Skip to content
2000
Volume 19, Issue 3
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Niosomes are novel, self-assembled vesicular carriers that deliver both lipophilic and hydrophilic drugs at the specific site in a targeted way, enhancing bioavailability and extending therapeutic effects. Niosomes are a versatile drug delivery system with a diverse range of applications from gene to brain-targeted delivery and they are more attractive choices than liposomes as they are efficient at biodegrading. Niosome offers several advantages over conventional drug delivery systems, including enhanced stability, and also have gained a lot of focus in natural product delivery in recent years. This review provides a comprehensive view of niosomal research and recent advancements, including classification and fabrication methods, and their role in drug delivery and targeting. The description of the rise in niosomal formulation patents around the world is also elaborated along with the natural product delivery of niosomes which has recently gained significance. Patents on novel preparation, loading, and modification techniques have enhanced the importance of niosome in the pharmaceutical industry.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105259776231002071218
2023-10-10
2025-10-02
Loading full text...

Full text loading...

References

  1. QumbarM. AmeeduzzafarS.S. ImamS.S. AliJ. AhmadJ. AliA. Formulation and optimization of lacidipine loaded niosomal gel for transdermal delivery: In-vitro characterization and in-vivo activity.Biomed. Pharmacother.20179325526610.1016/j.biopha.2017.06.043 28738502
    [Google Scholar]
  2. KhanD.H. BashirS. KhanM.I. FigueiredoP. SantosH.A. PeltonenL. Formulation optimization and in vitro characterization of rifampicin and ceftriaxone dual drug loaded niosomes with high energy probe sonication technique.J. Drug Deliv. Sci. Technol.20205810176310.1016/j.jddst.2020.101763
    [Google Scholar]
  3. KhanD.H. BashirS. FigueiredoP. SantosH.A. KhanM.I. PeltonenL. Process optimization of ecological probe sonication technique for production of rifampicin loaded niosomes.J. Drug Deliv. Sci. Technol.201950273310.1016/j.jddst.2019.01.012
    [Google Scholar]
  4. AparajayP. DevA. Functionalized niosomes as a smart delivery device in cancer and fungal infection.Eur. J. Pharm. Sci.202216810605210.1016/j.ejps.2021.106052 34740786
    [Google Scholar]
  5. MawaziS.M. AnnT.J. WidodoR.T. Application of niosomes in cosmetics: A systematic review.Cosmetics20229612710.3390/cosmetics9060127
    [Google Scholar]
  6. KauslyaA. BorawakeP.D. ShindeJ.V. ChavanR.S. Niosomes: A novel carrier drug delivery system.J. Drug Deliv. Ther.202111116217010.22270/jddt.v11i1.4479
    [Google Scholar]
  7. MittalS. ChaudharyA. ChaudharyA. KumarA. Proniosomes: The effective and efficient drug-carrier system.Ther. Deliv.202011212513710.4155/tde‑2019‑0065 31937205
    [Google Scholar]
  8. Aboul-EinienM.H. KandilS.M. AbdouE.M. DiabH.M. ZakiM.S.E. Ascorbic acid derivative-loaded modified aspasomes: Formulation, in vitro, ex vivo and clinical evaluation for melasma treatment.J. Liposome Res.2020301546710.1080/08982104.2019.1585448 30821553
    [Google Scholar]
  9. AbdelkaderH. WuZ. Al-KassasR. AlanyR.G. Niosomes and discomes for ocular delivery of naltrexone hydrochloride: Morphological, rheological, spreading properties and photo-protective effects.Int. J. Pharm.20124331-214214810.1016/j.ijpharm.2012.05.011 22595640
    [Google Scholar]
  10. ZhangY. CaoF. UllahA. A comparative study of niosomal and elastic niosomal carbomer hydrogel for transcutaneous vaccine delivery.Mater. Today Commun.20223110373810.1016/j.mtcomm.2022.103738
    [Google Scholar]
