Skip to content
2000
Volume 19, Issue 4
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Graphene oxide, a derivative of graphene, has recently emerged as a promising nanomaterial in the biomedical field due to its unique properties. Its potential as a nanocarrier in the treatment of Alzheimer's disease represents a significant advancement. This abstract outlines a study focused on utilizing graphene oxide to reduce the toxicity of Alzheimer's proteins, marking a revolutionary approach in treatment strategies. The pathological features of Alzheimer’s disease, primarily focusing on the accumulation and toxicity of amyloid-beta proteins, have been described in this review. These proteins are known to form plaques in the brain, leading to neuronal damage and the progression of Alzheimer's disease. The current therapeutic strategies and their limitations are briefly reviewed, highlighting the need for innovative approaches. Graphene oxide, with its high surface area, biocompatibility, and ability to cross the blood-brain barrier, is introduced as a novel nanocarrier. The methodology involves functionalizing graphene oxide sheets with specific ligands that target amyloid-beta proteins. This functionalization facilitates the binding and removal of these toxic proteins from the brain, potentially alleviating the symptoms of Alzheimer's disease. Preliminary findings indicate a significant reduction in amyloid-beta toxicity in neuronal cell cultures treated with graphene oxide nanocarriers. The study also explores the biocompatibility and safety profile of graphene oxide in biological systems, ensuring its suitability for clinical applications. It calls for further research and filing patents for its translational potential and benefits of this nanotechnology paying the way for a new era in neurodegenerative therapy.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105292940240502114430
2024-05-15
2025-09-14
Loading full text...

Full text loading...

References

  1. RuiS. SongL. LanJ. Recent advances in carbon dots-based nanoplatforms: Physicochemical properties and biomedical applications.Chem. Eng. J.202347614659310.1016/j.cej.2023.146593
    [Google Scholar]
  2. JakharA. SharmaJ. SharmaS. SharmaK.L. Graphene‐based nano materials: Biomedical applications.ChemistrySelect2023837e20230268910.1002/slct.202302689
    [Google Scholar]
  3. ChengG. XieA. YanZ. ZhuX. SongY. ChenT. Nanomedicines for Alzheimer’s disease: Therapies based on pathological mechanisms.Brain-X202313e2710.1002/brx2.27
    [Google Scholar]
  4. NguyenT.T. Nguyen-ThiP.T. NguyenT.H.A. Recent advancements in nanomaterials: A promising way to manage neurodegenerative disorders.Mol. Diagn. Ther.202327445747310.1007/s40291‑023‑00654‑1
    [Google Scholar]
  5. ChengY. QinK.J. ZangD.J. Polyoxometalates based nanocomposites for bioapplications.Rare Met.20234235703600
    [Google Scholar]
  6. DuanL. LiX. JiR. Nanoparticle-based drug delivery systems: An inspiring therapeutic strategy for neurodegenerative diseases.Polymers2023159219610.3390/polym15092196 37177342
    [Google Scholar]
  7. KuoY.C. DeS. RETRACTED: Development of carbon dots to manage alzheimer’s disease and parkinson’s disease.J. Taiwan Inst. Chem. Eng.202314610479910.1016/j.jtice.2023.104799
    [Google Scholar]
  8. WidjajaG. KumarA. ChandrasekarV. ShankarB.B. NayakB.B. Artificial intelligence and the contributions of nanotechnology to the biomedical sector.Handbook of Research on Advanced Functional Materials for Orthopedic Applications.2023659210.4018/978‑1‑6684‑7412‑9.ch005
    [Google Scholar]
