Skip to content
2000
Volume 19, Issue 4
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Lymphoma is a malignant tumor caused by abnormal proliferation of lymphocytes in the lymphatic system. Conventional treatments for lymphoma often have limitations, and new therapeutic strategies need to be explored. Realgar is an ancient Chinese medicine that has been used for centuries to treat a variety of ailments due to its therapeutic potential for various diseases, including cancer. However, it is a time-consuming waste and has a low absorption rate in the gastrointestinal tract, so it has the disadvantages of oral dose, potential toxicity, and low bioavailability. Recently, the development of nanotechnology has promoted the nanization of realgar particles, which have better physicochemical properties and higher bioavailability. The antitumor activity of Realgar nanoparticles against lymphoma has been demonstrated in preclinical studies. Realgar nanoparticles exhibit cytotoxic effects by inducing apoptosis and inhibiting the growth and proliferation of lymphoma cells. Moreover, these nanoparticles exert immunomodulatory effects by enhancing the activity of immune cells and promoting the cytotoxicity of T lymphocytes against lymphoma cells. Additionally, realgar nanoparticles have been shown to inhibit tumor angiogenesis, thereby restricting the blood supply and nutrient availability to lymphoma cells as exhibited in this patent comprehensive review. Despite promising preclinical data, further research on the role and mechanism of realgar nanoparticles in the treatment of lymphoma remains to be studied. Moreover, the translation of these findings into clinical practice requires rigorous evaluation through well-designed clinical trials. Realgar nanoparticles hold great potential as a novel therapeutic approach for lymphoma, and their development may contribute to the advancement of precision medicine in the field of oncology.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105284287240621053904
2024-07-05
2025-09-08
Loading full text...

Full text loading...

References

  1. AbbottB.L. Diagnosis and management of lymphoma.Clin. Lymphoma Myeloma200671303210.3816/CLM.2006.n.036 16879767
    [Google Scholar]
  2. FisherR.I. PittalugaS. Mantle-cell lymphoma: Classification and therapeutic implications.Ann. Oncol.19967Suppl. 6S35S3910.1093/annonc/7.suppl_6.S35 9010577
    [Google Scholar]
  3. ChengR. ZhangM. Preparation, characterisation and antimicrobial activities of polymer/realgar nanocomposites.J. Exp. Nanosci.201381616810.1080/17458080.2011.559590
    [Google Scholar]
  4. LiuJ. LiangS.X. LuY.F. MiaoJ.W. WuQ. ShiJ.S. Realgar and realgar-containing Liu-Shen-Wan are less acutely toxic than arsenite and arsenate.J. Ethnopharmacol.20111341263110.1016/j.jep.2010.11.052 21129479
    [Google Scholar]
  5. XiJ. FangJ. XiongX. GuiC. WangY. ZhangX. Acid water-ground nano-realgar is superior to crude realgar in promoting apoptosis of MCF-7 breast cancer cells.Curr. Med. Sci.202242472073210.1007/s11596‑022‑2605‑5 35788945
    [Google Scholar]
  6. ZhaoQ.H. ZhangY. LiuY. Anticancer effect of realgar nanoparticles on mouse melanoma skin cancer in vivo via transdermal drug delivery.Med. Oncol.201027220321210.1007/s12032‑009‑9192‑1 19280372
    [Google Scholar]
  7. YeX.C. YangX.L. XuH.B. Advance in nanorealgar studies.Huaxue Jinzhan2009215934939
    [Google Scholar]
  8. ShiF. FengN. Omari-SiawE. Realgar nanoparticle-based microcapsules: Preparation and in-vitro/in-vivo characterizations.J. Pharm. Pharmacol.2014671354210.1111/jphp.12314 25196572
    [Google Scholar]
