Skip to content
2000
Volume 19, Issue 3
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Poloxamers, commonly known as Pluronics, are a special family of synthetic tri-block copolymers with a core structure made of hydrophobic poly (propylene oxide) chains sandwiched by two hydrophilic poly (ethylene oxide) chains. It is possible to modify the mechanical, bioactive, and microstructural characteristics of Pluronics to simulate the behavior of different types of tissues. Additionally, they are auspicious drug carriers with the capacity to increase therapeutic agent availability and to design nano-drug formulations for various ailments. The nanoformulation composed of Pluronics is more susceptible to cancer cells due to their amphiphilic nature and feature of self-assembling into micelles. Today's expanding poloxamer research is creating new hopes that increase the possibility of new remedies for a brand-new nanomedicine age treatment. This article provides a concise overview of the classification, grading, and attributes of drug delivery systems (DDSs) as well as the potential for Pluronics to create micro and nanocarriers. We subsequently discuss its utility in drug delivery for cancer, gene therapy, anti-infective therapy, antioxidants, anti-diabetic drugs, anti-HIV, Alzheimer's disease, and antimicrobial drugs. This review also highlighted several patented formulations that contain various grades of Pluronics in one or more different ways. The recent findings in fundamental research in the field properly demonstrate the strong interest in these novel pharmaceutical strategies.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105255391231018112747
2023-09-27
2025-12-18
Loading full text...

Full text loading...

References

  1. KhaliqN.U. ParkD.Y. YunB.M. YangD.H. JungY.W. SeoJ.H. HwangC.S. YukS.H. Pluronics: Intelligent building units for targeted cancer therapy and molecular imaging.Int. J. Pharm.2019556304410.1016/j.ijpharm.2018.11.06430529667
    [Google Scholar]
  2. DintchevaN.T. CatalanoG. ArrigoR. MoriciE. CavallaroG. LazzaraG. BrunoM. Pluronic nanoparticles as anti-oxidant carriers for polymers.Polym. Degrad. Stabil.201613419420110.1016/j.polymdegradstab.2016.10.008
    [Google Scholar]
  3. OttenbriteR.M. JavanR. Biological structures, virginia commonwealth University.Richmond, VA, USAelsevier2005
    [Google Scholar]
  4. YuJ. QiuH. YinS. WangH. LiY. Polymeric drug delivery system based on Pluronics for cancer treatment.Molecules20212612361010.3390/molecules2612361034204668
    [Google Scholar]
  5. ZhaoL.Y. ZhangW.M. Recent progress in drug delivery of pluronic P123: Pharmaceutical perspectives.J. Drug Target.201725647148410.1080/1061186X.2017.128953828135859
    [Google Scholar]
  6. ParhiR. Development and optimization of pluronic® F127 and HPMC based thermosensitive gel for the skin delivery of metoprolol succinate.J. Drug Deliv. Sci. Technol.201636233310.1016/j.jddst.2016.09.004
    [Google Scholar]
  7. WangJ.C. BindokasV.P. SkinnerM. EmrickT. MarksJ.D. Mitochondrial mechanisms of neuronal rescue by F-68, a hydrophilic Pluronic block co-polymer, following acute substrate deprivation.Neurochem. Int.201710912614010.1016/j.neuint.2017.04.00728433663
    [Google Scholar]
