Skip to content
2000
Volume 19, Issue 3
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

The prevalence of thyroid cancer (TC) is more common in women and is up to 43% in patients aged between 45-65 years. The battle against TC is hampered by the lack of effective diagnostic and therapeutic approaches. The effectiveness of surgical procedures, such as thyroidectomy and nutraceutical treatments, are accompanied by several difficulties and still require further research. Alternatively, the DNA-damaging traditional model of chemotherapy is linked to poor solubility, untoward systemic effects, and associated cytotoxicity, instituting an urgent need to establish a specialized, factual, and reliable delivery tool. In order to overcome the limitations of conventional delivery systems, nanotechnology-based delivery tools have shown the potential of articulating endless inherent implementations. The probable benefits of emerging nanotechnology-based diagnostic techniques include rapid screening and early illness diagnosis, which draws investigators to investigate and assess the possibility of this treatment for TC. Subsequently, organic (., liposomes, polymer-based, and dendrimers) and inorganic (., gold, carbon-based, mesoporous silica, magnetic, and quantum dots) NPs and hybrids thereof (liposome-silica, chitosan-carbon, and cell membrane-coated) have been projected for TC biomarker screening, therapy, and detection, providing better outcomes than traditional diagnostic and treatment techniques. Therefore, this review aims to offer a broad perspective on nanoplatform in TC, accompanied by present and potential future treatment options and screening techniques; including the innovative patents utilized in the realm of thyroid cancer using nanocarriers. The goal of cancer therapy has traditionally been to “search a thorn in a hayloft”; therefore, this article raises the possibility of treating TC using nano-oncotherapeutics, which might be useful clinically and will encourage future researchers to explore this tool’s potential and drawbacks.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105257210230929083126
2023-10-17
2025-12-14
Loading full text...

Full text loading...

References

  1. GorainB. ChoudhuryH. NairA.B. DubeyS.K. KesharwaniP. Theranostic application of nanoemulsions in chemotherapy.Drug Discov. Today20202571174118810.1016/j.drudis.2020.04.013 32344042
    [Google Scholar]
  2. ChoudhuryH. PandeyM. YinT.H. Rising horizon in circumventing multidrug resistance in chemotherapy with nanotechnology.Mater. Sci. Eng. C201910159661310.1016/j.msec.2019.04.005 31029353
    [Google Scholar]
  3. Cancer.Available from: https://www.cancer.gov/about-cancer/understanding/what-is-cancer (Accessed on July 2023.).
  4. Cancer - Screening and early detection.Available from: https://www.who.int/europe/news-room/fact-sheets/item/cancer-screening-and-early-detection-of-cancer# ~:text=Thecomponents of early, cancersbeforeansymptomsappear.(Accessed on July 2023.).
  5. CoteG.J. GrubbsE.G. HofmannM.C. Thyroid C-cell biology and oncogenic transformation.Rec Resul Can Res20152041204
    [Google Scholar]
  6. How does the thyroid gland work?Available from: https://www.ncbi.nlm.nih.gov/books/NBK279388/
  7. CancerT. Thyroid Cancer: Introduction | Cancer.Net.Available from: https://www.cancer.net/cancer-types/thyroid-cancer/introduction (AccessedSeptember 22, 2022).
  8. Key Statistics for Thyroid CancerAvailable from: https://www.cancer.org/cancer/thyroid-cancer/about/key-statistics.html (Accessed September 22, 2022).
  9. Lortet-TieulentJ. FranceschiS. Dal MasoL. VaccarellaS. Thyroid cancer “epidemic” also occurs in low- and middle-income countries.Int. J. Cancer201914492082208710.1002/ijc.31884 30242835
    [Google Scholar]
  10. CancerT. Thyroid Cancer.Available from: https://www.cancer.org/cancer/thyroid-cancer.html (AccessedSeptember 23, 2022).