  9. XuR. SongP. WangJ. Bioleaching of realgar nanoparticles using the extremophilic bacterium Acidithiobacillus ferrooxidans DLC-5.Electron. J. Biotechnol.2019381495710.1016/j.ejbt.2019.01.001
    [Google Scholar]
  10. XiaoxiaX. JingS. DongbinX. Realgar nanoparticles inhibit migration, invasion and metastasis in a mouse model of breast cancer by suppressing matrix metalloproteinases and angiogenesis.Curr. Drug Deliv.202017214815810.2174/1567201817666200115105633 31939730
    [Google Scholar]
  11. XuW. ChenZ. ShenX. PiC. Reno-Protective Effect of Realgar Nanoparticles on Lupus Nephritis of MRL/Lpr Mice through STAT1.Iran. J. Immunol.2019162170181 31182691
    [Google Scholar]
  12. CholujovaD. BujnakovaZ. DutkovaE. Realgar nanoparticles versusATO arsenic compounds induce in vitro and in vivo activity against multiple myeloma.Br. J. Haematol.2017179575677110.1111/bjh.14974 29048129
    [Google Scholar]
  13. BalážP. FabiánM. PastorekM. CholujováD. SedlákJ. Mechanochemical preparation and anticancer effect of realgar As4S4 nanoparticles.Mater. Lett.200963171542154410.1016/j.matlet.2009.04.008
    [Google Scholar]
  14. BalážP. SedlákJ. Arsenic in cancer treatment: Challenges for application of realgar nanoparticles (a minireview).Toxins (Basel)2010261568158110.3390/toxins2061568 22069650
    [Google Scholar]
  15. BujňákováZ. BalážP. MakreskiP. Arsenic sulfide nanoparticles prepared by milling: Properties, free-volume characterization, and anti-cancer effects.J. Mater. Sci.20155041973198510.1007/s10853‑014‑8763‑5
    [Google Scholar]
  16. FangW. PengZ.L. DaiY.J. WangD.L. HuangP. HuangH.P. (-)-Epigallocatechin-3-gallate encapsulated realgar nanoparticles exhibit enhanced anticancer therapeutic efficacy against acute promyelocytic leukemia.Drug Deliv.20192611058106710.1080/10717544.2019.1672830 31735064
    [Google Scholar]
  17. JiangS. WangX-b. ZhangZ-r. SunL. LiJ-c. ZhangY-g. Effects of realgar nanoparticles on B cell non-Hodgkin’s lymphoma Raji cells in vitro.Zhongguo Yaolixue Tongbao2017331217211728
    [Google Scholar]
  18. ShangQ. HuangP. WuW. TangJ. Detection of mutagenicity of realgar by mouse lymphoma tk gene mutation assay.Zhongchengyao2014365917920
    [Google Scholar]
  19. ShiZ.T. Report of a lung cancer survey in Hunan realgar miners.Zhonghua Jie He He Hu Xi Za Zhi1989124230231, 255-256 2636950
    [Google Scholar]
  20. BillingsleyM.M. SinghN. RavikumarP. ZhangR. JuneC.H. MitchellM.J. Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering.Nano Lett.20202031578158910.1021/acs.nanolett.9b04246 31951421
    [Google Scholar]
  21. ChenW.C. CompletoG.C. SigalD.S. CrockerP.R. SavenA. PaulsonJ.C. In vivo targeting of B-cell lymphoma with glycan ligands of CD22.Blood2010115234778478610.1182/blood‑2009‑12‑257386 20181615
    [Google Scholar]
  22. De MiguelD. Gallego-LleydaA. Martinez-AraM. PlouJ. AnelA. Martinez-LostaoL. Double-edged lipid nanoparticles combining liposome-bound TRAIL and encapsulated doxorubicin showing an extraordinary synergistic pro-apoptotic potential.Cancers (Basel)20191112194810.3390/cancers11121948 31817469
    [Google Scholar]
  23. JiangY. GuanC. LiuX. Doxorubicin-loaded CuS nanoparticles conjugated with GFLG: A novel drug delivery system for lymphoma treatment.Nano2019141195001310.1142/S1793292019500139
    [Google Scholar]
  24. LordanS. HigginbothamC.L. Effect of serum concentration on the cytotoxicity of clay particles.Cell Biol. Int.2012361576110.1042/CBI20100587 21883092
    [Google Scholar]
  25. LuoZ. LuoL. LuY. Dual-binding nanoparticles improve the killing effect of T cells on solid tumor.J. Nanobiotechnology202220126110.1186/s12951‑022‑01480‑z 35672752
    [Google Scholar]
