Skip to content
2000
Volume 19, Issue 4
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Background

Milk contamination has been a longstanding global concern, with Heavy Metals (HM) like lead (Pb), mercury (Hg), arsenic (As), and cadmium (Cd) posing significant risks. These contaminants often infiltrate milk through contaminated water sources or during pasteurization. This petent introduces a novel approach to detecting milk contaminants by analyzing the current–voltage (I-V) characteristics of copper (Cu) electrodes modified with gold nanoparticle (AuNPs).

Methods

Leveraging the exceptional conductivity of metal nanoparticles, electrons freely traverse the surface, facilitating electron movement across the copper substrate. Additionally, the nanoparticles serve as binding agents, aiding in the comparative detection of contaminants. This method enables the preliminary detection of two HM (As, Cd) by evaluating their current gains in milk supernatant samples at varying concentrations.

Results

AuNPs deposited on Cu electrodes exhibited a linear I-V trend, with a significant increase in current compared to bare electrodes. Spiked milk supernatant drop cast on the electrode system displayed a current gain, which was evaluated towards sensing application of HM ions in milk. The synthesized AuNPs underwent initial characterization using a UV-Vis spectrophotometer, revealing a prominent plasmonic peak around 520 nm, confirming nanoparticle formation. X-Ray Diffraction (XRD) analysis confirmed the Face-Centred Cubic (FCC) crystal structure.

Conclusion

Notably, different concentrations (1 and 10 ppm) and types of HM (As, Cd, Hg, and Pb) in milk supernatant yielded varying current gains, providing insights specifically targeting As and Cd contamination.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105316267240807072122
2024-08-12
2025-09-14
Loading full text...

Full text loading...

