Skip to content
2000
Volume 19, Issue 3
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

In recent years, nanotechnology has been the focus of study for the cure of different diseases, among which nanosponge delivery system is one of a kind. Nano sponges are tiny, highly porous, three-dimensional nanostructures with a size range of 250 nm-1 µm in an amorphous or crystalline structure. Nanosponges usually act as an excipient or carrier of a drug in the different delivery systems. The type of polymers and cross-linkers, along with their concentration ratio, causes variation in nanosponges's dimension and encapsulation efficiency. Nanosponges have gained prominence in recent times due to their distinct ability to encapsulate both hydrophilic and lipophilic drugs within their internal cavity, thereby improving the solubility of drugs that have low water solubility. Virus-like size helps the nanosponges to circulate within the body without getting eliminated by the immune system until they stick to the targeted part of the body, which makes it the perfect candidate for a targeted drug delivery system and controlled delivery system as well because of its slow drug release property for a more extended period. Cyclodextrin-based nanosponges are the best choice for anticancer drug delivery as their small virus-like diameter helps them in passive targeting by enhancing the enhanced permeability and retention effect, allowing the anticancer drug to stay inside the tumour cell to show more significant therapeutic action on cancer, while for active targeting to the cancerous cell, nanosponges are attached with a ligand on it for receptor binding purpose. It can be used for drug delivery in many major diseases like brain-related diseases, diabetes, cancer, fungal, hypertension, ., in different dosage forms, like oral, topical, hydrogel, parenteral, . and also provide valuable information of this novel drug delivery system in the field of patent area.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105246668231012113121
2023-11-01
2025-12-14
Loading full text...

Full text loading...

References

  1. AhireP.S. BhambereD.S. PatilM.P. KshirsagarS.J. Recent advances in nanosponges as a drug delivery system.Indian J Drugs20208817
    [Google Scholar]
  2. CavalliR. AkhterA.K. BisazzaA. GiustettoP. TrottaF. VaviaP. Nanosponge formulations as oxygen delivery systems.Int. J. Pharm.20104021-225425710.1016/j.ijpharm.2010.09.025 20888402
    [Google Scholar]
  3. AlongiJ. PoskovicM. FracheA. TrottaF. Role of β-cyclodextrin nanosponges in polypropylene photooxidation.Carbohydr. Polym.201186112713510.1016/j.carbpol.2011.04.022
    [Google Scholar]
  4. SherjeA.P. DravyakarB.R. KadamD. JadhavM. Cyclodextrin-based nanosponges: A critical review.Carbohydr. Polym.2017173374910.1016/j.carbpol.2017.05.086 28732878
    [Google Scholar]
  5. AnanyaK.V. PreethiS.S. GowdaD.V. Recent review on Nano sponge.Intern J Res in Pharma Sci20201111085109610.26452/ijrps.v11i1.1940
    [Google Scholar]
  6. SS SA KrishnamoorthyK RajappanM Nanosponges: A novel class of drug delivery system--review.J. Pharm. Pharm. Sci.201215110311110.18433/J3K308 22365092
    [Google Scholar]
  7. MahalekshmiV. BalakrishnanN. ParthasarathyV. Recent advancement of nanosponges in pharmaceutical formulation for drug delivery systems.J. Appl. Pharm. Sci.20231388410010.1007/s10856‑022‑06652‑9 35244808
    [Google Scholar]
  8. ShenW. ZhuY. DongX. GuJ. ShiJ. A new strategy to synthesize TiO2-hollow spheres using carbon spheres as template.Chem. Lett.200534684084110.1246/cl.2005.840
    [Google Scholar]
  9. HuC. XuH. LiuX. VO2/TiO2 nanosponges as binder-free electrodes for high-performance supercapacitors.Sci. Rep.2015511601210.1038/srep16012 26531072
    [Google Scholar]
  10. ZuruziA.S. NurmawatiM.H. YeoY.H. WuS. Chee Hoong LaiP. ChenZ. A simple strategy to incorporate Pt into TiO2 nanosponges via wet oxidation of multilayered films.RSC Advances2013343199711997710.1039/c3ra41162a