  8. ZhaoJ. ChongJ.Y. ShiL. WangR. PTFE-assisted immobilization of Pluronic F127 in PVDF hollow fiber membranes with enhanced hydrophilicity through nonsolvent-thermally induced phase separation method.J. Membr. Sci.202162011891410.1016/j.memsci.2020.118914
    [Google Scholar]
  9. ZarrintajP. AhmadiZ. Reza SaebM. MozafariM. Poloxamer-based stimuli-responsive biomaterials.Mater. Today Proc.201857155161552310.1016/j.matpr.2018.04.158
    [Google Scholar]
  10. ZakiA.M. CarboneP. Amphiphilic copolymers change the nature of the ordered-to-disordered phase transition of lipid membranes from discontinuous to continuous.Phys. Chem. Chem. Phys.20192125137461375710.1039/C9CP01293A31209450
    [Google Scholar]
  11. NaskarB. GhoshS. MoulikS.P. Interaction of normal and reverse pluronics (L44 and 10R5) and their mixtures with anionic surfactant sodium N-dodecanoylsarcosinate.J. Colloid Interface Sci.2014414828910.1016/j.jcis.2013.10.00324231088
    [Google Scholar]
  12. ChengX. LiK. LiuM. HuX. XuM. YanR. ZhaoS. P85 regulates neuronal migration through affecting neuronal morphology during mouse corticogenesis.Cell Tissue Res.20183721233110.1007/s00441‑017‑2707‑829130119
    [Google Scholar]
  13. HongW. ShiH. QiaoM. ZhangZ. YangW. DongL. XieF. ZhaoC. KangL. pH-sensitive micelles for the intracellular co-delivery of curcumin and Pluronic L61 unimers for synergistic reversal effect of multidrug resistance.Sci. Rep.2017714246510.1038/srep42465
    [Google Scholar]
  14. SnippeH. De ReuverM.J. StricklandF. WillersJ.M.N. HunterR.L. Adjuvant effect of nonionic block polymer surfactants in humoral and cellular immunity.Int. Arch. Allergy Immunol.198165439039810.1159/0002327807251192
    [Google Scholar]
  15. TinuT.S. LithaT. KumarA.B. Polymers used in ophthalmic in situ gelling system.Int. J. Pharm. Sci. Rev. Res.2013201176183
    [Google Scholar]
  16. PereraR.H. KrupkaT.M. WuH. TraughberB. DremannD. BroomeA.M. ExnerA.A. Role of Pluronic block copolymers in modulation of heat shock protein 70 expression.Int. J. Hyperthermia201127767268110.3109/02656736.2011.60821821992560
    [Google Scholar]
  17. ZhaoM. ThuretG. PiselliS. PipparelliA. AcquartS. Peoc’hM. DumollardJ.M. GainP. Use of poloxamers for deswelling of organ-cultured corneas.Invest. Ophthalmol. Vis. Sci.200849255055910.1167/iovs.07‑103718234998
    [Google Scholar]
  18. ParkS.I. SongH.M. Several shapes of single crystalline gold nanomaterials prepared in the surfactant mixture of CTAB and Pluronics.ACS Omega2021653625363610.1021/acsomega.0c0516633585743
    [Google Scholar]
  19. AuS.H. KumarP. WheelerA.R. A new angle on pluronic additives: Advancing droplets and understanding in digital microfluidics.Langmuir201127138586859410.1021/la201185c21651299
    [Google Scholar]
  20. ShahV. BharatiyaB. ShahD.O. Effect of molecular weight and diffusivity on the adsorption of PEO-PPO-PEO block copolymers at PTFE-water and oil-water interfaces.Colloid Polym. Sci.201829681333134010.1007/s00396‑018‑4346‑3
    [Google Scholar]
  21. VaradeD. SharmaR. AswalV.K. GoyalP.S. BahadurP. Effect of hydrotropes on the solution behavior of PEO/PPO/PEO block copolymer L62 in aqueous solutions.Eur. Polym. J.200440112457246410.1016/j.eurpolymj.2004.06.022
    [Google Scholar]
  22. XiongX.Y. TamK.C. GanL.H. Polymeric nanostructures for drug delivery applications based on Pluronic copolymer systems.J. Nanosci. Nanotechnol.2006692638265010.1166/jnn.2006.44917048472