    [Google Scholar]
  11. NikiforovY.E. Radiation-induced thyroid cancer: What we have learned from Chernobyl.Endocr. Pathol.200617430731810.1007/s12022‑006‑0001‑5 17525478
    [Google Scholar]
  12. FurukawaK. PrestonD. FunamotoS. Long-term trend of thyroid cancer risk among Japanese atomic-bomb survivors: 60 years after exposure.Int. J. Cancer201313251222122610.1002/ijc.27749 22847218
    [Google Scholar]
  13. BhattiP. VeigaL.H.S. RonckersC.M. Risk of second primary thyroid cancer after radiotherapy for a childhood cancer in a large cohort study: An update from the childhood cancer survivor study.Radiat. Res.20101746a74175210.1667/RR2240.1 21128798
    [Google Scholar]
  14. Treatment by Cancer Type2022Available from: https://www.nccn.org/guidelines/category_1 (Accessed September 23, 2022).
  15. HughesD.T. HaymartM.R. MillerB.S. GaugerP.G. DohertyG.M. The most commonly occurring papillary thyroid cancer in the United States is now a microcarcinoma in a patient older than 45 years.Thyroid201121323123610.1089/thy.2010.0137 21268762
    [Google Scholar]
  16. HarachH.R. FranssilaK.O. WaseniusV.M. Occult papillary carcinoma of the thyroid. A “normal” finding in finland. A systematic autopsy study.Cancer198556353153810.1002/1097‑0142(19850801)56:3<531:AID‑CNCR2820560321>3.0.CO;2‑3 2408737
    [Google Scholar]
  17. ShahJ.P. Thyroid carcinoma: Epidemiology, histology, and diagnosis.Clin. Adv. Hematol. Oncol.201513436 26430868
    [Google Scholar]
  18. XuB. GhosseinR. Critical prognostic parameters in the anatomic pathology reporting of differentiated follicular cell-derived thyroid carcinoma.Cancers (Basel)2019118110010.3390/cancers11081100 31382401
    [Google Scholar]
  19. Osamura: WHO classification of tumours of endocrine organs.Available from: https://scholar.google.com/scholar_lookup?title=WHO+Classification+of+Tumours+of+Endocrine+Organs&author=Lloyd,+R.V.&author=Osamura,+R.Y.&author=Kloppel,+G.&author=Rosai,+J.&publication_year=2017 (AccessedSeptember 26, 2022).
  20. AsioliS. EricksonL.A. RighiA. Poorly differentiated carcinoma of the thyroid: Validation of the Turin proposal and analysis of IMP3 expression.Mod. Pathol.20102391269127810.1038/modpathol.2010.117 20562850
    [Google Scholar]
  21. VolanteM. ColliniP. NikiforovY.E. Poorly differentiated thyroid carcinoma: The Turin proposal for the use of uniform diagnostic criteria and an algorithmic diagnostic approach.Am. J. Surg. Pathol.20073181256126410.1097/PAS.0b013e3180309e6a 17667551
    [Google Scholar]
  22. HiltzikD. CarlsonD.L. TuttleR.M. Poorly differentiated thyroid carcinomas defined on the basis of mitosis and necrosis.Cancer200610661286129510.1002/cncr.21739 16470605
    [Google Scholar]
  23. FozzattiL. ChengS. Tumor cells and cancer-associated fibroblasts: A synergistic crosstalk to promote thyroid cancer.Endocrinol. Metab.202035467368010.3803/EnM.2020.401 33161690
    [Google Scholar]
  24. CunhaL.L. WardL.S. Translating the immune microenvironment of thyroid cancer into clinical practice.Endocr. Relat. Cancer2022296R67R8310.1530/ERC‑21‑0414 35289765
    [Google Scholar]
  25. FerrariS.M. FallahiP. GaldieroM.R. Immune and inflammatory cells in thyroid cancer microenvironment.Int. J. Mol. Sci.20192018441310.3390/ijms20184413 31500315
    [Google Scholar]
  26. RotondiM. CoperchiniF. LatrofaF. ChiovatoL. Role of chemokines in thyroid cancer microenvironment: Is CXCL8 the main player?Front. Endocrinol.2018931410.3389/fendo.2018.00314 29977225