References

  1. VaredaJ.P. ValenteA.J.M. DurãesL. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review.J. Environ. Manage.201924610111810.1016/j.jenvman.2019.05.126 31176176
    [Google Scholar]
  2. ZorodduM.A. AasethJ. CrisponiG. MediciS. PeanaM. NurchiV.M. The essential metals for humans: A brief overview.J. Inorg. Biochem.201919512012910.1016/j.jinorgbio.2019.03.013 30939379
    [Google Scholar]
  3. KaoR.T. DaultS. PichayT. Understanding the mercury reduction issue: The impact of mercury on the environment and human health.J. Calif. Dent. Assoc.200432757457910.1080/19424396.2004.12224004 15468538
    [Google Scholar]
  4. DasU. BiswasR. Utilizing biofunctionalized plasmonic silver nanostructures for sensing mercury ions in raw milk.Frontiers in Optics. Tacoma, Washington United States202391210.1364/FIO.2023.JM7A.4
    [Google Scholar]
  5. MartinS. GriswoldW. Human health effects of heavy metals.Environ Sci Technol Brief Cit200915516Available from: https://www.researchgate.net/publication/298105201_Human_health_effects_of_heavy_metals
    [Google Scholar]
  6. JaishankarM. TsetenT. AnbalaganN. MathewB.B. BeeregowdaK.N. Toxicity, mechanism and health effects of some heavy metals.Interdiscip. Toxicol.201472607210.2478/intox‑2014‑0009 26109881
    [Google Scholar]
  7. de VoogtP. Van HattumB. FeenstraJ.F. PeereboomJ.W.C. Exposure and health effects of cadmium.Toxicol. Environ. Chem.1980328910910.1080/02772248009356939
    [Google Scholar]
  8. BernardA. Cadmium & its adverse effects on human health.Indian J. Med. Res.20081284557564 19106447
    [Google Scholar]
  9. Mohammed AbdulK.S. JayasingheS.S. ChandanaE.P.S. JayasumanaC. De SilvaP.M.C.S. Arsenic and human health effects: A review.Environ. Toxicol. Pharmacol.201540382884610.1016/j.etap.2015.09.016 26476885
    [Google Scholar]
  10. HongY.S. SongK.H. ChungJ.Y. Health effects of chronic arsenic exposure.J. Prev. Med. Public Health201447524525210.3961/jpmph.14.035 25284195
    [Google Scholar]
  11. ZiaratiP. ShirkhanF. MostafidiM. ZahediM.T. An overview of the heavy metal contamination in milk and dairy products.Acta Sci Pharm Sci20182714Available from: https://www.researchgate.net/profile/Parisa-Ziarati/publication/325487616_An_Overview_of_the_Heavy_Metal_Contamination_in_Milk_and_Dairy_Products/links/b1135aca6fdcc4611da25a3/An-Overview-of-the-Heavy-Metal-Contamination-in-Milk-and-Dairy-Products.pdf
    [Google Scholar]
  12. TawfikA.E-B. WallaaF.A. EbtsamO.A. Impact of heavy metal contamination on milk and underground water of the New Valley, Egypt.IOSR J. Environ. Sci. Toxicol. Food Technol.2016108232910.9790/2402‑1008012329
    [Google Scholar]
  13. MuhibM.I. ChowdhuryM.A.Z. EashaN.J. Investigation of heavy metal contents in Cow milk samples from area of Dhaka, Bangladesh.Int. J. Food Contam.2016311610.1186/s40550‑016‑0039‑1
    [Google Scholar]
  14. KapajS. PetersonH. LiberK. BhattacharyaP. Human health effects from chronic arsenic poisoning-A review.J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng.200641102399242810.1080/10934520600873571 17018421
    [Google Scholar]
  15. AyoubM. Lead, cadmium and mercury in milk products.Assiut Vet Med J199430213914610.21608/avmj.1994.184325
    [Google Scholar]
  16. ZhouX. QuX. ZhengN. SuC. WangJ. SoyeurtH. Large scale study of the within and between spatial variability of lead, arsenic, and cadmium contamination of cow milk in China.Sci. Total Environ.2019650Pt 23054306110.1016/j.scitotenv.2018.09.094 30373082
    [Google Scholar]
  17. BoudebbouzA. BoudaliaS. BousbiaA. HabilaS. BoussadiaM.I. GuerouiY. Heavy metals levels in raw cow milk and health risk assessment across the globe: A systematic review.Sci. Total Environ.202175114183010.1016/j.scitotenv.2020.141830 33182002
    [Google Scholar]
  18. MeshrefA.M.S. MoselhyW.A. HassanN.E.H.Y. Heavy metals and trace elements levels in milk and milk products.J. Food Meas. Charact.20148438138810.1007/s11694‑014‑9203‑6
    [Google Scholar]
  19. ZahraQ. FrazA. AnwarA. AwaisM. AbbasM. A mini review on the synthesis of Ag-nanoparticles by chemical reduction method and their biomedical applications.J Eng Sci2016911710.24949/njes.v9i1.181
    [Google Scholar]
  20. MikiciukJ. MikiciukE. SzterkA. Physico‐chemical properties and inhibitory effects of commercial colloidal silver nanoparticles as potential antimicrobial agent in the food industry.J. Food Process. Preserv.2017412e1279310.1111/jfpp.12793
    [Google Scholar]
  21. MollemanB. HiemstraT. Size and shape dependency of the surface energy of metallic nanoparticles: Unifying the atomic and thermodynamic approaches.Phys. Chem. Chem. Phys.20182031205752058710.1039/C8CP02346H 30059091
    [Google Scholar]
  22. DasU. BiswasR. MazumderN. Elucidating thermal effects in plasmonic metal nanostructures: A tutorial review.Eur. Phys. J. Plus202213711124810.1140/epjp/s13360‑022‑03449‑1
    [Google Scholar]
  23. ElahiN. KamaliM. BaghersadM.H. Recent biomedical applications of gold nanoparticles: A review.Talanta201818453755610.1016/j.talanta.2018.02.088 29674080
    [Google Scholar]
  24. DasU. BanikS. NadumaneS.S. Isolation, detection and analysis of circulating tumour cells: A nanotechnological bioscope.Pharmaceutics202315128010.3390/pharmaceutics15010280 36678908
    [Google Scholar]
  25. LeeK.S. El-SayedM.A. Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition.J. Phys. Chem. B200611039192201922510.1021/jp062536y 17004772
    [Google Scholar]
  26. PresnovaG. PresnovD. KrupeninV. Biosensor based on a silicon nanowire field-effect transistor functionalized by gold nanoparticles for the highly sensitive determination of prostate specific antigen.Biosens. Bioelectron.20178828328910.1016/j.bios.2016.08.054 27567265
    [Google Scholar]