    [Google Scholar]
  23. TsoP. GollamudiS.R. Pluronic L-81: A potent inhibitor of the transport of intestinal chylomicrons.Am. J. Physiol.19842471 Pt 1G32G366742195
    [Google Scholar]
  24. SávolyZ. SzilágyiE. BihariZ. SzabadosH. Method development for the clearance study of the Pluronic F-68 nonionic surfactant used in the upstream process of monoclonal antibody production.J. Pharm. Biomed. Anal.202120411424910.1016/j.jpba.2021.11424934252816
    [Google Scholar]
  25. WuT. GongY. LiZ. LiY. XiongX. Preparation and in vitro/vivo evaluation of folate-conjugated pluronics F87-PLGA/TPGS mixed nanoparticles for targeted drug delivery.Curr. Drug Deliv.202118101505151410.2174/156720181866621041212321033845742
    [Google Scholar]
  26. NascimentoM.H.M. FrancoM.K.K.D. YokaichyiaF. de PaulaE. LombelloC.B. de AraujoD.R. Hyaluronic acid in Pluronic F-127/F-108 hydrogels for postoperative pain in arthroplasties: Influence on physico-chemical properties and structural requirements for sustained drug-release.Int. J. Biol. Macromol.20181111245125410.1016/j.ijbiomac.2018.01.06429339288
    [Google Scholar]
  27. SinsuebpolC. ChangsanN. Effects of ultrasonic operating parameters and emulsifier system on sacha inchi oil nanoemulsion characteristics.J. Oleo Sci.202069543744810.5650/jos.ess1919332281560
    [Google Scholar]
  28. LiuC. GongC. PanY. ZhangY. WangJ. HuangM. WangY. WangK. GouM. TuM. WeiY. QianZ.Y. Synthesis and characterization of a thermosensitive hydrogel based on biodegradable amphiphilic PCL-Pluronic (L35)-PCL block copolymers.Colloids Surf. A Physicochem. Eng. Asp.20073021-343043810.1016/j.colsurfa.2007.03.006
    [Google Scholar]
  29. KrupkaT.M. ExnerA.A. Structural parameters governing activity of Pluronic triblock copolymers in hyperthermia cancer therapy.Int. J. Hyperthermia201127766367110.3109/02656736.2011.59982821992559
    [Google Scholar]
  30. ZarrintajP. RamseyJ.D. SamadiA. AtoufiZ. YazdiM.K. GanjaliM.R. AmirabadL.M. ZangeneE. FarokhiM. FormelaK. SaebM.R. MozafariM. ThomasS. Poloxamer: A versatile tri-block copolymer for biomedical applications.Acta Biomater.2020110376710.1016/j.actbio.2020.04.02832417265
    [Google Scholar]
  31. ZhangM. JingS. ZhangJ. ZhangJ. ZangX. QiaoM. ZhaoX. HuH. ChenD. Intracellular release of PluronicL64 unimers into MCF-7/ADR cells to overcome multidrug resistance by surface-modified PAMAM.J. Mater. Chem. B Mater. Biol. Med.20175213970398110.1039/C7TB00659D32264258
    [Google Scholar]
  32. AlakhovV. PietrzynskiG. PatelK. KabanovA. BrombergL. HattonT.A. Pluronic block copolymers and Pluronic poly(acrylic acid) microgels in oral delivery of megestrol acetate.J. Pharm. Pharmacol.201056101233124110.1211/002235704442715482637
    [Google Scholar]
  33. MardaniM. RezapourS. HigginsJ.A. Investigation of the assembly of chylomicrons in hamster enterocytes using pluronic-L81 acid as a probe.Acta Med. Iran.201149634135121874636
    [Google Scholar]
  34. YangT.F. ChenC.N. ChenM.C. LaiC.H. LiangH.F. SungH.W. Shell-crosslinked Pluronic L121 micelles as a drug delivery vehicle.Biomaterials200728472573410.1016/j.biomaterials.2006.09.03517055046
    [Google Scholar]
  35. LuD. WangH. LiT. LiY. DouF. SunS. GuoH. LiaoS. YangZ. WeiQ. LeiZ. Mussel-inspired thermoresponsive polypeptide-Pluronics copolymers for versatile surgical adhesives and hemostasis.ACS Appl. Mater. Interfaces2017920167561676610.1021/acsami.6b1657528472883
