Skip to content
2000
Volume 19, Issue 4
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105290129240122104901
2024-01-31
2025-09-14
Loading full text...

Full text loading...

/deliver/fulltext/nanotec/19/4/NANOTEC-19-4-10.html?itemId=/content/journals/nanotec/10.2174/0118722105290129240122104901&mimeType=html&fmt=ahah

References

  1. DuD. WangL. ShaoY. WangJ. EngelhardM.H. LinY. Functionalized graphene oxide as a nanocarrier in a multienzyme labeling amplification strategy for ultrasensitive electrochemical immunoassay of phosphorylated p53 (S392).Anal. Chem.201183374675210.1021/ac101715s 21210663
    [Google Scholar]
  2. TiwariH. KarkiN. PalM. Functionalized graphene oxide as a nanocarrier for dual drug delivery applications: The synergistic effect of quercetin and gefitinib against ovarian cancer cells.Colloids Surf. B Biointerfaces201917845245910.1016/j.colsurfb.2019.03.037 30921680
    [Google Scholar]
  3. GrilliF. GohariH.P. ZouS. Characteristics of graphene oxide for gene transfection and controlled release in breast cancer cells.Int. J. Mol. Sci.20222312680210.3390/ijms23126802 35743245
    [Google Scholar]
  4. FuL. ZhengY. LiX. LiuX. LinC.T. Karimi-MalehH. Strategies and applications of graphene and its derivatives-based electrochemical sensors in cancer diagnosis.Molecules20232818671910.3390/molecules28186719 37764496
    [Google Scholar]
  5. AshrafizadehM. ZarrabiA. BighamA. (Nano)platforms in breast cancer therapy: Drug/gene delivery, advanced nanocarriers and immunotherapy.Med. Res. Rev.20234362115217610.1002/med.21971 37165896
    [Google Scholar]
  6. KumarA. MahatoK. DkharD.S. SrivastavaA. ChandraP. Self-signal generating bioelectronic sensor surface using gadolinium hexacyanoferrate nanocomposite for oral cancer diagnosis.Sens. Actuators B Chem.202339713460510.1016/j.snb.2023.134605
    [Google Scholar]
  7. NasrollahpourH. KhalilzadehB. HasanzadehM. Nanotechnology‐based electrochemical biosensors for monitoring breast cancer biomarkers.Med. Res. Rev.202343346456910.1002/med.21931 36464910
    [Google Scholar]
  8. SaputraH.A. Electrochemical sensors: Basic principles, engineering, and state of the art.Monatsh. Chem.20231541083110010.1007/s00706‑023‑03113‑z
    [Google Scholar]
  9. WangW. SuH. WuY. ZhouT. LiT. Biosensing and biomedical applications of graphene: A review of current progress and future prospect.J. Electrochem. Soc.20191666B505B52010.1149/2.1231906jes
    [Google Scholar]
  10. Ozkan-AriksoysalD. Current perspectives in graphene oxide-based electrochemical biosensors for cancer diagnostics.Biosensors202212860710.3390/bios12080607 36005004
    [Google Scholar]
  11. WangY. LiZ. WangJ. LiJ. LinY. Graphene and graphene oxide: biofunctionalization and applications in biotechnology.Trends Biotechnol.201129520521210.1016/j.tibtech.2011.01.008 21397350
    [Google Scholar]
  12. GovindanB. SabriM.A. HaiA. BanatF. HaijaM.A. A review of advanced multifunctional magnetic nanostructures for cancer diagnosis and therapy integrated into an artificial intelligence approach.Pharmaceutics202315386810.3390/pharmaceutics15030868 36986729
    [Google Scholar]
  13. GiriP.M. BanerjeeA. LayekB. A recent review on cancer nanomedicine.Cancers2023158225610.3390/cancers15082256 37190185
    [Google Scholar]
  14. KumariM. AcharyaA. KrishnamurthyP.T. Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics.Beilstein J. Nanotechnol.202314191292610.3762/bjnano.14.75 37701520
    [Google Scholar]
  15. DuanC. YuM. XuJ. LiB.Y. ZhaoY. KankalaR.K. Overcoming cancer multi-drug resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges.Biomed. Pharmacother.202316211464310.1016/j.biopha.2023.114643 37031496
    [Google Scholar]
  16. KongX. QiY. WangX. Nanoparticle drug delivery systems and their applications as targeted therapies for triple negative breast cancer.Prog. Mater. Sci.202313410107010.1016/j.pmatsci.2023.101070
    [Google Scholar]
  17. PrajapatV.M. MahajanS. PaulP.G. Nanomedicine: A pragmatic approach for tackling melanoma skin cancer.J. Drug Deliv. Sci. Technol.20238310439410.1016/j.jddst.2023.104394
    [Google Scholar]
  18. WadhawanA. ChatterjeeM. SinghG. Present scenario of bioconjugates in cancer therapy: A review.Int. J. Mol. Sci.20192021524310.3390/ijms20215243 31652668
    [Google Scholar]
  19. BhardiyaS.R. AsatiA. SheshmaH. RaiA. RaiV.K. SinghM. A novel bioconjugated reduced graphene oxide-based nanocomposite for sensitive electrochemical detection of cadmium in water.Sens. Actuators B Chem.202132812901910.1016/j.snb.2020.129019
    [Google Scholar]
  20. ZhouZ. ZhouS. ZhangX. Quaternary ammonium salts: Insights into synthesis and new directions in antibacterial applications.Bioconjug. Chem.202334230232510.1021/acs.bioconjchem.2c00598 36748912
    [Google Scholar]
  21. ChenM. WangL. ZhengC. Novel ACE inhibitory peptides derived from bighead carp (Aristichthys nobilis) hydrolysates: Screening, inhibition mechanisms and the bioconjugation effect with graphene oxide.Food Biosci.20235210239910.1016/j.fbio.2023.102399
    [Google Scholar]
  22. ShiS. ChenF. EhlerdingE.B. CaiW. Surface engineering of graphene-based nanomaterials for biomedical applications.Bioconjug. Chem.20142591609161910.1021/bc500332c 25117569
    [Google Scholar]
  23. CirilloG. PantusoE. CurcioM. Alginate bioconjugate and graphene oxide in multifunctional hydrogels for versatile biomedical applications.Molecules2021265135510.3390/molecules26051355 33802608
    [Google Scholar]
  24. ShaoQ. QianY. WuP. ZhangH. CaiC. Graphene oxide-induced conformation changes of glucose oxidase studied by infrared spectroscopy.Colloids Surf. B Biointerfaces201310911512010.1016/j.colsurfb.2013.03.033 23624279
    [Google Scholar]
  25. BugárováN. AnnušováA. BodíkM. Molecular targeting of bioconjugated graphene oxide nanocarriers revealed at a cellular level using label-free Raman imaging.Nanomedicine20203010228010.1016/j.nano.2020.102280 32771421
    [Google Scholar]
  26. HuangC.F. YaoG.H. LiangR.P. QiuJ.D. Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A.Biosens. Bioelectron.20135030531010.1016/j.bios.2013.07.002 23876541
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105290129240122104901
Loading
/content/journals/nanotec/10.2174/0118722105290129240122104901
Loading

Data & Media loading...


  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test