578707
    [Google Scholar]
  48. AmannL.C. GandalM.J. LinR. LiangY. SiegelS.J. In vitro-in vivo correlations of scalable PLGA-risperidone implants for the treatment of schizophrenia.Pharm. Res.20102781730173710.1007/s11095‑010‑0152‑4 20422263
    [Google Scholar]
  49. MaghsoudiA. ShojaosadatiS.A. Vasheghani FarahaniE. 5-Fluorouracil-loaded BSA nanoparticles: Formulation optimization and in vitro release study.AAPS PharmSciTech2008941092109610.1208/s12249‑008‑9146‑5 18850275
    [Google Scholar]
  50. BhardwajU. BurgessD.J. A novel USP apparatus 4 based release testing method for dispersed systems.Int. J. Pharm.20103881-228729410.1016/j.ijpharm.2010.01.009 20083176
    [Google Scholar]
  51. MoraL. Chumbimuni-TorresK.Y. ClawsonC. HernandezL. ZhangL. WangJ. Real-time electrochemical monitoring of drug release from therapeutic nanoparticles.J. Control. Release20091401697310.1016/j.jconrel.2009.08.002 19679152
    [Google Scholar]
  52. MichalowskiC.B. GuterresS.S. Dalla CostaT. Microdialysis for evaluating the entrapment and release of a lipophilic drug from nanoparticles.J. Pharm. Biomed. Anal.20043551093110010.1016/j.jpba.2004.04.002 15336356
    [Google Scholar]
  53. KumarR. NagarwalR.C. DhanawatM. PanditJ.K. In-vitro and in-vivo study of indomethacin loaded gelatin nanoparticles.J. Biomed. Nanotechnol.20117332533310.1166/jbn.2011.1290 21830472
    [Google Scholar]
  54. AgarwalV. RathoreD.S. BajpaiM. Investigation of effect of non-ionic stabilizers on the physical stability of drug nanosuspension prepared by bottom up approach.Int. J. Pharm. Sci. Drug Res.20168418919810.25004/IJPSDR.2016.080401
    [Google Scholar]
  55. OtteA. SohB.K. ParkK. The impact of post-processing temperature on plga microparticle properties.Pharm. Res.202340112677268510.1007/s11095‑023‑03568‑z 37589826
    [Google Scholar]
  56. CaoX. DengW.W. FuM. In vitro release and in vitro-in vivo correlation for silybin meglumine incorporated into hollow-type mesoporous silica nanoparticles.Int. J. Nanomedicine20127753762 22393284
    [Google Scholar]
  57. LiW. YangY. TianY. Preparation and in vitro/in vivo evaluation of revaprazan hydrochloride nanosuspension.Int. J. Pharm.20114081-215716210.1016/j.ijpharm.2011.01.059 21295124
    [Google Scholar]
  58. BommaganiM BhowmickSB KaneP DubeyV Method of preparing the nanoparticulate topical composition. W.O.Patent 2016135753Al2016
  59. MaoS GuanJ. Nanosuspension formulation. W.O. Patent 2016081593Al2016
  60. InghelbrechtS.K.K. BeirowskiJ.A. GieselerH. Freeze dried drug nanosuspension. U.S. Patent 20160317534A12016
  61. GeruszV. MouzeC. VanF. AmeyeD. Novel drug formulation. U.S. Patent 20160206577A12016
  62. KablitzC. New treatment of fish with a nanosuspension of lufenuron or hexaflumuron.U.S. Patent 20150238446A12015
  63. XuS. Nanosuspension of tobramycin and dexamethasone and preparation method thereof. C.N.Patent 1057088442016
  64. ShuyuanS. Method of preparation of nanocrystals of simvastatin. C.N.Patent 1053152492016
  65. ZhangL. Method of developing celecoxib nanosuspension capsule. C.N.Patent 1055349472016
  66. ZhangJ. Lurasidone and its preparation method thereof. C.N. Patent 1048149262015
  67. ChenM.J. Nanosuspension of poor water soluble drug via micro fluidization process. U.S. Patent 9023886B22015
  68. AgarwalV. KaushikN. GoelS. Development of surface modified and aqueous re-dispersible nanocrystal using pluronic f-68 and suitable cryoprotectant for accelerating the dissolution rate of cilnidipine.Nanosci. Nanotechnol. Asia2023135e22062321814710.2174/2210681213666230622100611
    [Google Scholar]
  69. MazumdarR. PaulS.D. Formulation and evaluation of atenolol nanocrystals using 3(2) full factorial design.Nanosci. Nanotechnol. Asia202010330631510.2174/2210681209666190220120053
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105317594241025052905
Loading
/content/journals/nanotec/10.2174/0118722105317594241025052905
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test