    [Google Scholar]
  27. SchneiderD.F. ChenH. New developments in the diagnosis and treatment of thyroid cancer.CA Cancer J. Clin.201363637339410.3322/caac.21195 23797834
    [Google Scholar]
  28. PatelK.N. ShahaA.R. Poorly differentiated and anaplastic thyroid cancer.Cancer Contr.200613211912810.1177/107327480601300206 16735986
    [Google Scholar]
  29. UdelsmanR. ChenH. The current management of thyroid cancer.Adv. Surg.199933127 10572560
    [Google Scholar]
  30. FrakerD.L. Radiation exposure and other factors that predispose to human thyroid neoplasia.Surg. Clin. North Am.199575336537510.1016/S0039‑6109(16)46627‑2 7747246
    [Google Scholar]
  31. HaugenB.R. AlexanderE.K. BibleK.C. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The american thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer.Thyroid2016261113310.1089/thy.2015.0020 26462967
    [Google Scholar]
  32. ValderrabanoP. KhazaiL. LeonM.E. Evaluation of thyroseq v2 performance in thyroid nodules with indeterminate cytology.Endocr. Relat. Cancer201724312713610.1530/ERC‑16‑0512 28104680
    [Google Scholar]
  33. LeeK. AnastasopoulouC. ChandranC. CassaroS. Thyroid Cancer.Treasure Island, FLStatPearls Publishing2022
    [Google Scholar]
  34. AminM.B. GreeneF.L. EdgeS.B. The eighth edition ajcc cancer staging manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging.CA Cancer J Clin2017679399
    [Google Scholar]
  35. YoonB.H. LeeY. OhH.J. KimS.H. LeeY.K. Influence of thyroid-stimulating hormone suppression therapy on bone mineral density in patients with differentiated thyroid cancer: A meta-analysis.J. Bone Metab.2019261516010.11005/jbm.2019.26.1.51 30899725
    [Google Scholar]
  36. WeitzmanS.P. ShermanS.I. Novel drug treatments of progressive radioiodine-refractory differentiated thyroid cancer.Endocrinol. Metab. Clin. North Am.201948125326810.1016/j.ecl.2018.10.009 30717907
    [Google Scholar]
  37. ShahD.R. GreenS. ElliotA. McGahanJ.P. KhatriV.P. Current oncologic applications of radiofrequency ablation therapies.World J. Gastrointest. Oncol.201254718010.4251/wjgo.v5.i4.71 23671734
    [Google Scholar]
  38. BiscegliaA. RossettoR. GarberoglioS. Predictor analysis in radiofrequency ablation of benign thyroid nodules: A single center experience.Front. Endocrinol.20211263888010.3389/fendo.2021.638880 34079521
    [Google Scholar]
  39. SwiftP.S. LarsonS. ClarkO.H. RuanD. Cancer of the Thyroid Leibel and Phillips Textbook of Radiation Oncology.Elsevier: Amsterdam, The Netherland201072673610.1016/B978‑1‑4160‑5897‑7.00035‑4
    [Google Scholar]
  40. HalperinE.C. Particle therapy and treatment of cancer.Lancet Oncol.20067867668510.1016/S1470‑2045(06)70795‑1 16887485
    [Google Scholar]
  41. MiY. LvP. WangF. Targeted intraoperative radiotherapy is non-inferior to conventional external beam radiotherapy in chinese patients with breast cancer: A propensity score matching study.Front. Oncol.20201055032710.3389/fonc.2020.550327 33134162
    [Google Scholar]
  42. Fine needle aspiration (FNA) biopsy information | myVMC.Available from: https://www.myvmc.com/investigations/fine-needle-aspiration-biopsy-fna/ (AccessedOctober 9, 2022.)
  43. Fine Needle Aspiration ProcedureWhat to Expect.Available from: https://www.webmd.com/a-to-z-guides/fine-needle-aspiration (AccessedOctober 9, 2022.)