  11. MoghddamS.R.M. AhadA. AqilM. ImamS.S. SultanaY. Formulation and optimization of niosomes for topical diacerein delivery using 3-factor, 3-level Box-Behnken design for the management of psoriasis.Mater. Sci. Eng. C20166978979710.1016/j.msec.2016.07.043 27612773
    [Google Scholar]
  12. GharbaviM. AmaniJ. Kheiri-ManjiliH. DanafarH. SharafiA. Niosome: A promising nanocarrier for natural drug delivery through blood-brain barrier.Adv. Pharmacol. Sci.2018201811510.1155/2018/6847971 30651728
    [Google Scholar]
  13. DeA. VenkateshN. SenthilM. SanapalliB.K.R. ShanmughamR. KarriV.V.S.R. Smart niosomes of temozolomide for enhancement of brain targeting.Nanobiomedicine20185184954351880535510.1177/1849543518805355 30344765
    [Google Scholar]
  14. EssaE. Effect of formulation and processing variables on the particle size of sorbitan monopalmitate niosomes.Asian J. Pharm.20104422710.4103/0973‑8398.76752
    [Google Scholar]
  15. ManosroiA. ChutoprapatR. AbeM. ManosroiJ. Characteristics of niosomes prepared by supercritical carbon dioxide (scCO2) fluid.Int. J. Pharm.20083521-224825510.1016/j.ijpharm.2007.10.013 18036754
    [Google Scholar]
  16. MuzzalupoR. TavanoL. LaiF. PicciN. Niosomes containing hydroxyl additives as percutaneous penetration enhancers: Effect on the transdermal delivery of sulfadiazine sodium salt.Colloids Surf. B Biointerfaces201412320721210.1016/j.colsurfb.2014.09.017 25260220
    [Google Scholar]
  17. Carballo-PedraresN. KattarA. ConcheiroA. Alvarez-LorenzoC. Rey-RicoA. Niosomes-based gene delivery systems for effective transfection of human mesenchymal stem cells.Mater. Sci. Eng. C202112811230710.1016/j.msec.2021.112307 34474858
    [Google Scholar]
  18. SabryS. El hakim RA, Abd elghany M, Okda T, Hasan A. Formulation, characterization, and evaluation of the anti-tumor activity of nanosized galangin loaded niosomes on chemically induced hepatocellular carcinoma in rats.J. Drug Deliv. Sci. Technol.20216110216310.1016/j.jddst.2020.102163
    [Google Scholar]
  19. MokhtarM. SammourO.A. HammadM.A. MegrabN.A. Effect of some formulation parameters on flurbiprofen encapsulation and release rates of niosomes prepared from proniosomes.Int. J. Pharm.20083611-210411110.1016/j.ijpharm.2008.05.031 18577437
    [Google Scholar]
  20. YukselN. BayindirZ.S. AksakalE. OzcelikayA.T. In situ niosome forming maltodextrin proniosomes of candesartan cilexetil: In vitro and in vivo evaluations.Int. J. Biol. Macromol.20168245346310.1016/j.ijbiomac.2015.10.019 26455402
    [Google Scholar]
  21. MoghassemiS. HadjizadehA. Nano-niosomes as nanoscale drug delivery systems: An illustrated review.J. Control. Release2014185223610.1016/j.jconrel.2014.04.015 24747765
    [Google Scholar]
  22. CsongradiC. du PlessisJ. AucampM.E. GerberM. Topical delivery of roxithromycin solid-state forms entrapped in vesicles.Eur. J. Pharm. Biopharm.20171149610710.1016/j.ejpb.2017.01.006 28119103
    [Google Scholar]
  23. KuotsuK. KarimK.M. MandalA.S. Niosome: A future of targeted drug delivery systems.J. Adv. Pharm. Technol. Res.20101437438010.4103/0110‑5558.76435 22247876
    [Google Scholar]
  24. PatelJ. KetkarS. PatilS. FearnleyJ. MahadikK.R. ParadkarA.R. Potentiating antimicrobial efficacy of propolis through niosomal-based system for administration.Integr. Med. Res.2015429410110.1016/j.imr.2014.10.004 28664114
    [Google Scholar]
  25. García-ManriqueP. MachadoN.D. FernándezM.A. Blanco-LópezM.C. MatosM. GutiérrezG. Effect of drug molecular weight on niosomes size and encapsulation efficiency.Colloids Surf. B Biointerfaces202018611071110.1016/j.colsurfb.2019.110711 31864114
    [Google Scholar]