  9. SaharanR. PaliwalS.K. TiwariA. Exploring graphene and its potential in delivery of drugs and biomolecules.J. Drug Deliv. Sci. Technol.20238410444610.1016/j.jddst.2023.104446
    [Google Scholar]
  10. GayathriK. BhaskaranM. SelvamC. ThilagavathiR. Nano formulation approaches for curcumin delivery- A review.J. Drug Deliv. Sci. Technol.20238210432610.1016/j.jddst.2023.104326
    [Google Scholar]
  11. TiwariR. TiwariG. ParasharP. Theranostics applications of functionalized magnetic nanoparticles.Multifunctional And Targeted Theranostic Nanomedicines: Formulation, Design And Applications.SingaporeSpringer202336138210.1007/978‑981‑99‑0538‑6_15
    [Google Scholar]
  12. KhanS. RehmanU. ParveenN. KumarS. BabootaS. AliJ. siRNA therapeutics: Insights, challenges, remedies and future prospects.Expert Opin. Drug Deliv.20232091167118710.1080/17425247.2023.2251890 37642354
    [Google Scholar]
  13. SuS. WangJ. QiuJ. ZaguilánM.R. SennouneS.R. WangS. In vitro study of transportation of porphyrin immobilized graphene oxide through blood brain barrier.Mater. Sci. Eng. C202010711031310.1016/j.msec.2019.110313 31761227
    [Google Scholar]
  14. MendonçaM.C.P. SoaresE.S. de JesusM.B. Reduced graphene oxide induces transient blood–brain barrier opening: An in vivo study.J. Nanobiotechnology20151317810.1186/s12951‑015‑0143‑z 26518450
    [Google Scholar]
  15. AbrahamJ. VasuK.S. WilliamsC.D. Tunable sieving of ions using graphene oxide membranes.Nat. Nanotechnol.201712654655010.1038/nnano.2017.21 28369049
    [Google Scholar]
  16. WuQ. YinL. LiX. TangM. ZhangT. WangD. Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans.Nanoscale20135209934994310.1039/c3nr02084c 23986404
    [Google Scholar]
  17. DeliM.A. ÁbrahámC.S. KataokaY. NiwaM. Permeability studies on in vitro blood-brain barrier models: Physiology, pathology, and pharmacology.Cell. Mol. Neurobiol.20052515912710.1007/s10571‑004‑1377‑8 15962509
    [Google Scholar]
  18. SuY. KravetsV. WongS.L. WatersJ. Impermeable barrier films and protective coatings based on reduced graphene oxide.Nat. Commun.201454843
    [Google Scholar]
  19. MendonçaM.C.P. SoaresE.S. de JesusM.B. PEGylation of reduced graphene oxide induces toxicity in cells of the blood–brain barrier: An in vitro and in vivo study.Mol. Pharm.201613113913392410.1021/acs.molpharmaceut.6b00696 27712077
    [Google Scholar]
  20. SunerS.S. KurtS.B. DemirciS. SahinerN. The advances in functionalized carbon nanomaterials for drug delivery.Functionalized Carbon Nanomaterials for Theranostic Applications.Elsevier202319724110.1016/B978‑0‑12‑824366‑4.00011‑X
    [Google Scholar]
  21. PariharA. ChoudharyN.K. KhanR. Current challenges and future perspectives for the development of POCT devices for neurodegenerative disorders.Smart Diagnostics for Neurodegenerative Disorders.Academic Press202431134610.1016/B978‑0‑323‑95539‑3.00006‑5
    [Google Scholar]
  22. SajjadH. SajjadA. HayaR.T. KhanM.M. ZiaM. Copper oxide nanoparticles: In vitro and in vivo toxicity, mechanisms of action and factors influencing their toxicology.Comp. Biochem. Physiol. C Toxicol. Pharmacol.202327110968210.1016/j.cbpc.2023.109682 37328134
    [Google Scholar]
  23. IssakaE. WaribokoM.A. AgyekumE.A. Synergy and coordination between biomimetic nanoparticles and biological cells/tissues/organs/systems: Applications in nanomedicine and prospect.Biomed. Mater. Dev.20232133
    [Google Scholar]
  24. FernandesN.B. NayakY. GargS. NayakU.Y. Multifunctional engineered mesoporous silica/inorganic material hybrid nanoparticles: Theranostic perspectives.Coord. Chem. Rev.202347821497710.1016/j.ccr.2022.214977
    [Google Scholar]