    [Google Scholar]
  36. ShazaliS.S. AmiriA. Mohd ZubirM.N. RozaliS. ZabriM.Z. Mohd SabriM.F. SoleymanihaM. Investigation of the thermophysical properties and stability performance of non-covalently functionalized graphene nanoplatelets with Pluronic P-123 in different solvents.Mater. Chem. Phys.20182069410210.1016/j.matchemphys.2017.12.008
    [Google Scholar]
  37. Jaquilin P JR. OluwafemiO.S. ThomasS. OyedejiA.O. Recent advances in drug delivery nanocarriers incorporated in temperature-sensitive Pluronic F-127-A critical review.J. Drug Deliv. Sci. Technol.20227210339010.1016/j.jddst.2022.103390
    [Google Scholar]
  38. MengX. WangL. ZhaoN. ZhaoD. ShenY. YaoY. JingW. ManS. DaiY. ZhaoY. Stimuli-responsive cancer nanomedicines inhibit glycolysis and impair redox homeostasis.Acta Biomater20231673748610.1016/j.actbio.2023.06.016
    [Google Scholar]
  39. HouK.T. LiuT.I. ChiuH.C. ChiangW.H. DOX/ICG-carrying γ-PGA-g-PLGA-based polymeric nanoassemblies for acid-triggered rapid DOX release combined with NIR-activated photothermal effect.Eur. Polym. J.201911028329210.1016/j.eurpolymj.2018.11.038
    [Google Scholar]
  40. MaitiD. TongX. MouX. YangK. Carbon-based nanomaterials for biomedical applications: A recent study.Front. Pharmacol.20199140110.3389/fphar.2018.0140130914959
    [Google Scholar]
  41. GaoX. WangL. SunC. ZhouN. Research on preparation methods of carbon nanomaterials based on self-assembly of carbon quantum dots.Molecules2022275169010.3390/molecules2705169035268791
    [Google Scholar]
  42. BanghamA.D. StandishM.M. WatkinsJ.C. Diffusion of univalent ions across the lamellae of swollen phospholipids.J. Mol. Biol.1965131238IN2710.1016/S0022‑2836(65)80093‑65859039
    [Google Scholar]
  43. KamalyN. XiaoZ. ValenciaP.M. Radovic-MorenoA.F. FarokhzadO.C. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation.Chem. Soc. Rev.20124172971301010.1039/c2cs15344k22388185
    [Google Scholar]
  44. Pitto-BarryA. BarryN.P.E. Pluronic® block-copolymers in medicine: From chemical and biological versatility to rationalisation and clinical advances.Polym. Chem.20145103291329710.1039/C4PY00039K
    [Google Scholar]
  45. BarryN.P.E. SadlerP.J. Challenges for metals in medicine: How nanotechnology may help to shape the future.ACS Nano2013775654565910.1021/nn403220e23837396
    [Google Scholar]
  46. GriesserJ. HetényiG. KadasH. DemarneF. JanninV. Bernkop-SchnürchA. Self-emulsifying peptide drug delivery systems: How to make them highly mucus permeating.Int. J. Pharm.20185381-215916610.1016/j.ijpharm.2018.01.01829339247
    [Google Scholar]
  47. RahdarA. KazemiS. AskariF. Pluronics as nano-carier for drug delivery systems.Nanomedicine Res. J.201834174179
    [Google Scholar]
  48. KabanovA.V. BatrakovaE.V. MillerD.W. Pluronic® block copolymers as modulators of drug efflux transporter activity in the blood–brain barrier.Adv. Drug Deliv. Rev.200355115116410.1016/S0169‑409X(02)00176‑X12535579
    [Google Scholar]
  49. SaskiW. ShahS.G. Availability of drugs in the presence of surface-active agents. II. Effects of some oxyethylene oxypropylene polymers on the biological activity of hexetidine.J. Pharm. Sci.196554227728010.1002/jps.260054022414301003
    [Google Scholar]