    [Google Scholar]
  44. FujiokaT. MoriM. KubotaK. Clinical usefulness of ultrasound-guided fine needle aspiration and core needle biopsy for patients with axillary lymphadenopathy.Medicina202157772210.3390/medicina57070722 34357003
    [Google Scholar]
  45. RobertT.J. MajidM. YasmyneR. Tyrosine Kinase Inhibitors.StatPearls2021
    [Google Scholar]
  46. JiaoQ. BiL. RenY. SongS. WangQ. WangY. Advances in studies of tyrosine kinase inhibitors and their acquired resistance.Mol. Cancer20181713610.1186/s12943‑018‑0801‑5 29455664
    [Google Scholar]
  47. PottierC. FresnaisM. GilonM. JérusalemG. LonguespéeR. SounniN.E. Tyrosine kinase inhibitors in cancer: Breakthrough and challenges of targeted therapy.Cancers202012373110.3390/cancers12030731 32244867
    [Google Scholar]
  48. Radiofrequency Ablation (RFA): What It Is & Procedure.Available from: https://my.clevelandclinic.org/health/treatments/17411-radiofrequency-ablation (AccessedSeptember 28, 2022.).
  49. KimY.S. RhimH. TaeK. ParkD.W. KimS.T. Radiofrequency ablation of benign cold thyroid nodules: initial clinical experience.Thyroid200616436136710.1089/thy.2006.16.361 16646682
    [Google Scholar]
  50. LeeC.U. KimS.J. SungJ.Y. ParkS.H. ChongS. BaekJ.H. Needle track tumor seeding after radiofrequency ablation of a thyroid tumor.Jpn. J. Radiol.2014321166166310.1007/s11604‑014‑0350‑9 25135827
    [Google Scholar]
  51. KobayashiA. KumaK. MatsuzukaF. HiraiK. FukataS. SugawaraM. Thyrotoxicosis after needle aspiration of thyroid cyst.J. Clin. Endocrinol. Metab.19927512124 1619011
    [Google Scholar]
  52. ValcaviR. TsamatropoulosP. Health-related quality of life after percutaneous radiofrequency ablation of cold, solid, benign thyroid nodules: A 2-year follow-up study in 40 patients.Endocr. Pract.201521888789610.4158/EP15676.OR 26121459
    [Google Scholar]
  53. JeongW.K. BaekJ.H. RhimH. Radiofrequency ablation of benign thyroid nodules: Safety and imaging follow-up in 236 patients.Eur. Radiol.20081861244125010.1007/s00330‑008‑0880‑6 18286289
    [Google Scholar]
  54. BaekJ.H. KimY.S. LeeD. HuhJ.Y. LeeJ.H. Benign predominantly solid thyroid nodules: Prospective study of efficacy of sonographically guided radiofrequency ablation versus control condition.AJR Am. J. Roentgenol.201019441137114210.2214/AJR.09.3372 20308523
    [Google Scholar]
  55. External Beam Radiation Therapy for Cancer - NCIAvailable from: https://www.cancer.gov/about-cancer/treatment/types/radiation-therapy/external-beam (AccessedSeptember 28, 2022).
  56. Side Effects of Radiation Therapy | Cancer.Net.Available from: https://www.cancer.net/navigating-cancer-care/how-cancer-treated/radiation-therapy/side-effects-radiation-therapy (AccessedSeptember 28, 2022).
  57. GharibH. GoellnerJ.R. JohnsonD.A. Fine-needle aspiration cytology of the thyroid. A 12-year experience with 11,000 biopsies.Clin. Lab. Med.199313369970910.1016/S0272‑2712(18)30434‑7 8222583
    [Google Scholar]
  58. TomodaC. TakamuraY. ItoY. MiyaA. MiyauchiA. Transient vocal cord paralysis after fine-needle aspiration biopsy of thyroid tumor.Thyroid200616769769910.1089/thy.2006.16.697 16889495
    [Google Scholar]
  59. HulinS.J. HarrisK.P. Thyroid fine needle cytology complicated by recurrent laryngeal nerve palsy and unnecessary radical surgery.J. Laryngol. Otol.20061201197097110.1017/S0022215106002453 16923321
    [Google Scholar]
  60. GaugerP.G. GuineaA.I. ReeveT.S. DelbridgeL.W. The spectrum of emergency admissions for thyroidectomy.Am. J. Emerg. Med.199917659159310.1016/S0735‑6757(99)90204‑8 10530542
    [Google Scholar]
  61. HaasS.N. Acute thyroid swelling after needle biopsy of the thyroid.N. Engl. J. Med.1982307211349910.1056/NEJM198211183072121 7133080
    [Google Scholar]
  62. JunH.H. KimS.M. KimB.W. LeeY.S. ChangH.S. ParkC.S. Overcoming the limitations of fine needle aspiration biopsy: Detection of lateral neck node metastasis in papillary thyroid carcinoma.Yonsei Med. J.201556118218810.3349/ymj.2015.56.1.182 25510763
    [Google Scholar]
  63. ThomsonR.J. MoshirfarM. RonquilloY. Tyrosine Kinase Inhibitors.StatPearls2021
    [Google Scholar]
  64. Vandetanib: Too dangerous in medullary thyroid cancer.Prescrire Int.201221131233 23185843
    [Google Scholar]
  65. Cabozantinib (Cometriq, Cabometyx) | Cancer Drugs | Cancer Research UK.Available from: https://www.cancerresearchuk.org/about-cancer/cancer-in-general/treatment/cancer-drugs/drugs/cabozantinib (AccessedOctober 5, 2022).