    [Google Scholar]
  11. ChadwickE.G. MogiliN.V.V. O’DwyerC. Compositional characterisation of metallurgical grade silicon and porous silicon nanosponge particles.RSC Advances2013342193931940210.1039/c3ra42205d
    [Google Scholar]
  12. LiC. CheW. LiuS.Y. LiaoG. Hypercrosslinked microporous polystyrene: from synthesis to properties to applications.Mater. Today Chem.20232910139210.1016/j.mtchem.2023.101392
    [Google Scholar]
  13. SubramanianS. Multifunctional nanosponges for the treatment of cancer-a review.J Pharm Sci Res201791226612668
    [Google Scholar]
  14. TrottaF. DianzaniC. CalderaF. MognettiB. CavalliR. The application of nanosponges to cancer drug delivery.Expert Opin. Drug Deliv.201411693194110.1517/17425247.2014.911729 24811423
    [Google Scholar]
  15. ThakreA.R. GholseY.N. KasliwalR.H. Nanosponges: A novel approach of drug delivery system.J Med Pharm Allied Sci2016789278
    [Google Scholar]
  16. AhmedR.Z. PatilG. ZaheerZ. Nanosponges: A completely new nano-horizon: Pharmaceutical applications and recent advances.Drug Dev. Ind. Pharm.20133991263127210.3109/03639045.2012.694610 22681585
    [Google Scholar]
  17. MullickP.R. HegdeA. GopalanD. Evolving Era of “Sponges”: Nanosponges as a versatile nanocarrier for the effective skin delivery of drugs.Curr. Pharm. Des.202228231885189610.2174/1381612828666220518090431 35585809
    [Google Scholar]
  18. JilshaG. ViswanadV. Nanosponges: A novel approach of drug delivery system.Int. J. Pharm. Sci. Rev. Res.2013192119123
    [Google Scholar]
  19. BezawadaS. CharanjithaR.V. NaveenaG.V. Nanosponges-A concise review for emerging trends.Int J Pharm Biomed Res20143116
    [Google Scholar]
  20. WaghmareS.G. NikhadeR.R. SatishD. KosalgeB. Nanosponges: A novel approach for controlled release drug delivery system.Int. J. Pharm. Pharm. Sci.201793101
    [Google Scholar]
  21. KılıçarslanM. BaykaraT. The effect of the drug/polymer ratio on the properties of the verapamil HCl loaded microspheres.Int. J. Pharm.20032521-29910910.1016/S0378‑5173(02)00630‑0 12550785
    [Google Scholar]
  22. SharmaR. WalkerR.B. PathakK. Evaluation of the kinetics and mechanism of drug release from econazole nitrate nanosponge loaded carbapol hydrogel.Indian J Pharm Educ Res20114512531
    [Google Scholar]
  23. AritomiH. YamasakiY. YamadaK. HondaH. KoishiM. Development of sustained-release formulation of chlorpheniramine maleate using powder-coated microsponge prepared by dry impact blending method.Yakuzaigaku19965614956
    [Google Scholar]
  24. OsmaniR.A. ThirumaleshwarS. BhosaleR.R. KulkarniP.K. Nanosponges: The spanking accession in drug delivery-an updated comprehensive review.Pharm. Lett.20145721
    [Google Scholar]
  25. KumarH. VenkateshN. BhowmikH. KuilaA. Metallic nanoparticle: A review.Biomed. J. Sci. Tech. Res.20184237653775
    [Google Scholar]
  26. GedamS.S. BasarkarG.D. Nanosponges: An attractive strategy for enhanced therapeutic profile.J Pharm Sci Res201911624792487
    [Google Scholar]
  27. LalaR. ThoratA. GargoteC. Current trends in β-cyclodextrin based drug delivery systems.Int. J. Res. Ayurveda Pharm.20112515201526
    [Google Scholar]
  28. TorneS. DarandaleS. VaviaP. TrottaF. CavalliR. Cyclodextrin-based nanosponges: Effective nanocarrier for tamoxifen delivery.Pharm. Dev. Technol.201318361962510.3109/10837450.2011.649855 22235935
    [Google Scholar]
  29. VishwakarmaA. NikamP. MogalR. TaleleS. Review on nanosponges: A benefication for novel drug delivery.Int. J. Pharm. Tech. Res.201461120
    [Google Scholar]
  30. SetijadiE. TaoL. LiuJ. JiaZ. BoyerC. DavisT.P. Biodegradable star polymers functionalized with β-cyclodextrin inclusion complexes.Biomacromolecules20091092699270710.1021/bm900646g 19663421
    [Google Scholar]
  31. TrottaF TumiattiV CavalliR RogeroC MognettiB BertaG Cyclodextrin-based nanosponges as a vehicle for antitumoral drugs.WO 2009; 3656: 1.