  25. GonçalvesA. FernandesM. LimaM. Nanotechnology to the rescue: Therapeutic strategies based on brown algae for neurodegenerative diseases.Appl. Sci.2023133188310.3390/app13031883
    [Google Scholar]
  26. SarojiniS. BalakrishnanS.P. KooteryK.P. Nanomedicine: Insight analysis of emerging biomedical research and developments.Nanovaccinology: Clinical Application of Nanostructured Materials Research to Translational Medicine.ChamSpringer International Publishing20232343
    [Google Scholar]
  27. IjazH. MahmoodA. Abdel-DaimM.M. Review on carbon nanotubes (CNTs) and their chemical and physical characteristics, with particular emphasis on potential applications in biomedicine.Inorg. Chem. Commun.202315511102010.1016/j.inoche.2023.111020
    [Google Scholar]
  28. SalaramoliS. AmiriH. JoshaghaniH.R. HosseiniM. HashemyS.I. Bio-synthesized selenium nanoparticles ameliorate Brain oxidative stress in Parkinson disease rat models.Metab. Brain Dis.20233862055206410.1007/s11011‑023‑01222‑6 37133801
    [Google Scholar]
  29. RahmanA. RoyK.J. DebG.K. Nano-enabled antivirals for overcoming antibody escaped mutations based SARS-CoV-2 waves.Int. J. Mol. Sci.202324171313010.3390/ijms241713130 37685938
    [Google Scholar]
  30. DaniyalM. LiuB. WangW. Comprehensive review on graphene oxide for use in drug delivery system.Curr. Med. Chem.202027223665368510.2174/13816128256661902011296290 30706776
    [Google Scholar]
  31. KanamalaM. WilsonW.R. YangM. PalmerB.D. WuZ. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review.Biomaterials20168515216710.1016/j.biomaterials.2016.01.061 26871891
    [Google Scholar]
  32. GantaS. DevalapallyH. ShahiwalaA. AmijiM. A review of stimuli-responsive nanocarriers for drug and gene delivery.J. Control. Release2008126318720410.1016/j.jconrel.2007.12.017
    [Google Scholar]
  33. GhawanmehA.A. AliG.A.M. AlgarniH. SarkarS.M. ChongK.F. Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery.Nano Res.201912597399010.1007/s12274‑019‑2300‑4
    [Google Scholar]
  34. HilderT.A. HillJ.M. Modeling the loading and unloading of drugs into nanotubes.Small20095330030810.1002/smll.200800321 19058282
    [Google Scholar]
  35. MeenaP.L. ChawlaU. DahiyaD. A review on ZnO-based targeted drug delivery system.Lett. Drug Des. Discov.2023213397420
    [Google Scholar]
  36. SultanaS. KhanM.R. KumarM. KumarS. AliM. Nanoparticles-mediated drug delivery approaches for cancer targeting: A review.J. Drug Target.201321210712510.3109/1061186X.2012.712130 22873288
    [Google Scholar]
  37. JainN.K. MishraV. MehraN.K. Targeted drug delivery to macrophages.Expert Opin. Drug Deliv.201310335336710.1517/17425247.2013.751370 23289618
    [Google Scholar]
  38. ZakiN.M. TirelliN. Gateways for the intracellular access of nanocarriers: A review of receptor-mediated endocytosis mechanisms and of strategies in receptor targeting.Expert Opin. Drug Deliv.20107889591310.1517/17425247.2010.501792 20629604
    [Google Scholar]
  39. ZhangQ. WuZ. LiN. Advanced review of graphene-based nanomaterials in drug delivery systems: Synthesis, modification, toxicity and application.Mater. Sci. Eng. C2017771363137510.1016/j.msec.2017.03.196 28532014
    [Google Scholar]
  40. ProtasA PopovaEA MikolaichukO SemenovK.N. SharoykoV.V. MolchanovO.E. MaistrenkoDmitrii N. Biomedical use of nanoconjugates based on graphene oxide and fullerenes with cytostatic drugs.Transl Med202310540211
    [Google Scholar]
  41. ÖzkanS.A. DedeoğluA. BakirhanK.N. ÖzkanY. Nanocarriers used most in drug delivery and drug release: nanohydrogel, chitosan, graphene, and solid lipid.Turk. J. Pharmaceut Sci.201916448149210.4274/tjps.galenos.2019.48751 32454753