  26. MezzarobaN. ZorzetS. SeccoE. New potential therapeutic approach for the treatment of B-Cell malignancies using chlorambucil/hydroxychloroquine-loaded anti-CD20 nanoparticles.PLoS One201389e7421610.1371/journal.pone.0074216 24098639
    [Google Scholar]
  27. NajimN. RusdiR. HamzahA.S. ShaameriZ. ZainM.M. KamarulzamanN. Effects of the absorption behaviour of ZnO nanoparticles on cytotoxicity measurements.J. Nanomater.20142014411010.1155/2014/694737
    [Google Scholar]
  28. ToyotaH. YanaseN. YoshimotoT. HaradaM. KatoY. MizuguchiJ. Vaccination with OVA-bound nanoparticles encapsulating IL-7 inhibits the growth of OVA-expressing E.G7 tumor cells in vivo.Oncol. Rep.201533129229610.3892/or.2014.3603 25394516
    [Google Scholar]
  29. ZhaoQ. JiangD. SunX. Biomimetic nanotherapy: Core–shell structured nanocomplexes based on the neutrophil membrane for targeted therapy of lymphoma.J. Nanobiotechnology202119117910.1186/s12951‑021‑00922‑4 34120620
    [Google Scholar]
  30. YonchevaK. TzankovB. YordanovY. Encapsulation of doxorubicin in chitosan-alginate nanoparticles improves its stability and cytotoxicity in resistant lymphoma L5178 MDR cells.J. Drug Deliv. Sci. Technol.20205910187010.1016/j.jddst.2020.101870
    [Google Scholar]
  31. ŠírováM. HorkováV. EtrychT. ChytilP. ŘíhováB. StudenovskýM. Polymer donors of nitric oxide improve the treatment of experimental solid tumours with nanosized polymer therapeutics.J. Drug Target.2017259-1079680810.1080/1061186X.2017.1358724 28726521
    [Google Scholar]
  32. ShiD. PuS. YinH. Fluorescent realgar nanoclusters for nuclear targeting-triggered tumor theranostics.ACS Appl. Nano Mater.2022556485649910.1021/acsanm.2c00577
    [Google Scholar]
  33. VinhasR. MendesR. FernandesA.R. BaptistaP.V. Nanoparticles—emerging potential for managing leukemia and lymphoma.Front. Bioeng. Biotechnol.201757910.3389/fbioe.2017.00079 29326927
    [Google Scholar]
  34. ShiD. LiuY. XiR. Caveolin-1 contributes to realgar nanoparticle therapy in human chronic myelogenous leukemia K562 cells.Int. J. Nanomedicine2016115823583510.2147/IJN.S115158 27853367
    [Google Scholar]
  35. YuanZ. WenbinW. Realgar-induced chromosomal aberrations in vivo and in vitro.Chinese J Exper Prescrip2012018014245249
    [Google Scholar]
  36. FuG.N. FanH.Y. HanX.J. XinC.L. Complex chromosomal rearrangements involving five chromosomes in chronic myelogenous leukemia: A case report.Oncol. Lett.20161142651265310.3892/ol.2016.4275 27073533
    [Google Scholar]
  37. ChengY. LiuR. WangQ. Realgar-induced apoptosis of cervical cancer cell line Siha via cytochrome c release and caspase-3 and caspase-9 activation.Chin. J. Integr. Med.201218535936510.1007/s11655‑011‑0697‑z 21526368
    [Google Scholar]
  38. YangS. ChenC. QiuY. XuC. YaoJ. Paying attention to tumor blood vessels: Cancer phototherapy assisted with nano delivery strategies.Biomaterials202126812056210.1016/j.biomaterials.2020.120562 33278682
    [Google Scholar]
  39. YangZ. DengW. ZhangX. Opportunities and challenges of nanoparticles in digestive tumours as anti-angiogenic therapies.Front. Oncol.20221178933010.3389/fonc.2021.789330 35083147
    [Google Scholar]
  40. BalaN.B. ManzariM.T. FerreiraM.D.S. Dual inhibition of MCL1 and BCL2 in lymphoma using tumor targeted nanoparticles.Blood2019134Suppl. 130510.1182/blood‑2019‑130571
    [Google Scholar]
  41. WuJ. ShaoY. LiuJ. ChenG. HoP.C. The medicinal use of realgar (As4S4) and its recent development as an anticancer agent.J. Ethnopharmacol.2011135359560210.1016/j.jep.2011.03.071 21497649
    [Google Scholar]
  42. ChenS. FangY. MaL. LiuS. LiX. Realgar-induced apoptosis and differentiation in all-trans retinoic acid (ATRA)-sensitive NB4 and ATRA-resistant MR2 cells.Int. J. Oncol.20124041089109610.3892/ijo.2011.1276 22134377