    [Google Scholar]
  32. GabrM.M. MortadaS.M. SallamM.A. Carboxylate cross-linked cyclodextrin: A nanoporous scaffold for enhancement of rosuvastatin oral bioavailability.Eur. J. Pharm. Sci.201811111210.1016/j.ejps.2017.09.026 28931488
    [Google Scholar]
  33. JyotiP. TulsiB. PopinK. ChetnaB. An Innovative advancement for targeted drug delivery: Nanosponges.Indo Global J Pharma Sci201662596410.35652/IGJPS.2016.02
    [Google Scholar]
  34. DavidF. Nanosponge drug delivery system more effective than direct injection2010Available From: www.physorg.com (Accessed on 20.12.2011).
    [Google Scholar]
  35. JaniR.K. PatelN. PatelZ. ChakraborthyG.S. UpadhyeV. Nanosponges as a biocatalyst carrier: An innovative drug delivery technology for enzymes, proteins, vaccines, and antibodies.Biocatal. Agric. Biotechnol.20224210232910.1016/j.bcab.2022.102329
    [Google Scholar]
  36. ShringirishiM. PrajapatiS.K. MahorA. AlokS. YadavP. VermaA. Nanosponges: A potential nanocarrier for novel drug delivery-a review.Asian Pac. J. Trop. Dis.20144S519S52610.1016/S2222‑1808(14)60667‑8
    [Google Scholar]
  37. PatelE.K. OswalR.J. Nanosponge and micro sponges: A novel drug delivery system.Int J Res Pharm Sci20122222812781
    [Google Scholar]
  38. PeltierS. OgerJ.M. LagarceF. CouetW. BenoîtJ.P. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded lipid nanocapsules.Pharm. Res.20062361243125010.1007/s11095‑006‑0022‑2 16715372
    [Google Scholar]
  39. TejashriG. AmritaB. DarshanaJ. Cyclodextrin based nanosponges for pharmaceutical use: A review.Acta Pharm.201363333535810.2478/acph‑2013‑0021 24152895
    [Google Scholar]
  40. ShendeP. DeshmukhK. TrottaF. CalderaF. Novel cyclodextrin nanosponges for delivery of calcium in hyperphosphatemia.Int. J. Pharm.201345619510010.1016/j.ijpharm.2013.08.012 23954237
    [Google Scholar]
  41. ShendeP.K. GaudR.S. BakalR. PatilD. Effect of inclusion complexation of meloxicam with β-cyclodextrin- and β-cyclodextrin-based nanosponges on solubility, in vitro release and stability studies.Colloids Surf. B Biointerfaces201513610511010.1016/j.colsurfb.2015.09.002 26364091
    [Google Scholar]
  42. SalunkeA. PandeyA.K. RawatP.K. UpamanyuN. Nanosponges: A recent technology for nanomedicine.Pharma Innov J20198703709
    [Google Scholar]
  43. KfouryM. LandyD. FourmentinS. Characterization of cyclodextrin/volatile inclusion complexes: A review.Molecules2018235120410.3390/molecules23051204 29772824
    [Google Scholar]
  44. MeleA. CastiglioneF. MalpezziL. HR MAS NMR, powder XRD and Raman spectroscopy study of inclusion phenomena in βCD nanosponges.J. Incl. Phenom. Macrocycl. Chem.2011693-440340910.1007/s10847‑010‑9772‑x
    [Google Scholar]
  45. DurickovicI. Using raman spectroscopy for characterization of aqueous media and quantification of species in aqueous solution.Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences2016405e2710.5772/64550
    [Google Scholar]
  46. Martínez-RichaA. SilvestriR. Determination of phase content in multiphase polymers by solid-state NMR techniques.Mater. Sci. Forum2012714515610.4028/www.scientific.net/MSF.714.51
    [Google Scholar]
  47. KrabicováI. AppletonS.L. TannousM. History of cyclodextrin nanosponges.Polymers2020125112210.3390/polym12051122 32423091