  66. OralS. orafenib Oral: Uses, Side Effects, Interactions, Pictures, Warnings & Dosing - WebMD.Available from: https://www.webmd.com/drugs/2/drug-94784/sorafenib-oral/details (AccessedOctober 5, 2022).
  67. FröhlichE. WahlR. Nanoparticles: Promising auxiliary agents for diagnosis and therapy of thyroid cancers.Cancers20211316406310.3390/cancers13164063 34439219
    [Google Scholar]
  68. YaoY. ZhouY. LiuL. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.00193 32974385
    [Google Scholar]
  69. García-VenceM. Chantada-VázquezM.P. Cameselle-TeijeiroJ.M. BravoS.B. NúñezC. A novel nanoproteomic approach for the identification of molecular targets associated with thyroid tumors.Nanomaterials20201012237010.3390/nano10122370 33260544
    [Google Scholar]
  70. LiS. DongS. XuW. JiangY. LiZ. Polymer nanoformulation of sorafenib and all-trans retinoic acid for synergistic inhibition of thyroid cancer.Front. Pharmacol.202010167610.3389/fphar.2019.01676 32116677
    [Google Scholar]
  71. XueS. RenP. WangP. ChenG. Short and long-term potential role of carbon nanoparticles in total thyroidectomy with central lymph node dissection.Sci. Rep.2018811193610.1038/s41598‑018‑30299‑8 30093623
    [Google Scholar]
  72. XuS. LiZ. XuM. PengH. The role of carbon nanoparticle in lymph node detection and parathyroid gland protection during thyroidectomy for non-anaplastic thyroid carcinoma- a meta-analysis.PLoS One20201511e022362710.1371/journal.pone.0223627 33170845
    [Google Scholar]
  73. WangC. ZhangR. TanJ. Effect of mesoporous silica nanoparticles co loading with 17 AAG and Torin2 on anaplastic thyroid carcinoma by targeting VEGFR2.Oncol. Rep.20204351491150210.1007/s12094‑019‑02283‑9 32323855
    [Google Scholar]
  74. HosseinzadehS. NazariH. EsmaeiliE. HatamieS. Polyethylene glycol triggers the anti-cancer impact of curcumin nanoparticles in sw-1736 thyroid cancer cells.J. Mater. Sci. Mater. Med.202132911210.1007/s10856‑021‑06593‑9 34453618
    [Google Scholar]
  75. LiuY. LiL. YuJ. FanY.X. LuX.B. Carbon nanoparticle lymph node tracer improves the outcomes of surgical treatment in papillary thyroid cancer.Cancer Biomark.201823222723310.3233/CBM‑181386 30198867
    [Google Scholar]
  76. LiuY. GundaV. ZhuX. Theranostic near-infrared fluorescent nanoplatform for imaging and systemic siRNA delivery to metastatic anaplastic thyroid cancer.Proc. Natl. Acad. Sci.2016113287750775510.1073/pnas.1605841113 27342857
    [Google Scholar]
  77. LombardoG.E. MaggisanoV. CelanoM. Anti- hTERT siRNA-loaded nanoparticles block the growth of anaplastic thyroid cancer xenograft.Mol. Cancer Ther.20181761187119510.1158/1535‑7163.MCT‑17‑0559 29563163
    [Google Scholar]
  78. YanZ. ZhangX. LiuY. HSA-MnO2 - 131 I combined imaging and treatment of anaplastic thyroid carcinoma.Technol. Cancer Res. Treat.2022211533033822110655710.1177/15330338221106557 35702054
    [Google Scholar]
  79. Potential Role for Carbon Nanoparticles to Guide Central Neck Dissection in Patients With Papillary Thyroid Cancer - Tabular View - ClinicalTrials.gov.2023Available from: https://clinicaltrials.gov/ct2/show/record/NCT02724176 (Accessed-March 13, 2023).