    [Google Scholar]
  43. OberlyT.J. PiperC.E. Mutagenicity of metal-salts in the L5178Y mouse lymphoma assay.Environ. Mutagen.1980222811
    [Google Scholar]
  44. YeH.Q. GanL. YangX.L. XuH.B. Membrane toxicity accounts for apoptosis induced by realgar nanoparticles in promyelocytic leukemia HL-60 cells.Biol. Trace Elem. Res.2005103211713210.1385/BTER:103:2:117 15772436
    [Google Scholar]
  45. MaQ. ReiterR.J. ChenY. Role of melatonin in controlling angiogenesis under physiological and pathological conditions.Angiogenesis20202329110410.1007/s10456‑019‑09689‑7 31650428
    [Google Scholar]
  46. LiuS. ChenX. BaoL. Treatment of infarcted heart tissue via the capture and local delivery of circulating exosomes through antibody-conjugated magnetic nanoparticles.Nat. Biomed. Eng.20204111063107510.1038/s41551‑020‑00637‑1 33159193
    [Google Scholar]
  47. KankalaR.K. HanY.H. NaJ. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles.Adv. Mater.20203223190703510.1002/adma.201907035 32319133
    [Google Scholar]
  48. KongF.H. YeQ.F. MiaoX.Y. Current status of sorafenib nanoparticle delivery systems in the treatment of hepatocellular carcinoma.Theranostics202111115464549010.7150/thno.54822 33859758
    [Google Scholar]
  49. CotinG. Blanco-AndujarC. PertonF. Unveiling the role of surface, size, shape and defects of iron oxide nanoparticles for theranostic applications.Nanoscale20211334145521457110.1039/D1NR03335B 34473175
    [Google Scholar]
  50. CapelôaT. BenyahiaZ. ZampieriL.X. BlackmanM.C.N.M. SonveauxP. Metabolic and non-metabolic pathways that control cancer resistance to anthracyclines.Semin. Cell Dev. Biol.20209818119110.1016/j.semcdb.2019.05.006 31112797
    [Google Scholar]
  51. ChenJ. ZengZ. HuangL. Photothermal therapy technology of metastatic colorectal cancer.Am. J. Transl. Res.202012730893115 32774688
    [Google Scholar]
  52. HuJ. SongJ. TangZ. WeiS. ChenL. ZhouR. Hypericin-mediated photodynamic therapy inhibits growth of colorectal cancer cells via inducing S phase cell cycle arrest and apoptosis.Eur. J. Pharmacol.202190017407110.1016/j.ejphar.2021.174071 33811836
    [Google Scholar]
  53. KhodabakhshF. MuyldermansS. BehdaniM. Kazemi-LomedashtF. Liposomal delivery of vascular endothelial growth factor/receptors and their inhibitors.J. Drug Target.202028437938510.1080/1061186X.2019.1693578 31822133
    [Google Scholar]
  54. OmarA.I. PlengsuriyakarnT. ChittasuphoC. Na-BangchangK. Enhanced oral bioavailability and biodistribution of atractylodin encapsulated in PLGA nanoparticle in cholangiocarcinoma.Clin. Exp. Pharmacol. Physiol.202148331832810.1111/1440‑1681.13433 33125766
    [Google Scholar]
  55. XiR. HuangJ. LiD. WangX. WuL. Roles of PI3-K/Akt pathways in nanoparticle realgar powders-induced apoptosis in U937 cells.Acta Pharmacol. Sin.200829335536310.1111/j.1745‑7254.2008.00759.x 18298901
    [Google Scholar]
  56. ShenY. WangX. LuJ. Reduction of liver metastasis stiffness improves response to bevacizumab in metastatic colorectal cancer.Cancer Cell2020376800817.e710.1016/j.ccell.2020.05.005 32516590
    [Google Scholar]
  57. TeleanuR.I. ChircovC. GrumezescuA.M. TeleanuD.M. Tumor angiogenesis and anti-angiogenic strategies for cancer treatment.J. Clin. Med.2019918410.3390/jcm9010084 31905724
    [Google Scholar]
  58. BhattacharyaS MukhopadhyayD PalK Methods and materials for treating cancer.Patent No. US10543231B22020
/content/journals/nanotec/10.2174/0118722105284287240621053904
Loading
/content/journals/nanotec/10.2174/0118722105284287240621053904
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test