  26. MiatmokoA. SafitriS. AquilaF. Characterization and distribution of niosomes containing ursolic acid coated with chitosan layer.Res. Pharm. Sci.202116666067310.4103/1735‑5362.327512 34760014
    [Google Scholar]
  27. AgratiC. MarianecciC. SennatoS. Multicompartment vectors as novel drug delivery systems: Selective activation of Tγδ lymphocytes after zoledronic acid delivery.Nanomedicine20117215316110.1016/j.nano.2010.10.003 21034859
    [Google Scholar]
  28. TavanoL. MuzzalupoR. PicciN. de CindioB. Co-encapsulation of antioxidants into niosomal carriers: Gastrointestinal release studies for nutraceutical applications.Colloids Surf. B Biointerfaces2014114828810.1016/j.colsurfb.2013.09.058 24176886
    [Google Scholar]
  29. El-MenshaweS.F. A novel approach to topical acetazolamide/PEG 400 ocular niosomes.J. Drug Deliv. Sci. Technol.201222429529910.1016/S1773‑2247(12)50049‑3
    [Google Scholar]
  30. FarmoudehA. AkbariJ. SaeediM. GhasemiM. AsemiN. NokhodchiA. Methylene blue-loaded niosome: Preparation, physicochemical characterization, and in vivo wound healing assessment.Drug Deliv. Transl. Res.20201051428144110.1007/s13346‑020‑00715‑6 32100265
    [Google Scholar]
  31. RasulA. Imran KhanM. RehmanM. In vitro characterization and release studies of combined nonionic surfactant-based vesicles for the prolonged delivery of an immunosuppressant model drug.Int. J. Nanomedicine2020157937794910.2147/IJN.S268846 33116510
    [Google Scholar]
  32. BaraniM. HajinezhadM.R. ZargariF. Preparation, characterization, cytotoxicity and pharmacokinetics of niosomes containing gemcitabine: in vitro, in vivo, and simulation studies.J. Drug Deliv. Sci. Technol.20238410450510.1016/j.jddst.2023.104505
    [Google Scholar]
  33. NayakA.S. ChodisettiS. GadagS. NayakU.Y. GovindanS. RavalK. Tailoring solulan C24 based niosomes for transdermal delivery of donepezil: In vitro characterization, evaluation of pH sensitivity, and microneedle-assisted ex vivo permeation studies.J. Drug Deliv. Sci. Technol.20206010194510.1016/j.jddst.2020.101945
    [Google Scholar]
  34. LiuT. GuoR. Structure and transformation of the niosome prepared from PEG 6000/Tween 80/Span 80/H2O lamellar liquid crystal.Colloids Surf. A Physicochem. Eng. Asp.20072951-313013410.1016/j.colsurfa.2006.08.041
    [Google Scholar]
  35. Di MarzioL. MarianecciC. PetroneM. RinaldiF. CarafaM. Novel pH-sensitive non-ionic surfactant vesicles: Comparison between Tween 21 and Tween 20.Colloids Surf. B Biointerfaces20118211824
    [Google Scholar]
  36. DomeniciF. PanichelliD. CastellanoA.C. Alamethicin–lipid interaction studied by energy dispersive X-ray diffraction.Colloids Surf. B Biointerfaces200969221622010.1016/j.colsurfb.2008.11.029 19135341
    [Google Scholar]
  37. MaliN. DarandaleS. VaviaP. Niosomes as a vesicular carrier for topical administration of minoxidil: Formulation and in vitro assessment.Drug Deliv. Transl. Res.20133658759210.1007/s13346‑012‑0083‑1 25786376
    [Google Scholar]
  38. CortesiR. EspositoE. CorradiniF. Non-phospholipid vesicles as carriers for peptides and proteins: Production, characterization and stability studies.Int. J. Pharm.20073391-2526010.1016/j.ijpharm.2007.02.024 17395411
    [Google Scholar]
  39. WaddadA.Y. AbbadS. YuF. Formulation, characterization and pharmacokinetics of Morin hydrate niosomes prepared from various non-ionic surfactants.Int. J. Pharm.2013456244645810.1016/j.ijpharm.2013.08.040 23998955
    [Google Scholar]
  40. ObeidM.A. KhadraI. AljabaliA.A.A. AmawiH. FerroV.A. Characterisation of niosome nanoparticles prepared by microfluidic mixing for drug delivery.Int. J. Pharm. X2022410013710.1016/j.ijpx.2022.100137 36386005
    [Google Scholar]