    [Google Scholar]
  48. SharmaR. WalkerR.B. PathakK. Evaluation of the kinetics and mechanism of drug release from econazole nitrate nanosponge loaded carbapol hydrogel.Ind J Parm Edu Res20114512531
    [Google Scholar]
  49. SharmaR. PathakK. Polymeric nanosponges as an alternative carrier for improved retention of econazole nitrate onto the skin through topical hydrogel formulation.Pharm. Dev. Technol.201116436737610.3109/10837451003739289 20367024
    [Google Scholar]
  50. YangC.Y. LiaoT.C. ShuaiH.H. ShenT.L. YehJ.A. ChengC.M. Micropatterning of mammalian cells on inorganic-based nanosponges.Biomaterials201233204988499710.1016/j.biomaterials.2012.03.071 22483244
    [Google Scholar]
  51. SwaminathanS. VaviaP.R. TrottaF. CavalliR. Nanosponges encapsulating dexamethasone for ocular delivery: Formulation design, physicochemical characterization, safety and corneal permeability assessment.J. Biomed. Nanotechnol.201396998100710.1166/jbn.2013.1594 23858964
    [Google Scholar]
  52. RaoM.R. BajajA.N. PardeshiA.A. AghavS.S. Investigation of nanoporous colloidal carrier for solubility enhancement of Cefpodoxime proxetil.J. Pharm. Res.20125524962499
    [Google Scholar]
  53. SwaminathanS. VaviaP.R. TrottaF. TorneS. Formulation of betacyclodextrin based nanosponges of itraconazole.J. Incl. Phenom. Macrocycl. Chem.2007571-4899410.1007/s10847‑006‑9216‑9
    [Google Scholar]
  54. VyasA. SarafS. SarafS. Cyclodextrin based novel drug delivery systems.J. Incl. Phenom. Macrocycl. Chem.2008621-2234210.1007/s10847‑008‑9456‑y
    [Google Scholar]
  55. ShameemS. Nithish KumarR.N. BhavithaM. KumarS.M. RamaiahB.M. SahithyaK. Nanosponges: A miracle nanocarrier for targeted drug delivery.Int. J. Pharma Sci.2020638289
    [Google Scholar]
  56. TorneS.J. TorneJ.S. VaviaP.R. SinghS.K. KishoreN. Cyclodextrin based drug delivery system of protease inhibitor—nelfinavir mesylate.J. Incl. Phenom. Macrocycl. Chem.2007571-468969710.1007/s10847‑006‑9262‑3
    [Google Scholar]
  57. IravaniS. VarmaR.S. Nanosponges for drug delivery and cancer therapy: Recent advances.Nanomaterials20221214244010.3390/nano12142440 35889665
    [Google Scholar]
  58. CavalliR. TrottaF. TumiattiW. Cyclodextrin-based nanosponges for drug delivery.J. Incl. Phenom. Macrocycl. Chem.2006561-220921310.1007/s10847‑006‑9085‑2
    [Google Scholar]
  59. AnsariK.A. VaviaP.R. TrottaF. CavalliR. Cyclodextrin-based nanosponges for delivery of resveratrol: in vitro characterisation, stability, cytotoxicity and permeation study.AAPS PharmSciTech201112127928610.1208/s12249‑011‑9584‑3 21240574
    [Google Scholar]
  60. MognettiB. BarberisA. MarinoS. In vitro enhancement of anticancer activity of paclitaxel by a Cremophor free cyclodextrin-based nanosponge formulation.J. Incl. Phenom. Macrocycl. Chem.2012741-420121010.1007/s10847‑011‑0101‑9
    [Google Scholar]
  61. KumarR.S. BhowmikA. Nanosponges: Novel drug delivery for treatment of cancer.J. Drug Deliv. Ther.201994-A820825
    [Google Scholar]
  62. Arun RajR. ThomasS. Development and characterization of 5-fluorouracil cubosomal nanosponge tablet for colon targeting.J. Pharm. Sci.2019102918
    [Google Scholar]