    [Google Scholar]
  42. KalhapureR.S. SulemanN. MocktarC. SeedatN. GovenderT. Nanoengineered drug delivery systems for enhancing antibiotic therapy.J. Pharm. Sci.2015104387290510.1002/jps.24298 25546108
    [Google Scholar]
  43. YoussefZ. VanderesseR. ColombeauL. The application of titanium dioxide, zinc oxide, fullerene, and graphene nanoparticles in photodynamic therapy.Cancer Nanotechnol.201781610.1186/s12645‑017‑0032‑2 29104699
    [Google Scholar]
  44. SunB. WangW. SainM. Carbonaceous nanocomposites for biomedical applications as high-drug loading nanocarriers for sustained delivery: A review.J. Compos. Sci.2022637910.3390/jcs6120379
    [Google Scholar]
  45. ChenH. XingL. GuoH. LuoC. ZhangX. Dual-targeting SERS-encoded graphene oxide nanocarrier for intracellular co-delivery of doxorubicin and 9-aminoacridine with enhanced combination therapy.Analyst2021146226893690110.1039/D1AN01237A 34633394
    [Google Scholar]
  46. Taheri-KafraniA. ShirzadfarH. Abbasi KajaniA. Functionalized graphene oxide/Fe3O4 nanocomposite: A biocompatible and robust nanocarrier for targeted delivery and release of anticancer agents.J. Biotechnol.2021331263610.1016/j.jbiotec.2021.03.005 33722630
    [Google Scholar]
  47. LiR. WangY. DuJ. Graphene oxide loaded with tumor-targeted peptide and anti-cancer drugs for cancer target therapy.Sci. Rep.2021111172510.1038/s41598‑021‑81218‑3 33462277
    [Google Scholar]
  48. HanX.M. ZhengK.W. WangR.L. Functionalization and optimization-strategy of graphene oxide-based nanomaterials for gene and drug delivery.Am. J. Transl. Res.202012515151534 32509159
    [Google Scholar]
  49. GhanbariN. SalehiZ. KhodadadiA.A. ShokrgozarM.A. SabouryA.A. Glucosamine-conjugated graphene quantum dots as versatile and pH-sensitive nanocarriers for enhanced delivery of curcumin targeting to breast cancer.Mater. Sci. Eng. C202112111180910.1016/j.msec.2020.111809 33579453
    [Google Scholar]
  50. YeY. MaoX. XuJ. KongJ. HuX. Functional graphene oxide nanocarriers for drug delivery.Int. J. Polym. Sci.201920191710.1155/2019/8453493
    [Google Scholar]
  51. VinothiniK. RajendranN.K. RamuA. ElumalaiN. RajanM. Folate receptor targeted delivery of paclitaxel to breast cancer cells via folic acid conjugated graphene oxide grafted methyl acrylate nanocarrier.Biomed. Pharmacother.201911090691710.1016/j.biopha.2018.12.008 30572195
    [Google Scholar]
  52. VasanthakumarA. RejeethC. VivekR. Design of bio-graphene-based multifunctional nanocomposites exhibits intracellular drug delivery in cervical cancer treatment.ACS Appl. Bio Mater.2022562956296410.1021/acsabm.2c00280 35620928
    [Google Scholar]
  53. LiaoC. LiY. TjongS. Graphene nanomaterials: Synthesis, biocompatibility, and cytotoxicity.Int. J. Mol. Sci.20181911356410.3390/ijms19113564 30424535
    [Google Scholar]
  54. GuoX. MeiN. Assessment of the toxic potential of graphene family nanomaterials.Yao Wu Shi Pin Fen Xi2014221105115 24673908
    [Google Scholar]
  55. SanchezV.C. JachakA. HurtR.H. KaneA.B. Biological interactions of graphene-family nanomaterials: An interdisciplinary review.Chem. Res. Toxicol.2012251153410.1021/tx200339h 21954945
    [Google Scholar]
  56. EmaM. GamoM. HondaK. A review of toxicity studies on graphene-based nanomaterials in laboratory animals.Regul. Toxicol. Pharmacol.20178572410.1016/j.yrtph.2017.01.011 28161457
    [Google Scholar]
  57. ZakharovaO.V. MastalyginaE.E. GolokhvastK.S. GusevA.A. Graphene nanoribbons: Prospects of application in biomedicine and toxicity.Nanomaterials2021119242510.3390/nano11092425 34578739
    [Google Scholar]