  41. HongM. ZhuS. JiangY. TangG. PeiY. Efficient tumor targeting of hydroxycamptothecin loaded PEGylated niosomes modified with transferrin.J. Control. Release200913329610210.1016/j.jconrel.2008.09.005 18840485
    [Google Scholar]
  42. KassemA.A. Abd El-AlimS.H. AsfourM.H. Enhancement of 8-methoxypsoralen topical delivery via nanosized niosomal vesicles: Formulation development, in vitro and in vivo evaluation of skin deposition.Int. J. Pharm.20175171-225626810.1016/j.ijpharm.2016.12.018 27956194
    [Google Scholar]
  43. SivaramakrishnaD. PrasadM.D. SwamyM.J. A homologous series of apoptosis-inducing N acylserinols: Thermotropic phase behavior, interaction with cholesterol and characterization of cationic N myristoylserinol-cholesterol-CTAB niosomes.Biochim. Biophys. Acta Biomembr.20191861250451310.1016/j.bbamem.2018.12.002 30528894
    [Google Scholar]
  44. MehtaS.K. JindalN. KaurG. Quantitative investigation, stability and in vitro release studies of anti-TB drugs in Triton niosomes.Colloids Surf. B Biointerfaces201187117317910.1016/j.colsurfb.2011.05.018 21640561
    [Google Scholar]
  45. DwivediA. MazumderA. FoxL.T. In vitro skin permeation of artemisone and its nano-vesicular formulations.Int. J. Pharm.20165031-21710.1016/j.ijpharm.2016.02.041 26930566
    [Google Scholar]
  46. MuzzalupoR. TavanoL. CassanoR. TrombinoS. FerrarelliT. PicciN. A new approach for the evaluation of niosomes as effective transdermal drug delivery systems.Eur. J. Pharm. Biopharm.2011791283510.1016/j.ejpb.2011.01.020 21303691
    [Google Scholar]
  47. MasottiA. VicennatiP. AlisiA. Novel Tween® 20 derivatives enable the formation of efficient pH-sensitive drug delivery vehicles for human hepatoblastoma.Bioorg. Med. Chem. Lett.201020103021302510.1016/j.bmcl.2010.04.010 20427183
    [Google Scholar]
  48. CovielloT. TrottaA.M. MarianecciC. Gel-embedded niosomes: Preparation, characterization and release studies of a new system for topical drug delivery.Colloids Surf. B Biointerfaces201512529129910.1016/j.colsurfb.2014.10.060 25524220
    [Google Scholar]
  49. PandoD. MatosM. GutiérrezG. PazosC. Formulation of resveratrol entrapped niosomes for topical use.Colloids Surf. B Biointerfaces201512839840410.1016/j.colsurfb.2015.02.037 25766923
    [Google Scholar]
  50. ManosroiA. ChankhampanC. ManosroiW. ManosroiJ. Transdermal absorption enhancement of papain loaded in elastic niosomes incorporated in gel for scar treatment.Eur. J. Pharm. Sci.201348347448310.1016/j.ejps.2012.12.010 23266464
    [Google Scholar]
  51. JunyaprasertV.B. SinghsaP. JintapattanakitA. Influence of chemical penetration enhancers on skin permeability of ellagic acid-loaded niosomes.Asian J Pharm Sci20138211011710.1016/j.ajps.2013.07.014
    [Google Scholar]
  52. ZhangY. ZhangK. WuZ. Evaluation of transdermal salidroside delivery using niosomes via in vitro cellular uptake.Int. J. Pharm.2015478113814610.1016/j.ijpharm.2014.11.018 25448576
    [Google Scholar]
  53. IoeleG. TavanoL. De LucaM. RagnoG. PicciN. MuzzalupoR. Photostability and ex-vivo permeation studies on diclofenac in topical niosomal formulations.Int. J. Pharm.2015494149049710.1016/j.ijpharm.2015.08.053 26307262
    [Google Scholar]
  54. ZhangY. JingQ. HuH. Sodium dodecyl sulfate improved stability and transdermal delivery of salidroside-encapsulated niosomes via effects on zeta potential.Int. J. Pharm.202058011918310.1016/j.ijpharm.2020.119183 32112930
    [Google Scholar]
  55. SinghS. ParasharP. KanoujiaJ. SinghI. SahaS. SarafS.A. Transdermal potential and anti-gout efficacy of Febuxostat from niosomal gel.J. Drug Deliv. Sci. Technol.20173934836110.1016/j.jddst.2017.04.020
    [Google Scholar]