  63. PushpalathaR. SelvamuthukumarS. KilimozhiD. Cross-linked, cyclodextrin-based nanosponges for curcumin delivery: Physicochemical characterization, drug release, stability and cytotoxicity.J. Drug Deliv. Sci. Technol.201845455310.1016/j.jddst.2018.03.004
    [Google Scholar]
  64. PandeyD.P. Nano sponges and their application in cancer prevention.Inter J Prog Res in Sci Engi2022304613
    [Google Scholar]
  65. ParveenS. MisraR. SahooS.K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging.Nanomedicine20128214716610.1016/j.nano.2011.05.016 21703993
    [Google Scholar]
  66. GirigoswamiA. GirigoswamiK. Versatile applications of nanosponges in biomedical field: A glimpse on SARS-CoV-2 management.Bionanoscience20221231018103110.1007/s12668‑022‑01000‑1 35755139
    [Google Scholar]
  67. GüngörS. ErdalM.S. AksuB. New formulation strategies in topical antifungal therapy.J Cosmet Dermatol Sci Appl2013356
    [Google Scholar]
  68. SwaminathanS. CavalliR. TrottaF. In vitro release modulation and conformational stabilization of a model protein using swellable polyamidoamine nanosponges of β-cyclodextrin.J. Incl. Phenom. Macrocycl. Chem.2010681-218319110.1007/s10847‑010‑9765‑9
    [Google Scholar]
  69. TannousM. TrottaF. CavalliR. Nanosponges for combination drug therapy: State-of-the-art and future directions.Nanomedicine202015764364610.2217/nnm‑2020‑0007 32077373
    [Google Scholar]
  70. BoscoloB. TrottaF. GhibaudiE. High catalytic performances of Pseudomonas fluorescens lipase adsorbed on a new type of cyclodextrin-based nanosponges.J. Mol. Catal., B Enzym.201062215516110.1016/j.molcatb.2009.10.002
    [Google Scholar]
  71. WangT.Y. Kendrick-WilliamsL.L. ChoyM.Y. Collagen-targeted theranostic nanosponges for delivery of the matrix metalloproteinase 14 inhibitor naphthofluorescein.Chem. Mater.20203293707371410.1021/acs.chemmater.9b02840
    [Google Scholar]
  72. ShivaniS. PoladiK.K. Nanosponges-novel emerging drug delivery system: A review.Int. J. Pharm. Sci. Res.201562529
    [Google Scholar]
  73. MagedA. MahmoudA.A. GhorabM.M. Nano spray drying technique as a novel approach to formulate stable econazole nitrate nanosuspension formulations for ocular use.Mol. Pharm.20161392951296510.1021/acs.molpharmaceut.6b00167 27010795
    [Google Scholar]
  74. NeubertR.H.H. Potentials of new nanocarriers for dermal and transdermal drug delivery.Eur. J. Pharm. Biopharm.20117711210.1016/j.ejpb.2010.11.003 21111043
    [Google Scholar]
  75. KadianR. Nanoparticles: A promising drug delivery approach.Asian J. Pharm. Clin. Res.2018111303510.22159/ajpcr.2018.v11i1.22035
    [Google Scholar]
  76. LemboD. SwaminathanS. DonalisioM. Encapsulation of acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent’s antiviral efficacy.Int. J. Pharm.20134431-226227210.1016/j.ijpharm.2012.12.031 23279938
    [Google Scholar]
  77. OlteanuA.A. AramăC.C. RaduC. MihăescuC. MonciuC.M. Effect of β-cyclodextrins based nanosponges on the solubility of lipophilic pharmacological active substances (repaglinide).J. Incl. Phenom. Macrocycl. Chem.2014801-2172410.1007/s10847‑014‑0406‑6
    [Google Scholar]
  78. GadS. AlhussiniS. GardouhA. Polymeric nano sponge drug delivery system: A review.Records of Pharma Biomedical Sci202263345810.21608/rpbs.2022.88495.1131