  80. Lateral Neck Lymph Node Mapping in Thyroid Cancer - Full Text View - ClinicalTrials.gov.2023Available from: https://clinicaltrials.gov/ct2/show/study/NCT04312087 (AccessedMarch 13, 2023).
  81. Trained Immunity in Thyroid Carcinoma and Colon Carcinoma - Full Text View - - ClinicalTrials.gov.2023Available from: https://www.clinicaltrials.gov/ct2/show/NCT05280379 (AccessedMarch 13, 2023).
  82. Atezolizumab With Chemotherapy in Treating Patients With Anaplastic or Poorly Differentiated Thyroid Cancer - Full Text View - ClinicalTrials.gov.Available from: https://clinicaltrials.gov/ct2/show/NCT03181100 (AccessedMarch 13, 2023).
  83. Nanoparticle and polymer formulations for thyroid hormone analogs, antagonists, and formulations and uses thereof.US9839614B2Available from: https://patents.google.com/patent/US9839614B2/en (AccessedMarch 13, 2023).
    [Google Scholar]
  84. Tsh-conjugated nanocarrier for the treatment of thyroid cancer.WO2012073125A1Available from: https://patents.google.com/patent/WO2012073125A1/de (AccessedMarch 13, 2023).
    [Google Scholar]
  85. Magnetic nanocomposite specific for thyroid cancer and use thereof.WO2012121528A3Available from: https://patents.google.com/patent/WO2012121528A3/ja (AccessedMarch 13, 2023).
    [Google Scholar]
  86. Multimodal silica nanoparticles.JP6412918B2Available from: https://patents.google.com/patent/JP6412918B2/en (Accessed-March 13, 2023).
    [Google Scholar]
  87. Nanoparticles for targeted delivery of multiple therapeutic agents and methods of use.US9931410B2Available from: https://patents.google.com/patent/US9931410B2/en (Accessed-March 13, 2023).
    [Google Scholar]
  88. Methods of using albumin-CD20 paclitaxel nanoparticle complex compositions for treating cancer.US10610484B2Available from: https://patents.google.com/patent/US10610484B2/en (Accessed-March 13, 2023).
    [Google Scholar]
  89. HaugenB.R. AlexanderE.K. BibleK.C. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer.Thyroid: Official J Thyroid Assoc2016261113310.1089/thy.2015.0020
    [Google Scholar]
  90. AntonelliA. FerriC. FerrariS.M. New targeted molecular therapies for dedifferentiated thyroid cancer.J. Oncol.2010201092168210.1155/2010/921682
    [Google Scholar]
  91. SilaghiC.A. LozovanuV. SilaghiH. The prognostic value of microRNAs in thyroid cancers - A systematic review and meta-analysis.Cancers2020129260810.3390/cancers12092608
    [Google Scholar]
  92. FerrariM. Cancer nanotechnology: Opportunities and challenges.Nature reviews Cancer20055316117110.1038/nrc1566
    [Google Scholar]
  93. ChablaniS.V. SabraM.M. Thyroid cancer and telemedicine during the COVID-19 pandemic.J Endocr202156bvab05910.1210/jendso/bvab059
    [Google Scholar]
  94. TaoY. YuY. WuT. Deep learning for the diagnosis of suspicious thyroid nodules based on multimodal ultrasound images.Front. Oncol.202212101272410.3389/fonc.2022.1012724
    [Google Scholar]
  95. BaruahM.P. KalraB. KalraS. Patient centred approach in endocrinology: From introspection to action.Indian J. Endocrinol. Metab.201216567968110.4103/2230‑8210.100629
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105257210230929083126
Loading
/content/journals/nanotec/10.2174/0118722105257210230929083126
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test