  56. ShahJ. NairA.B. ShahH. JacobS. ShehataT.M. MorsyM.A. Enhancement in antinociceptive and anti-inflammatory effects of tramadol by transdermal proniosome gel.Asian J Pharm Sci202015678679610.1016/j.ajps.2019.05.001 33363633
    [Google Scholar]
  57. GuglevaV. TitevaS. RangelovS. MomekovaD. Design and in vitro evaluation of doxycycline hyclate niosomes as a potential ocular delivery system.Int. J. Pharm.201956711843110.1016/j.ijpharm.2019.06.022 31207279
    [Google Scholar]
  58. AllamA. ElsabahyM. El BadryM. ElerakyN.E. Betaxolol‐loaded niosomes integrated within pH‐sensitive in situ forming gel for management of glaucoma.Int. J. Pharm.202159812038010.1016/j.ijpharm.2021.120380 33609725
    [Google Scholar]
  59. FetihG. Fluconazole-loaded niosomal gels as a topical ocular drug delivery system for corneal fungal infections.J. Drug Deliv. Sci. Technol.20163581510.1016/j.jddst.2016.06.002
    [Google Scholar]
  60. ParadkarM.U. ParmarM. Formulation development and evaluation of Natamycin niosomal in-situ gel for ophthalmic drug delivery.J. Drug Deliv. Sci. Technol.20173911312210.1016/j.jddst.2017.03.005
    [Google Scholar]
  61. SolimanO.A.E.A. MohamedE.A. KhateraN.A.A. Enhanced ocular bioavailability of fluconazole from niosomal gels and microemulsions: formulation, optimization, and in vitro–in vivo evaluation.Pharm. Dev. Technol.2019241486210.1080/10837450.2017.1413658 29210317
    [Google Scholar]
  62. LiQ. LiZ. ZengW. Proniosome-derived niosomes for tacrolimus topical ocular delivery: In vitro cornea permeation, ocular irritation, and in vivo anti-allograft rejection.Eur. J. Pharm. Sci.20146211512310.1016/j.ejps.2014.05.020 24905830
    [Google Scholar]
  63. ZubairuY. NegiL.M. IqbalZ. TalegaonkarS. Design and development of novel bioadhesive niosomal formulation for the transcorneal delivery of anti-infective agent: In-vitro and ex-vivo investigations.Asian J Pharm Sci201510432233010.1016/j.ajps.2015.02.001
    [Google Scholar]
  64. KhatoonM. ShahK.U. DinF.U. Proniosomes derived niosomes: Recent advancements in drug delivery and targeting.Drug Deliv.201724S1566910.1080/10717544.2017.1384520
    [Google Scholar]
  65. KhanM.I. MadniA. PeltonenL. Development and in vitro characterization of sorbitan monolaurate and poloxamer 184 based niosomes for oral delivery of diacerein.Eur. J. Pharm. Sci.201695889510.1016/j.ejps.2016.09.002 27600819
    [Google Scholar]
  66. MaestrelliF. MuraP. González-RodríguezM.L. Calcium alginate microspheres containing metformin hydrochloride niosomes and chitosomes aimed for oral therapy of type 2 diabetes mellitus.Int. J. Pharm.20175301-243043910.1016/j.ijpharm.2017.07.083 28778628
    [Google Scholar]
  67. IbrahimM.M. ShehataT.M. Tramadol HCl encapsulated niosomes for extended analgesic effect following oral administration.J. Drug Deliv. Sci. Technol.201846141810.1016/j.jddst.2018.04.011
    [Google Scholar]
  68. TalebiV. GhanbarzadehB. HamishehkarH. PezeshkiA. OstadrahimiA. Effects of different stabilizers on colloidal properties and encapsulation efficiency of vitamin D3 loaded nano-niosomes.J. Drug Deliv. Sci. Technol.20216110128410.1016/j.jddst.2019.101284
    [Google Scholar]
  69. SamedN. SharmaV. SundaramurthyA. Hydrogen bonded niosomes for encapsulation and release of hydrophilic and hydrophobic anti-diabetic drugs: An efficient system for oral anti-diabetic formulation.Appl. Surf. Sci.201844956757310.1016/j.apsusc.2017.11.055
    [Google Scholar]
  70. MarianecciC. PaolinoD. CeliaC. FrestaM. CarafaM. AlhaiqueF. Non-ionic surfactant vesicles in pulmonary glucocorticoid delivery: Characterization and interaction with human lung fibroblasts.J. Control. Release2010147112713510.1016/j.jconrel.2010.06.022 20603167
    [Google Scholar]
