Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Background

Thin Film Transistors (TFTs) are increasingly prevalent electrical components in display products, ranging from smartphones to diagonal flat panel TVs. The limitations in existing TFT technologies, such as high-temperature processing, carrier mobility, lower ON/OFF ratio, device mobility, and thermal stability, result in the search for new semiconductor materials with superior properties.

Objective

The main objective of this present work is to fabricate the efficient Single-Walled Carbon Nanotube Thin Film Transistor (TFT) for flat panel display.

Methods

Carbon Nano-Tubes (CNTs) are a promising semiconductor material for TFT devices due to their one-dimensional structure and exceptional characteristics. In this research work, the CNT-TFTs have been fabricated using nano-fabrication techniques with a spin process. The fabricated devices have been characterized for structural, morphological, and electrical characteristics.

Results

The 20 µm channel length and 30 µm channel width fabricated device produces about 1.3 nA, which lies in the practical range of operating TFTs reported previously. Compared to reported patents and published works, this demonstrates a significant improvement.

Conclusion

Further guidelines and limitations of this fabrication method are also discussed for future efficient device fabrication.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105318225241021042955
2025-01-23
2025-12-14
Loading full text...

Full text loading...

References

  1. WindsorH.H. Popular mechanics.New York: Hearst Corporation19541011
    [Google Scholar]
  2. AikenW.R. History of the Kaiser—Aiken, thin cathode ray tube.IEEE Trans. Electron Dev.198431111605160810.1109/T‑ED.1984.21758
    [Google Scholar]
  3. WeberL.F. History of the plasma display panel.IEEE Trans. Plasma Sci.200634226827810.1109/TPS.2006.872440
    [Google Scholar]
  4. 1960 - Metal Oxide Semiconductor (MOS) Transistor Demonstrated1959Available from: https://www.computerhistory.org/siliconengine/metal-oxide-semiconductor-mos-transistor-demonstrated/
  5. KahngD. AtallaM.M. Silicon-silicon dioxide field induced surface devices.INIRE Solid State Device Research Conference1960
    [Google Scholar]
  6. WeimerP. The TFT a new thin-film transistor.Proceedings of the IRE19625061462146910.1109/JRPROC.1962.288190
    [Google Scholar]
  7. KimizukaN. YamazakiS. Physics and technology of crystalline oxide semiconductor CAAC-IGZO: Fundamentals.John Wiley & Sons1962217
    [Google Scholar]
  8. KawamotoH. The inventors of TFT active-matrix LCD receive the 2011 IEEE nishizawa medal.J. Disp. Technol.2012813410.1109/JDT.2011.2177740
    [Google Scholar]
  9. CastellanoJ.A. The secret years.In: Liquid gold: The story of liquid crystal displays and the creation of an industry.World Sci2005414210.1142/5622
    [Google Scholar]
  10. CastellanoJ.A. View from the sidelines. In: Liquid gold: The story of liquid crystal displays and the creation of an industry.World Sci200516717610.1142/5622
    [Google Scholar]
  11. KuoY. Thin film transistor technology-past, present, and future.Electrochem. Soc. Interface2013221556110.1149/2.F06131if
    [Google Scholar]
  12. BrodyT.P. AsarsJ.A. DixonG.D. A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel.IEEE Trans. Electron Dev.19732011995100110.1109/T‑ED.1973.17780
    [Google Scholar]
  13. MorozumiS. OguchiK. Current status of LCD-TV development in Japan.Mol. Cryst. Liq. Cryst. (Phila. Pa.)1982941–24359
    [Google Scholar]
  14. MoorthyV.M. MohanV.S. Modeling, optimization, and simulation of Nanomaterials-Based Organic thin film transistor for future use in pH sensing.Recent Pat. Nanotechnol.2024181455310.2174/1872210517666230414081056 37056064
    [Google Scholar]
  15. ET-10 Available from: https://corporate.epson/en/about/history/milestone-products/1984-8-et10.html 2020
  16. AkkiliV.G. SrivastavaV.M. Design and performance analysis of low sub-threshold swing p-channel cylindrical TFTs.Micro Nanosyst.2023151657410.2174/1876402914666220518141705
    [Google Scholar]
  17. BrothertonS.D. Introduction to Thin Film Transistors: Physics and technology of TFTs.Springer Science & Business Media20137410.1007/978‑3‑319‑00002‑2