  50. CroyS.R. KwonG.S. The effects of Pluronic block copolymers on the aggregation state of nystatin.J. Control. Release200495216117110.1016/j.jconrel.2003.11.00314980765
    [Google Scholar]
  51. KhemtongC. KessingerC.W. GaoJ. Polymeric nanomedicine for cancer MR imaging and drug delivery.Chem. Commun.2009243497351010.1039/b821865j19521593
    [Google Scholar]
  52. KrögerN. AchterrathW. Hegewisch-BeckerS. MrossK. ZanderA.R. Current options in treatment of anthracycline-resistant breast cancer.Cancer Treat. Rev.199925527929110.1053/ctrv.1999.013710544072
    [Google Scholar]
  53. NaitoS. YokomizoA. KogaH. Mechanisms of drug resistance in chemotherapy for urogenital carcinoma.Int. J. Urol.19996942743910.1046/j.1442‑2042.1999.00088.x10510888
    [Google Scholar]
  54. ShapiraA. LivneyY.D. BroxtermanH.J. AssarafY.G. Nanomedicine for targeted cancer therapy: Towards the overcoming of drug resistance.Drug Resist. Updat.201114315016310.1016/j.drup.2011.01.00321330184
    [Google Scholar]
  55. VermaR. MittalV. KaushikD. Self-microemulsifying drug delivery system: A vital approach for bioavailability enhancement.Int. J. Chemtech Res.2017107515528
    [Google Scholar]
  56. VermaR. KaushikD. Development, optimization, characterization and impact of in vitro lipolysis on drug release of telmisartan loaded SMEDDS.Drug Deliv. Lett.20199433034010.2174/2210303109666190614120556
    [Google Scholar]
  57. ParkJ.H. SaravanakumarG. KimK. KwonI.C. Targeted delivery of low molecular drugs using chitosan and its derivatives.Adv. Drug Deliv. Rev.2010621284110.1016/j.addr.2009.10.00319874862
    [Google Scholar]
  58. KabanovA.V. NazarovaI.R. AstafievaI.V. BatrakovaE.V. AlakhovV.Y. YaroslavovA.A. KabanovV.A. Micelle formation and solubilization of fluorescent probes in poly(oxyethylene-b-oxy propylene-b-oxyethylene) solutions.Macromolecules19952872303231410.1021/ma00111a026
    [Google Scholar]
  59. KozlovM.Y. Melik-NubarovN.S. BatrakovaE.V. KabanovA.V. Relationship between Pluronics block copolymer structure, critical micellization concentration and partitioning coefficients of low molecular mass solutes.Macromolecules20003393305331310.1021/ma991634x
    [Google Scholar]
  60. JarakI. VarelaC.L. Pluronics-based nanovehicles: Recent advances in anticancer therapeutic applications.Eur. J. Med. Chem.202020611252610.1016/j.ejmech.2020.11252632971442
    [Google Scholar]
  61. ZhaoY. AlakhovaD.Y. ZhaoX. BandV. BatrakovaE.V. KabanovA.V. Eradication of cancer stem cells in triple negative breast cancer using doxorubicin/Pluronics polymeric micelles.Nanomedicine202024102124
    [Google Scholar]
  62. KabanovA.V. LemieuxP. Pluronics® block copolymers: Novel functional molecules for gene therapy.Adv. Drug Deliv. Rev.200254222323310.1016/S0169‑409X(02)00018‑211897147
    [Google Scholar]
  63. GahlawatN. VermaR. KaushikD. Recent developments in self-microemulsifying drug delivery system: An overview.Asian J. Pharm.20191325972
    [Google Scholar]
  64. VermaR. KaushikA. AlmeerR. RahmanM.H. Abdel-DaimM.M. KaushikD. Improved pharmacodynamic potential of rosuvastatin by self-nanoemulsifying drug delivery system: An in vitro and in vivo evaluation.Int. J. Nanomedicine20211690592410.2147/IJN.S28766533603359
    [Google Scholar]