  71. MoazeniE. GilaniK. SotoudeganF. Formulation and in vitro evaluation of ciprofloxacin containing niosomes for pulmonary delivery.J. Microencapsul.201027761862710.3109/02652048.2010.506579 20681747
    [Google Scholar]
  72. AlsaadiM. ItaliaJ.L. MullenA.B. The efficacy of aerosol treatment with non-ionic surfactant vesicles containing amphotericin B in rodent models of leishmaniasis and pulmonary aspergillosis infection.J. Control. Release2012160368569110.1016/j.jconrel.2012.04.004 22516093
    [Google Scholar]
  73. FangC.L. WenC.J. AljuffaliI.A. SungC.T. HuangC.L. FangJ.Y. Passive targeting of phosphatiosomes increases rolipram delivery to the lungs for treatment of acute lung injury: An animal study.J. Control. Release2015213697810.1016/j.jconrel.2015.06.038 26164036
    [Google Scholar]
  74. DemirbolatG.M. AktasE. CoskunG.P. ErdoganO. CevikO. New approach to formulate methotrexate-loaded niosomes: In vitro characterization and cellular effectiveness.J. Pharm. Innov.202217362263710.1007/s12247‑021‑09539‑4
    [Google Scholar]
  75. BragagniM. MenniniN. FurlanettoS. OrlandiniS. GhelardiniC. MuraP. Development and characterization of functionalized niosomes for brain targeting of dynorphin-B.Eur. J. Pharm. Biopharm.2014871737910.1016/j.ejpb.2014.01.006 24462793
    [Google Scholar]
  76. TavanoL. AielloR. IoeleG. PicciN. MuzzalupoR. Niosomes from glucuronic acid-based surfactant as new carriers for cancer therapy: Preparation, characterization and biological properties.Colloids Surf. B Biointerfaces201411871310.1016/j.colsurfb.2014.03.016 24709252
    [Google Scholar]
  77. TavanoL. VivacquaM. CaritoV. MuzzalupoR. CaroleoM.C. NicolettaF. Doxorubicin loaded magneto-niosomes for targeted drug delivery.Colloids Surf. B Biointerfaces201310280380710.1016/j.colsurfb.2012.09.019 23107959
    [Google Scholar]
  78. El-RidyM.S. AbdelbaryA. EssamT. Abd EL-Salam RM, Aly Kassem AA. Niosomes as a potential drug delivery system for increasing the efficacy and safety of nystatin.Drug Dev. Ind. Pharm.201137121491150810.3109/03639045.2011.587431 21707323
    [Google Scholar]
  79. AL QtaishN GallegoI Villate-BeitiaI Niosome-based approach for in situ gene delivery to retina and brain cortex as immune-privileged tissues.Pharmaceutics202012319810.3390/pharmaceutics12030198 32106545
    [Google Scholar]
  80. PurasG. MashalM. ZárateJ. A novel cationic niosome formulation for gene delivery to the retina.J. Control. Release2014174273610.1016/j.jconrel.2013.11.004 24231407
    [Google Scholar]
  81. Villate-BeitiaI. GallegoI. Martínez-NavarreteG. Polysorbate 20 non-ionic surfactant enhances retinal gene delivery efficiency of cationic niosomes after intravitreal and subretinal administration.Int. J. Pharm.20185501-238839710.1016/j.ijpharm.2018.07.035 30009984
    [Google Scholar]
  82. MashalM. AttiaN. PurasG. Martínez-NavarreteG. FernándezE. PedrazJ.L. Retinal gene delivery enhancement by lycopene incorporation into cationic niosomes based on DOTMA and polysorbate 60.J. Control. Release2017254556410.1016/j.jconrel.2017.03.386 28347807
    [Google Scholar]
  83. MashalM. AttiaN. Martínez-NavarreteG. Gene delivery to the rat retina by non-viral vectors based on chloroquine-containing cationic niosomes.J. Control. Release201930418119010.1016/j.jconrel.2019.05.010 31071372
    [Google Scholar]
  84. SitaV.G. JadhavD. VaviaP. Niosomes for nose-to-brain delivery of bromocriptine: Formulation development, efficacy evaluation and toxicity profiling.J. Drug Deliv. Sci. Technol.20205810179110.1016/j.jddst.2020.101791
    [Google Scholar]
  85. AlemiA. Zavar RezaJ. HaghiralsadatF. Paclitaxel and curcumin coadministration in novel cationic PEGylated niosomal formulations exhibit enhanced synergistic antitumor efficacy.J. Nanobiotechnology20181612810.1186/s12951‑018‑0351‑4 29571289