    [Google Scholar]
  79. HahnP. Carrasco-ZevallosO. CunefareD. Intrasurgical human retinal imaging with manual instrument tracking using a microscope-integrated spectral-domain optical coherence tomography device.Transl. Vis. Sci. Technol.201544110.1167/tvst.4.4.1 26175961
    [Google Scholar]
  80. MuraP. MaestrelliF. CirriM. Improvement of butamben anesthetic efficacy by the development of deformable liposomes bearing the drug as cyclodextrin complex.Pharmaceutics202113687210.3390/pharmaceutics13060872 34204807
    [Google Scholar]
  81. ChhabriaV. BeetonS. Development of nanosponges from erythrocyte ghosts for removal of streptolysin-O from mammalian blood.Nanomedicine20161121nnm-2016-018010.2217/nnm‑2016‑0180 27764982
    [Google Scholar]
  82. TrottaF. ShendeP. BiasizzoM. Method for preparing dextrin nanosponges.PCT Pat Appl2012147069A1
    [Google Scholar]
  83. LienN.R. TelfordJ.R. An investigation of the inclusion complex of cyclomaltoheptaose (β-cyclodextrin) with N-methylanthranilic acid in the solid state.Carbohydr. Res.2009344182606260810.1016/j.carres.2009.09.018 19879557
    [Google Scholar]
  84. SapinoS. CarlottiM.E. CavalliR. Photochemical and antioxidant properties of gamma-oryzanol in beta-cyclodextrin-based nanosponges.J. Incl. Phenom. Macrocycl. Chem.2013751-2697610.1007/s10847‑012‑0147‑3
    [Google Scholar]
  85. PattaniA. PhadnisS. PatravaleV. Microsponges: A path-breaking cosmetic innovation.Household and Personal Care Today200824549
    [Google Scholar]
  86. JullianC. MoyanoL. YañezC. Olea-AzarC. Complexation of quercetin with three kinds of cyclodextrins: An antioxidant study.Spectrochim. Acta A Mol. Biomol. Spectrosc.200767123023410.1016/j.saa.2006.07.006 16950645
    [Google Scholar]
  87. RezaeiA. KhavariS. SamiM. Incorporation of thyme essential oil into the β-cyclodextrin nanosponges: Preparation, characterization and antibacterial activity.J. Mol. Struct.2021124113061010.1016/j.molstruc.2021.130610
    [Google Scholar]
  88. MachínR. IsasiJ.R. VélazI. β-Cyclodextrin hydrogels as potential drug delivery systems.Carbohydr. Polym.20128732024203010.1016/j.carbpol.2011.10.024
    [Google Scholar]
  89. Rodriguez-TenreiroC. Alvarez-LorenzoC. Rodriguez-PerezA. ConcheiroA. Torres-LabandeiraJ.J. New cyclodextrin hydrogels cross-linked with diglycidylethers with a high drug loading and controlled release ability.Pharm. Res.200623112113010.1007/s11095‑005‑8924‑y 16320002
    [Google Scholar]
  90. AppletonS.L. TannousM. ArgenzianoM. Nanosponges as protein delivery systems: Insulin, a case study.Int. J. Pharm.202059011988810.1016/j.ijpharm.2020.119888 32950667
    [Google Scholar]
  91. ArgenzianoM. HaimhofferA. BastiancichC. In vitro enhanced skin permeation and retention of imiquimod loaded in β-cyclodextrin nanosponge hydrogel.Pharmaceutics201911313810.3390/pharmaceutics11030138 30897794
    [Google Scholar]
  92. TrottaF. CalderaF. CavalliR. Molecularly imprinted cyclodextrin nanosponges for the controlled delivery of L-DOPA: Perspectives for the treatment of Parkinson’s disease.Expert Opin. Drug Deliv.201613121671168010.1080/17425247.2017.1248398 27737572
    [Google Scholar]