  65. VermaR. MittalV. PandeyP. BhatiaS. BhatiaM. KaravasiliC. BehlT. Al-HarrasiA. TagdeP. KumarM. KaushikD. Exploring the role of self-nanoemulsifying systems in drug delivery: Challenges, issues, applications and recent advances.Curr. Drug Deliv.20232091241126110.2174/156720181966622051912500335598245
    [Google Scholar]
  66. ZhuX. LiS. Nanomaterials in tumor immunotherapy: New strategies and challenges.Mol. Cancer20232219410.1186/s12943‑023‑01797‑937312116
    [Google Scholar]
  67. Sevinç-ÖzakarR. ÖzakarE. AlparslanL. AdıgüzelM.C. TorkayG. BaranA. Bal-ÖztürkA. A Comprehensive study on peppermint oil and cinnamon oil as nanoemulsion: Preparation, stability, cytotoxicity, antimicrobial, antifungal, and antioxidant activity.Curr. Drug Deliv.20242146032210.2174/156720182066623061212301137309758
    [Google Scholar]
  68. KabanovA. ZhuJ. AlakhovV. Pluronic block copolymers for gene delivery.Adv. Genet.20055323126110.1016/S0065‑2660(05)53009‑816240996
    [Google Scholar]
  69. Schuenck-RodriguesR.A. de Oliveira de SiqueiraL.B. dos Santos MatosA.P. da CostaS.P. da Silva CardosoV. VermelhoA.B. ColomboA.P.V. OliveiraC.A. Santos-OliveiraR. Ricci-JúniorE. Development, characterization and photobiological activity of nanoemulsion containing zinc phthalocyanine for oral infections treatment.J. Photochem. Photobiol. B202021111201010.1016/j.jphotobiol.2020.11201032890891
    [Google Scholar]
  70. FuentesI. Blanco-FernandezB. AlvaradoN. LeivaÁ. RadićD. Alvarez-LorenzoC. ConcheiroA. Encapsulation of antioxidant gallate derivatives in biocompatible poly(ε-caprolactone)-b-Pluronics-b-poly(ε-caprolactone) micelles.Langmuir201632143331333910.1021/acs.langmuir.5b0474826986801
    [Google Scholar]
  71. MohamedM.S. AbdelhafezW.A. ZayedG. SamyA.M. In vitro and in vivo characterization of fast dissolving tablets containing gliquidone–pluronic solid dispersion.Drug Dev. Ind. Pharm.201945121973198110.1080/03639045.2019.168999331692385
    [Google Scholar]
  72. BouchemalK. FrelichowskaJ. MartinL. Lievin-Le MoalV. Le GrandR. Dereuddre-BosquetN. DjabourovM. Aka-Any-GrahA. KoffiA. PonchelG. Note on the formulation of thermosensitive and mucoadhesive vaginal hydrogels containing the miniCD4 M48U1 as anti-HIV-1 microbicide.Int. J. Pharm.2013454264965210.1016/j.ijpharm.2013.02.05523500765
    [Google Scholar]
  73. ChiappettaD.A. FacorroG. Rubin de CelisE. SosnikA. Synergistic encapsulation of the anti-HIV agent efavirenz within mixed poloxamine/poloxamer polymeric micelles.Nanomedicine20117562463710.1016/j.nano.2011.01.01721371572
    [Google Scholar]
  74. AkbarM.U. ZiaK.M. NazirA. IqbalJ. EjazS.A. AkashM.S.H. Pluronics-based mixed polymeric micelles enhance the therapeutic potential of curcumin.AAPS PharmSciTech20181962719273910.1208/s12249‑018‑1098‑929978290
    [Google Scholar]
  75. AdnetT. GrooA.C. PicardC. DavisA. CorvaisierS. SinceM. BounoureF. RochaisC. Le PluartL. DallemagneP. Malzert-FréonA. Pharmacotechnical development of a nasal drug delivery composite nanosystem intended for alzheimer’s disease treatment.Pharmaceutics202012325110.3390/pharmaceutics1203025132168767
    [Google Scholar]
  76. SotoudeganF. SotoudeganF. Talebkhan GaroosiY. AfsharS.H. BarkhordariF. DavamiF. Anti-Aβ-scFv-loaded polymeric nano-micelles with enhanced plasma stability.J. Pharm. Pharmacol.202173446047210.1093/jpp/rgaa06833793837
    [Google Scholar]