    [Google Scholar]
  86. SharmaV. AnandhakumarS. SasidharanM. Self-degrading niosomes for encapsulation of hydrophilic and hydrophobic drugs: An efficient carrier for cancer multi-drug delivery.Mater. Sci. Eng. C20155639340010.1016/j.msec.2015.06.049 26249606
    [Google Scholar]
  87. AkbariJ. SaeediM. EnayatifardR. Curcumin Niosomes (curcusomes) as an alternative to conventional vehicles: A potential for efficient dermal delivery.J. Drug Deliv. Sci. Technol.20206010203510.1016/j.jddst.2020.102035
    [Google Scholar]
  88. MengS. SunL. WangL. Loading of water-insoluble celastrol into niosome hydrogels for improved topical permeation and anti-psoriasis activity.Colloids Surf. B Biointerfaces201918211035210.1016/j.colsurfb.2019.110352 31306831
    [Google Scholar]
  89. JamalM. ImamS.S. AqilM. AmirM. MirS.R. MujeebM. Transdermal potential and anti-arthritic efficacy of ursolic acid from niosomal gel systems.Int. Immunopharmacol.201529236136910.1016/j.intimp.2015.10.029 26545446
    [Google Scholar]
  90. RezaeiroshanA. SaeediM. Morteza-SemnaniK. AkbariJ. GahsemiM. NokhodchiA. Development of trans-Ferulic acid niosome: An optimization and an in vivo study.J. Drug Deliv. Sci. Technol.20205910185410.1016/j.jddst.2020.101854
    [Google Scholar]
  91. KhazaeliP. SharifiI. TalebianE. HeraviG. MoazeniE. MostafaviM. Anti-leishmanial effect of itraconazole niosome on in vitro susceptibility of Leishmania tropica.Environ. Toxicol. Pharmacol.201438120521110.1016/j.etap.2014.04.003 24956400
    [Google Scholar]
  92. PariziM.H. FarajzadehS. SharifiI. Antileishmanial activity of niosomal combination forms of tioxolone along with benzoxonium chloride against Leishmania tropica.Korean J. Parasitol.201957435936810.3347/kjp.2019.57.4.359 31533402
    [Google Scholar]
  93. MostafaviM. KhazaeliP. SharifiI. A novel niosomal combination of selenium coupled with glucantime against Leishmania tropica.Korean J. Parasitol.20195711810.3347/kjp.2019.57.1.1 30840792
    [Google Scholar]
  94. MarianecciC. Di MarzioL. RinaldiF. Niosomes from 80s to present: The state of the art.Adv. Colloid Interface Sci.201420518720610.1016/j.cis.2013.11.018 24369107
    [Google Scholar]
  95. KassemM.A. El-SawyH.S. Abd-AllahF.I. AbdelghanyT.M. El-SayK.M. Maximizing the therapeutic efficacy of imatinib mesylate–loaded niosomes on human colon adenocarcinoma using Box-Behnken design.J. Pharm. Sci.2017106111112210.1016/j.xphs.2016.07.007 27544432
    [Google Scholar]
  96. ZidanA.S. HabibM.J. Maximized mucoadhesion and skin permeation of anti-AIDS-loaded niosomal gels.J. Pharm. Sci.2014103395296410.1002/jps.23867 24464823
    [Google Scholar]
  97. WitikaB.A. WalkerR.B. Development, manufacture and characterization of niosomes for the delivery for nevirapine.Pharmazie20197429196 30782257
    [Google Scholar]
  98. MalikT. ChauhanG. RathG. KesarkarR.N. ChowdharyA.S. GoyalA.K. Efaverinz and nano-gold-loaded mannosylated niosomes: A host cell-targeted topical HIV-1 prophylaxis via thermogel system.Artif. Cells Nanomed. Biotechnol.201846S17990
    [Google Scholar]
  99. MirzaieA. PeiroviN. AkbarzadehI. Preparation and optimization of ciprofloxacin encapsulated niosomes: A new approach for enhanced antibacterial activity, biofilm inhibition and reduced antibiotic resistance in ciprofloxacin-resistant methicillin-resistance Staphylococcus aureus.Bioorg. Chem.202010310423110.1016/j.bioorg.2020.104231 32882442
    [Google Scholar]
  100. Hedayati ChM. Abolhassani TarghiA. ShamsiF. Niosome‐encapsulated tobramycin reduced antibiotic resistance and enhanced antibacterial activity against multidrug‐resistant clinical strains of Pseudomonas aeruginosa.J. Biomed. Mater. Res. A2021109696698010.1002/jbm.a.37086 32865883