    [Google Scholar]
  18. KramerB. Advances in Solid State Physics.Springer Science & Business Media20034010.1007/b12017
    [Google Scholar]
  19. DargarS.K. SrivastavaV.M. Design and analysis of IGZO thin film transistor for AMOLED pixel circuit using double-gate tri active layer channel.Heliyon201954e0145210.1016/j.heliyon.2019.e01452 31008392
    [Google Scholar]
  20. Back to the future: Hewlett packard's HP5082-7000 and the dawn of LED display technology.2019Available from: https://uat-shop.rocelec.com/news/back-to-the-future-hewlett-packard
  21. TangC.W. VanSlykeS.A. Organic electroluminescent diodes.Appl. Phys. Lett.1987511291391510.1063/1.98799
    [Google Scholar]
  22. HynixSK History: 2000s.2019Available from: https://www.skhynix.com/
  23. Wilkinson Scott. Sony KDL-55XBR8 LCD TV.2008Available from: https://www.soundandvision.com/content/sony-kdl-55xbr8-lcd-tv-real-world-performance
  24. Sony XEL-1The world’s first OLED TV.2008Available from: https://www.oled-info.com/company_logos/sonydrive_xel_1_oled_tv
    [Google Scholar]
  25. LiuB. XuM. WangL. High-performance hybrid white organic light-emitting diodes comprising ultrathin blue and orange emissive layers.Appl. Phys. Express201361212210110.7567/APEX.6.122101
    [Google Scholar]
  26. LiuB. WangL. XuM. Extremely stable-color flexible white organic light-emitting diodes with efficiency exceeding 100 lm] W −1.J. Mater. Chem. C Mater Opt Electron Devices20142469836984110.1039/C4TC01582G
    [Google Scholar]
  27. LiuB. WangL. XuM. Simultaneous achievement of low efficiency roll-off and stable color in highly efficient single-emitting-layer phosphorescent white organic light-emitting diodes.J. Mater. Chem. C 20142295870587710.1039/C4TC00413B
    [Google Scholar]
  28. LiuB. XuM. WangL. Very-high color rendering index hy-brid white organic light-emitting diodes with double emitting nanolayers.Nano-Micro Lett.20146433533910.1007/s40820‑014‑0006‑4 30464944
    [Google Scholar]
  29. WangQ. OswaldI.W.H. PerezM.R. Doping-free organic light-emitting diodes with very high power efficiency, simple device structure, and superior spectral performance.Adv. Funct. Mater.201424304746475210.1002/adfm.201400597
    [Google Scholar]
  30. LiuB. LuoD. ZouJ. Host–guest system comprising high guest concentration to achieve simplified and high-performance hybrid white organic light-emitting diodes.J. Mater. Chem.2015363596366
    [Google Scholar]
  31. LiuB. WangL. GaoD. Harnessing charge and exciton distribution towards extremely high performance: The critical role of guests in single-emitting-layer white OLEDs.Mater. Horiz.20152553654410.1039/C5MH00051C
    [Google Scholar]
  32. MoorthyV.M. SrivastavaV.M. Device modelling and optimization of nanomaterial-based planar heterojunction solar cell (by varying the device dimensions and material parameters).Nanomaterials (Basel)20221217303110.3390/nano12173031 36080068
    [Google Scholar]
  33. LiuB. ZouJ. ZhouZ. Efficient single-emitting layer hybrid white organic light-emitting diodes with low efficiency roll-off, stable color and extremely high luminance.J. Ind. Eng. Chem.201530859110.1016/j.jiec.2015.05.006
    [Google Scholar]
  34. ParamasivamP. GowthamanN. SrivastavaV.M. Self-consistent analysis for optimization of AlGaAs/GaAs based heterostructure.J. Electr. Eng. Technol.20241974469448310.1007/s42835‑023‑01721‑7
    [Google Scholar]
  35. LuoD. LiX.L. ZhaoY. GaoY. LiuB. High-performance blue molecular emitter-free and doping-free hybrid white organic light-emitting diodes: An alternative concept to manipulate charges and excitons based on exciplex and electroplex emission.ACS Photonics2017461566157510.1021/acsphotonics.7b00364
    [Google Scholar]
  36. HsuH.H. ChangC.Y. ChengC.H. ChiouS.H. HuangC.H. ChiuY.C. An oxygen gettering scheme for improving device mobility and subthreshold swing of ingazno-based thin-film transistor.IEEE Trans. Nanotechnol.201413593393810.1109/TNANO.2014.2332395
    [Google Scholar]
  37. LaiH.C. PeiZ. JianJ.R. TzengB.J. Alumina nanoparticle/polymer nanocomposite dielectric for flexible amorphous indium-gallium-zinc oxide thin film transistors on plastic substrate with superior stability.Appl. Phys. Lett.2014105303351010.1063/1.4891426
    [Google Scholar]