  77. PopoviciC. PopaM. SunelV. AtanaseL.I. IchimD.L. Drug delivery systems based on pluronics micelles with antimicrobial activity.Polymers20221415300710.3390/polym1415300735893968
    [Google Scholar]
  78. ZhdanovaK.A. SavelyevaI.O. IgnatovaA.A. GradovaM.A. GradovO.V. LobanovA.V. FeofanovA.V. MironovA.F. BraginaN.A. Synthesis and photodynamic antimicrobial activity of amphiphilic meso-arylporphyrins with pyridyl moieties.Dyes Pigments202018110856110.1016/j.dyepig.2020.108561
    [Google Scholar]
  79. SobczyńskiJ. Chudzik-RządB. The in vitro photocytotoxicity of photosensitizer encapsulated by nanovehicles comprising biomimetic phospholipids.Pharmazie2021761153253734782037
    [Google Scholar]
  80. WrightS. WilkhuJ. Parenteral formulations.US Patent 11229612B22022
  81. DomschkeA.M. FrancisV.M. Porous hydrogels.US Patent 6897271B12005
  82. JolckR.I. AlbrechtsenM. BjergL.N. AndresenT.L. Formulation of solid nano - sized particles in a gel - forming system.US Patent 10434192B22019
  83. BettingerT. YanF. Mehier-HumbertS. FrinkingP. Composition comprising gas-filled mcrocapsules forultrasound mediated deliver.US Patent 9,375,397B22016
  84. ArmonR. Intracellular delivery.US Patent 2020/0277566A12020
  85. WieckhusenD. GlauschA. AhlheimM. Injectable depot formulation comprising crystals of loperdone.US Patent 8,227,488B22012
  86. JenkinsD. Conditioning shampoo composition.WO Patent 2003/0948742007
  87. Del CurtoM.D. ZambaldiI. EspositoP. Hydrogel interferon formulations.US Patent 7,879,320B22011
  88. MatawanT.S. Lodewijk PluyterJ.G. KunzelC. Capsules containing polyvinyl alcohol.US Patent 0216166A12017
  89. LeiY. XuL. PopplewellL.W. Polyurea or polyurethane capsules.US Patent 10,434,045B22019
  90. ModakS.M. BaijuN. CaraosL.A. Skin and surface disinfectant compositions containing botanicals.US Patent 10,542,760B22020
  91. WheelerD. SteeleD.F. GeorgiouM. Topical composition.US Patent 11,065,195B22021
  92. OronskyB.T. Topical composition for treating pain.AU Patent 2008266971B22014
  93. MarklandP. Injectable delivery of microparticles and compositions therefor.US Patent 10,463,619B22019
  94. NicoleS. ErwinN. Transdermal cannabinoid formulations.WO Patent 2016/090287A32020
  95. WhitcupS.M. SchiffmanR.M. WaltJ.G. MullinsD.D. StuckerC.M. Compositions for enhancing nail growth.US Patent 9,101,550B22015
  96. HantashB.M. WangY. Hybrio hydrogel scaffold compositions and methods of use.US Patent 8,911,723B22014
  97. ColledgeJ. OlthoffM. Oral dosage forms of bendamustine.US Patent 10,543,196B22020
  98. HoustonP.R. ChenG. Injectable, non - aqueous suspension with high concentration of therapeutic agent.US Patent 2019/0167801A12019
  99. CrandallW.T. Topical moisturizing composition and method.US Patent 5,945,4091999
  100. AbramA.Z. FuchshuberL. Foamable suspension gel.US Patent 9,265,726B22016
  101. KlavenessB. MüllertzH.O. Coated capsules and tablets of a fatty acid oil mixture.EP Patent 2 490 678B12012
  102. Guy Andre ParisotA. Vaccine formulations.US Patent 7.691,368B22010
  103. TwidwellJ. Topical therapeutic formulations.US Patent 9,238,059B22016
  104. FawziM.B. Topical antimicrobial anti-nflammatory compostions.US Patent 4,343,7981982
/content/journals/nanotec/10.2174/0118722105255391231018112747
Loading
/content/journals/nanotec/10.2174/0118722105255391231018112747
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test