    [Google Scholar]
  101. PandeyS.S. ShahK.M. MaulviF.A. Topical delivery of cyclosporine loaded tailored niosomal nanocarriers for improved skin penetration and deposition in psoriasis: Optimization, ex vivo and animal studies.J. Drug Deliv. Sci. Technol.20216310244110.1016/j.jddst.2021.102441
    [Google Scholar]
  102. DaiyinP. WeidongC. RuixiH. TianqingH. JuntaoC.H. XiangjiangN. Hefei Lifeon pharmaceutical Co., Ltd., assignee. Paeonal noisome emulsifiable paste for external use and preparation method thereof.Canadian Patent No. CN105748436A2020
  103. LeeK. MijinI. Sang-jooP. KimH. Korea Cosmetics Manufacturing Co., Ltd., assignee. Niosome composition comprising extracts of cultured Korean wild ginseng and personal care composition containing the same. Korean Patent Publication No.KR102007736B12019
  104. KimI. Powder cream emulsion with pseudo-skin mimics niosome included in the hydrophobic powder.South Korean Patent KR102210397B12021
  105. LeeY. JangK. JeonA. LeeH. KimD. HongI. Cosmocos Co.,Ltd.,assignee. Cosmetic compositions containing niosomes of Graviola extract.Korean Patent KR101844673B12018
  106. BolatchievA.D. AleksandrovichB.V. AlexandrovichB.I. Antimicrobial gel for the treatment of infected wounds, burns and trophic ulcers.Russian Patent RU2655522C12018
  107. Alexandrovich BazikovI. KarakovK.G. SeiranidosZ.A. Dental gel having niosomes for treatment of inflammatory and dystrophic periodontal diseases.Russian Patent RU2582290C22016
  108. Alexandrovich BazikovI. MaltsevA.N. Silicon-organic niosomes with bactericidal and paramagnetic properties.Russian Patent RU2625722C12016
  109. KovalevD.A. ZhirovA.M. PisarenkoS.V. KulichenkoA.N. ShakhovaV.N. BelyaevV.A. Method for determining the release rate of cefotaxime encapsulated in noisome in vitro.Russian Patent RU2754850C12021
  110. AlcantarN.A. FalahatR. WiranowskaM. RyanG. Enhanced targeted drug delivery system via chitosan hydrogel and chlorotoxin.U.S. Patent US9522114B12016
  111. Al AliS.A. Nano-carrier topical composition with vitamin.U.S. Patent US2022105036A12022
  112. Alexandrovich BazikovI. Doxorubicin and organosilicon nanoparticles-niosomes-based pharmaceutical gel for skin cancer treatment.Russian Patent RU2600164C22016
  113. CostanzoA. Topical composition comprising cannabidiol.International Patent WO2021175763A12021
  114. CostanzoA. Topical pharmaceutical formulation and method for the treatment of syndromes associated with chronic pelvic pain.International Patent WO2022129274A12022
  115. MorrisonE Unilamellar niosome having high pharmacological compound solvated therein and a method of preparation thereof.U.S.Patent US2016/0184228A12016
  116. HongJ. Cosmetic composition containing noisome with tranexamic acid and supercritical fluidextract of Phellinus lineteus.Korean Patent KR20040102766A2004
  117. Alexandrovich BazikovI. AksyonovA.V. Aleksandrovich AksyonovN. MaltsevA.N. SmirnovA.N. Pharmaceutical niosomal gel based on n-hydroxy-2-(2-(naphthalene-2-yl)-1h-indole-3-yl)-2-phenylacetamide with anti tumour activity to glioblastoma.Russian Patent RU2627449C22017
  118. Alexandrovich BazikovI. BayramkulovM.D. AidemirovA.N. VafinA.Z. Transdermal anthelmintic agent.Russian Patent RU2541156C12015
  119. PacettiB. Topical composition containing plant extract.Japanese Patent JP2019510029A2019
  120. KhanR. IrchhaiyaR. Niosomes: A potential tool for novel drug delivery.J. Pharm. Investig.201646319520410.1007/s40005‑016‑0249‑9
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105259776231002071218
Loading
/content/journals/nanotec/10.2174/0118722105259776231002071218
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test