  58. ChenL. LiJ. ChenZ. Toxicological evaluation of graphene-family nanomaterials.J. Nanosci. Nanotechnol.20202041993200610.1166/jnn.2020.17364 31492205
    [Google Scholar]
  59. SeabraA.B. PaulaA.J. de LimaR. AlvesO.L. DuránN. Nanotoxicity of graphene and graphene oxide.Chem. Res. Toxicol.201427215916810.1021/tx400385x 24422439
    [Google Scholar]
  60. ZhangY. NayakT.R. HongH. CaiW. Graphene: A versatile nanoplatform for biomedical applications.Nanoscale20124133833384210.1039/c2nr31040f 22653227
    [Google Scholar]
  61. ZhaoY. LiuY. ZhangX. LiaoW. Environmental transformation of graphene oxide in the aquatic environment.Chemosphere202126212788510.1016/j.chemosphere.2020.127885 32805658
    [Google Scholar]
  62. DemeritteT. Viraka NelloreB.P. KanchanapallyR. Hybrid graphene oxide based plasmonic-magnetic multifunctional nanoplatform for selective separation and label-free identification of alzheimer’s disease biomarkers.ACS Appl. Mater. Interfaces2015724136931370010.1021/acsami.5b03619 26027901
    [Google Scholar]
  63. VilelaP. El-SagheerA. MillarT.M. BrownT. MuskensO.L. KanarasA.G. Graphene oxide-upconversion nanoparticle based optical sensors for targeted detection of mRNA biomarkers present in alzheimer’s disease and prostate cancer.ACS Sens.201721525610.1021/acssensors.6b00651 28722438
    [Google Scholar]
  64. AzimzadehM. NasirizadehN. RahaieM. ManeshN.H. Early detection of Alzheimer’s disease using a biosensor based on electrochemically-reduced graphene oxide and gold nanowires for the quantification of serum microRNA-137.RSC Advances2017788557095571910.1039/C7RA09767K
    [Google Scholar]
  65. Samy El-ShallM. AbdelsayedV. ResayesS.I. AlothmanZ.A.M. Production of graphene and nanoparticle catalysts supported on graphene using laser radiation.US Patent US9768355B2201010.1016/j.bios.2016.10.049 27829557
  66. ZhangJ. ZhuS. JinP. Graphene oxide improves postoperative cognitive dysfunction by maximally alleviating amyloid beta burden in mice.Theranostics20201026119081192010.7150/thno.50616 33204319
    [Google Scholar]
  67. BonanniA. ChuaC.K. ZhaoG. SoferZ. PumeraM. Inherently electroactive graphene oxide nanoplatelets as labels for single nucleotide polymorphism detection.ACS Nano20126108546855110.1021/nn301359y 22992186
    [Google Scholar]
  68. HofF. PénicaudA. BoniA. ValentiG. PaolucciF. RosaP. Graphene-supported metal and/or metal oxide nanoparticle composites, method for making same and uses thereof.US Patent US20200198977A12018
  69. BilalM. BaraniM. SabirF. RahdarA. KyzasG.Z. Nanomaterials for the treatment and diagnosis of Alzheimer’s disease: An overview.NanoImpact20202010025110.1016/j.impact.2020.100251
    [Google Scholar]
  70. YangZ. GeC. LiuJ. Destruction of amyloid fibrils by graphene through penetration and extraction of peptides.Nanoscale2015744187251873710.1039/C5NR01172H 26503908
    [Google Scholar]
  71. ParkD. KimJ.H. KimH.J. Multiplexed femtomolar detection of Alzheimer’s disease biomarkers in biofluids using a reduced graphene oxide field-effect transistor.Biosens. Bioelectron.202016711250510.1016/j.bios.2020.112505 32841782
    [Google Scholar]
  72. ChughV. BasuA. KaushikA. BasuA.K. Progression in quantum sensing/bio-sensing technologies for healthcare.ECS Sensors Plus20232101500110.1149/2754‑2726/acc190
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105292940240502114430
Loading
/content/journals/nanotec/10.2174/0118722105292940240502114430
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Alzheimer's disease; Graphene oxide; innovation; nanoformulations; proteins; treatment
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test