  38. PettiL. MunzenriederN. SalvatoreG.A. Influence of mechanical bending on flexible InGaZnO-based ferroelectric memory TFTs.IEEE Trans. Electron Dev.20146141085109210.1109/TED.2014.2304307
    [Google Scholar]
  39. CherenackK.H. MunzenriederN.S. TrosterG. Impact of mechanical bending on ZnO and IGZO thin-film transistors.IEEE Electron Device Lett.2010311254125610.1109/LED.2010.2068535
    [Google Scholar]
  40. MoorthyV.M. SrivastavaV.M. Device modeling of organic photovoltaic cells with traditional and inverted cells using] s-SWCNT:C60 as active layer.Nanomaterials (Basel)20221216284410.3390/nano12162844 36014708
    [Google Scholar]
  41. YooJ.S. JungS.H. KimY.C. Highly flexible AM-OLED display with integrated gate driver using amorphous silicon TFT on ultrathin metal foil.J. Disp. Technol.201061156557010.1109/JDT.2010.2048998
    [Google Scholar]
  42. MoorthyV.M. RathnasamiJ.D. SrivastavaV.M. Design optimization and characterization with fabrication of nanomaterials-based photo diode cell for subretinal implant application.Nanomaterials (Basel)202313593410.3390/nano13050934 36903812
    [Google Scholar]
  43. HoffmanR.L. ZnO-channel thin-film transistors: Channel mobility.J. Appl. Phys.200495105813581910.1063/1.1712015
    [Google Scholar]
  44. FortunatoE.M.C. BarquinhaP.M.C. PimentelA.C.M.B.G. Fully transparent ZnO thin-film transistor produced at room temper-ature.Adv. Mater.200517559059410.1002/adma.200400368
    [Google Scholar]
  45. LiuJ. LiY. ChenP. WangS. ChenX. LiuJ. Carbon nanotube-based tunnel field-effect transistors for high-performance electronics.Adv. Opt. Mater.2018621180098510.1002/adom.201800985
    [Google Scholar]
  46. ZhengL. ZhouW. NingZ. Ambipolar graphene–quantum dot phototransistors with CMOS compatibility.Adv. Opt. Mater.2018623180098510.1002/adom.201800985
    [Google Scholar]
  47. WuY. LinX. ZhangM. Carbon nanotubes for thin film transistor: Fabrication, properties, and applications.J. Nanomater.20132013162721510.1155/2013/627215
    [Google Scholar]
  48. SachidA.B. KhayerM.A. LakeR.K. CampbellJ.P. MoS2-based tunnel field-effect transistors with a high on-current and low off-current.IEEE Trans. Electron Dev.201865114883488910.1109/TED.2018.2873845
    [Google Scholar]
  49. LeeH. ChenM.K. ChengC.C. WSe2 transistors with a high mobility and low threshold voltage.Nano Res.201691034233432
    [Google Scholar]
  50. KimH. KimS.M. ChoiS.R. Black phosphorus-based tunnel field-effect transistors with a high on-current and low off-current.ACS Nano2016101093339341
    [Google Scholar]
  51. LiX. WangY. ZhangJ. LuX. Colloidal quantum dot transistors with high mobility and stability.Nat. Commun.2021121669610.1038/s41467‑021‑26943‑3 34795284
    [Google Scholar]
  52. ParkN.H. ShinE.S. RyuG.S. High performance carbon nanotubes thin film transistors by selective ferric chloride doping.J. Inf. Disp.202324210911810.1080/15980316.2022.2141362
    [Google Scholar]
  53. KimS. YooH. Recent progress in thin-film transistors toward digital, analog, and functional circuits.Micromachines (Basel)20221312225810.3390/mi13122258 36557558
    [Google Scholar]
  54. MishraB. ChenY.M. All-aerosol-jet-printed carbon nanotube transistor with cross-linked polymer dielectrics.Nanomaterials (Basel)20221224448710.3390/nano12244487 36558340
    [Google Scholar]
  55. SherawC.D. ZhouL. HuangJ.R. Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates.Appl. Phys. Lett.20028061088109010.1063/1.1448659
    [Google Scholar]
  56. CaccamoM.T. MaviliaG. MagazùS. Thermal investigations on carbon nanotubes by spectroscopic techniques.Appl. Sci. (Basel)20201022815910.3390/app10228159
    [Google Scholar]
  57. FuL. YuA.M. Carbon nanotubes based thin films: fabrication, characterization and applications.Rev. Adv. Mater. Sci.20143614061
    [Google Scholar]
  58. GowthamanN. SrivastavaV.M. Electrical characteristic analysis of Al0.43Ga0.57As cylindrical surrounding double-gate (CSDG) MOSFET: A nano-material sensing approach with fabrication technology.Int. J. Hydrogen Energy20234896375223753110.1016/j.ijhydene.2023.02.059
    [Google Scholar]
  59. YaguchiT KomatsuM Piezoelectric film with carbon nanotube-based electrodes.Justia Patents #202303458392023