  27. ChangH.Y. ArshadM.K. FathilM.F. HashimU. Gold nanoparticles embedded silicon channel biosensor for improved sensitivity.InAIP Conference Proceedings20161733110.1063/1.4948892
    [Google Scholar]
  28. NomanM. ShahzaibM. JanS.T. KhanZ. IsmailM. KhanA.D. Optimizing band gap, electron affinity, & carrier mobility for improved performance of formamidinium lead tri-iodide perovskite solar cells.Mater. Sci. Eng. B202430011711410.1016/j.mseb.2023.117114
    [Google Scholar]
  29. BoruahB.S. DaimariN.K. BiswasR. Mangifera indica leaf extract mediated gold nanoparticles: A novel platform for sensing of As (III).IEEE Sens. Lett.2019331310.1109/LSENS.2019.2894419
    [Google Scholar]
  30. ShettyM.G. MelanthotaS.K. DaimariN.K. BiswasR. MazumderN. BabithaK.S. Synthesis, conjugation, and applications of chiral nanoparticles as plasmonic probes.Recent Advances in Plasmonic Probes - Theory and Practice.Springer202210.1007/978‑3‑030‑99491‑4_14
    [Google Scholar]
  31. DasU. MazumderN. BiswasR. An appraisal on plasmonic heating of nanostructures.Recent Advances in Plasmonic Probes - Theory and Practices.Springer202210.1007/978‑3‑030‑99491‑4_12
    [Google Scholar]
  32. LiZ.D. LinC.G. CuiS. Development of research and application of copper alloys with high strength and high conductivity.Adv. Mat. Res.20141053616810.4028/www.scientific.net/AMR.1053.61
    [Google Scholar]
  33. AfsarimaneshN. NagA. AlahiM.E.E. HanT. MukhopadhyayS.C. Interdigital sensors: Biomedical, environmental and industrial applications.Sens. Actuators A Phys.202030511192310.1016/j.sna.2020.111923
    [Google Scholar]
  34. WangX WangY LeungH MukhopadhyaySC ChenS CuiY A self-adaptive and wide-range conductivity measurement method based on planar interdigital electrode array.IEEE Access201971731576510.1109/ACCESS.2019.2956568
    [Google Scholar]
  35. BoruahB.S. GogoiD. BiswasR. Bio-inspired finger like Cu-electrodes as an effective sensing tool for heavy metal ion in aqueous solution.J. Electrochem. Soc.2020167202752610.1149/1945‑7111/ab6a86
    [Google Scholar]
  36. NeogA. BiswasR. WS2 nanosheets as a potential candidate towards sensing heavy metal ions: A new dimension of 2D materials.Mater. Res. Bull.202114411147110.1016/j.materresbull.2021.111471
    [Google Scholar]
  37. NeogA. BiswasR. A novel route for sensing heavy metal ions in aqueous solution.Europhys. Lett.202213944600210.1209/0295‑5075/ac76dc
    [Google Scholar]
  38. DaimariN.K. DasU. IslamK. BiswasR. Exploiting gold nanoparticle-modified copper electrodes towards sensing of prominent heavy metals in aqueous solution. Frontiers in Optics.Tacoma, Washington United States202391210.1364/FIO.2023.FD1.3
    [Google Scholar]
  39. AtashbarMZ AvuthuSGR NarakathuBB Printed wireless inductive - Capacitive (LC) sensor for heavy metal detection.US10466287B22019
  40. ChenG HongY LuX Portable rapid detection device for heavy metal ions and methods of use.US9696278B22017
  41. HaiboZ BinQ XiaohaiZ. A kind of nanogold colorimetric method of quickly detection chromium (III) ion.CN108627505B2019
  42. DudalaS. SrikanthS. DubeyS.K. JavedA. GoelS. Development of miniaturized interdigitated electrode sensors and their application in taste sensing.ECS Trans.20209812495610.1149/09812.0049ecst
    [Google Scholar]
  43. GabardoC.M. SoleymaniL. Deposition, patterning, and utility of conductive materials for the rapid prototyping of chemical and bioanalytical devices.Analyst (Lond.)2016141123511352510.1039/C6AN00210B 27001624
    [Google Scholar]
  44. GuptaA. DakhareP. BhagatR. RotakeD. DarjiA.D. Fabrication of printed circuit board interdigitated electrode sensor for cadmium detection.In 2023 IEEE 8th International Conference for Convergence in Technology (I2CT)20231610.1109/I2CT57861.2023.10126202
    [Google Scholar]
  45. DasU. BiswasR. Unravelling optical properties and morphology of plasmonic gold nanoparticles synthesized via a novel green route.Chem. Zvesti20237763485349310.1007/s11696‑023‑02716‑4
    [Google Scholar]
  46. DasU. BiswasR. MazumderN. One-pot interference-based colorimetric detection of melamine in raw milk via green tea-modified silver nanostructures.ACS Omega2024920218792189010.1021/acsomega.3c09516 38799313
    [Google Scholar]
  47. DasU. SaikiaS. BiswasR. Highly sensitive biofunctionalized nanostructures for paper-based colorimetric sensing of hydrogen peroxide in raw milk.Spectrochim. Acta A Mol. Biomol. Spectrosc.202431612429010.1016/j.saa.2024.124290 38669984
    [Google Scholar]
  48. DasU. HoqueR. BiswasR. Biosynthesised silver nanoparticles as an efficient colorimetric sensor towards detection of melamine.Appl. Phys., A Mater. Sci. Process.2023129532810.1007/s00339‑023‑06613‑1
    [Google Scholar]
  49. AmendolaV. MeneghettiM. Size evaluation of gold nanoparticles by UV− vis spectroscopy.J. Phys. Chem. C2009113114277428510.1021/jp8082425
    [Google Scholar]
  50. SaputraI.S. SuhartatiS. YulizarY. SudirmanS. Synthesis and characterization of gold nanoparticles (AuNPs) by utilizing bioactive compound of Imperata cylndrica L.Indones J Appl Chem20202211710.14203/jkti.v22i1.448
    [Google Scholar]
  51. WanH. SunQ. LiH. SunF. HuN. WangP. Screen-printed gold electrode with gold nanoparticles modification for simultaneous electrochemical determination of lead and copper.Sens. Actuators B Chem.201520933634210.1016/j.snb.2014.11.127
    [Google Scholar]
  52. DuanR. FedlerC.B. LiX. JiaoX. Co-transport of Cu2+, Pb2+, Cd2+, and Zn2+ in the columns of polyaluminium chloride and anionic polyacrylamide water treatment residuals.J. Water Process Eng.20224510247510.1016/j.jwpe.2021.102475
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105316267240807072122
Loading
/content/journals/nanotec/10.2174/0118722105316267240807072122
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test