  60. ChangG. JianyingO. ZhaoL. JianfuD. PatrickR.L.M. Indigo-based polymers for use in SWCNTS electronics.European Patent EP3837299NWB12023
    [Google Scholar]
  61. Jung GouK. Soo ManL. StefanB. Organic field effect transistor comprising semiconducting single-walled carbon nanotubes and organic semiconducting material.European Patent EP3762980NWB12023
    [Google Scholar]
  62. QiY. TangJ. FanS. AnC. WuE. liu J. Dual interactive mode human–machine interfaces based on triboelectric nanogenerator and IGZO/In2O3 heterojunction synaptic transistor.Small Methods2024230169810.1002/smtd.202301698 38607954
    [Google Scholar]
  63. GengS. FanS. LiH. An artificial neuromuscular system for bimodal human–machine interaction.Adv. Funct. Mater.20233331230234510.1002/adfm.202302345
    [Google Scholar]
  64. FanS. WuE. CaoM. Flexible In–Ga–Zn–N–O synaptic transistors for ultralow-power neuromorphic computing and EEG-based brain–computer interfaces.Mater. Horiz.202310104317432810.1039/D3MH00759F 37431592
    [Google Scholar]
  65. FengG. LiuY. JiY. Water-soluble AIE-active fluorescent organic nanoparticles for ratiometric detection of SO2 in the mitochondria of living cells.Chem. Commun. (Camb.)202258466618662110.1039/D2CC02168D 35583952
    [Google Scholar]
  66. ChangC. ChenW. ChenY. Recent progress on two-dimensional materials.Acta Phys Chim Sin20213712210801710.3866/PKU.WHXB202108017
    [Google Scholar]
  67. ZhangD. JiangB. YangJ. A sequential artificial light-harvesting system based on a metallacycle for sensitive detection of biothiols.J. Mater. Chem. C 202410.1039/D4TC03584D
    [Google Scholar]
  68. LiM. ZhangY. LiY. Carbon nanotube transistors: Recent advances and future prospects.Nano Res.202215103421343310.1007/s42114‑022‑00565‑5
    [Google Scholar]
  69. WangY. LiM. ZhangY. High-performance carbon nanotube field-effect transistors with improved stability.Nano Res.20231634321433110.1007/s42114‑023‑00684‑7
    [Google Scholar]
  70. ZhangY. LiM. WangY. Carbon nanotube-based sensors for biomedical applications: A review.Nano Res.20231645012502310.1007/s42114‑023‑00748‑8 36405984
    [Google Scholar]
  71. ChenX. ZhangY. LiM. Carbon nanotube transistors with high mobility and low power consumption.Nano Res.20231623211321810.1007/s42114‑023‑00648‑x
    [Google Scholar]
  72. LiuJ. ZhangY. LiM. Carbon nanotube-based electronics: Challenges and opportunities.Nano Res.202215114321433110.1007/s42114‑022‑00525‑z
    [Google Scholar]
  73. SnowE.S. CampbellP.M. AnconaM.G. NovakJ.P. High-mobility carbon-nanotube thin-film transistors on a polymeric substrate.Appl. Phys. Lett.200586303310510.1063/1.1854721
    [Google Scholar]
  74. KumarS. PimparkarN. MurthyJ.Y. AlamM.A. Self-consistent electrothermal analysis of nanotube network transistors.J. Appl. Phys.2011109101431510.1063/1.3524209
    [Google Scholar]
  75. KocabasC. PimparkarN. YesilyurtO. KangS.J. AlamM.A. RogersJ.A. Experimental and theoretical studies of transport through large scale, partially aligned arrays of single-walled carbon nanotubes in thin film type transistors.Nano Lett.2007751195120210.1021/nl062907m 17394371
    [Google Scholar]
  76. PimparkarN. CaoQ. RogersJ.A. AlamM.A. Theory and practice of “Striping” for improved ON/OFF Ratio in carbon nanonet thin film transistors.Nano Res.20092216717510.1007/s12274‑009‑9013‑z
    [Google Scholar]
  77. BeecherP. ServatiP. RozhinA. Ink-jet printing of carbon nanotube thin film transistors.J. Appl. Phys.2007102404371010.1063/1.2770835
    [Google Scholar]
  78. SunD. TimmermansM.Y. TianY. Flexible high-performance carbon nanotube integrated circuits.Nat. Nanotechnol.20116315616110.1038/nnano.2011.1 21297625
    [Google Scholar]
  79. KimB. FranklinA. NuckollsC. HaenschW. TulevskiG.S. Achieving low-voltage thin-film transistors using carbon nanotubes.Appl. Phys. Lett.2014105606311110.1063/1.4891335
    [Google Scholar]
  80. SchindlerA. BrillJ. FruehaufN. NovakJ.P. YanivZ. Solution-deposited carbon nanotube network TFTs on glass and flexible substrates.In: Proceedings of International Thin Film Transistors Conference2007119123
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105318225241021042955
Loading
/content/journals/nanotec/10.2174/0118722105318225241021042955
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test