  93. ChallaR. AhujaA. AliJ. KharR.K. Cyclodextrins in drug delivery: An updated review.AAPS PharmSciTech200562E329E35710.1208/pt060243 16353992
    [Google Scholar]
  94. YangC.Y. ShuaiH.H. KaoK.W. SungC.Y. ChengC.M. YehJ.A. Probing cancer cell responses via using physically-modified chitosan nanosponges.The 7th IEEE International Conference on Nano/Molecular Medicine and Engineering. 10-13 November 2013Phuket, Thailand919410.1109/NANOMED.2013.6766322
    [Google Scholar]
  95. BoriniS. D’AuriaS. RossiM. RossiA.M. Writing 3D protein nanopatterns onto a silicon nanosponge.Lab Chip20055101048105210.1039/b505089h 16175259
    [Google Scholar]
  96. EuvrardÉ. Morin-CriniN. DruartC. Cross-linked cyclodextrin-based material for treatment of metals and organic substances present in industrial discharge waters.Beilstein J. Org. Chem.20161211826183810.3762/bjoc.12.172 27829889
    [Google Scholar]
  97. GuH. ZhengR. LiuH. ZhangX. XuB. Direct synthesis of a bimodal nanosponge based on FePt and ZnS.Small20051440240610.1002/smll.200400106 17193463
    [Google Scholar]
  98. RaviSC KrishnakumarK NairSK Nano sponges: A targeted drug delivery system and its applications.GSC Biol Pharm Sci2019730407010.30574/gscbps.2019.7.3.0098
    [Google Scholar]
  99. Di NardoG. RoggeroC. CampolongoS. ValettiF. TrottaF. GilardiG. Catalytic properties of catechol 1,2-dioxygenase from Acinetobacter radioresistens S13 immobilized on nanosponges.Dalton Trans.2009336507651210.1039/b903105g 19672496
    [Google Scholar]
  100. BilalJ.S. AbhishekS.P. AnkushS.B. IndrayaniD.R. ManojkumarM.N. Nanosponges: An evolutionary trend for targeted drug delivery.Inter J Pharma Sci and Med20216611410.47760/ijpsm.2021.v06i06.001
    [Google Scholar]
  101. AnsariK.A. TorneS.J. VaviaP.R. TrottaF. CavalliR. Paclitaxel loaded nanosponges: In-vitro characterization and cytotoxicity study on MCF-7 cell line culture.Curr. Drug Deliv.20118219420210.2174/156720111794479934 21235471
    [Google Scholar]
  102. WilliamK. BenjaminS. EvaH. Synthesis and characterization of nanosponges for drug delivery and cancer treatment Available From www.Vanderbilt.edu (Accessed on 20.12.2011).
    [Google Scholar]
  103. ZainuddinR. ZaheerZ. SangshettiJ.N. MominM. Enhancement of oral bioavailability of anti-HIV drug rilpivirine HCl through nanosponge formulation.Drug Dev. Ind. Pharm.201743122076208410.1080/03639045.2017.1371732 28845699
    [Google Scholar]
  104. ReddyD.V. RaoA.S. Formulation and in-vivo evaluation of nanosponges based tramadol HCL C/R tablets using design of experiment.Int J Appl Pharm2022143869410.22159/ijap.2022v14i3.44278
    [Google Scholar]
  105. SrinivasP. Formulation and evaluation of voriconazole loaded nanosponges for oral and topical delivery.Int J Drug Dev & Res2013515569
    [Google Scholar]
  106. GangadharaR. DevannaN. SasikalaL. SasikalaL. RaoV.K. Formulation and in vitro characterization of flurbiprofen loaded nanosponges.Inter J Res in Pharma Sci20211231798180210.26452/ijrps.v12i3.4841
    [Google Scholar]
  107. AbassM.M. RajabN.A. Preparation and characterization of etodolac as a topical nanosponges hydrogel.Iraqi J. Pharm Sci.2019281647410.31351/vol28iss1pp64‑74
    [Google Scholar]
  108. HamzaM. Abd El AzizZ.R. Aly KassemM. El- Nabarawi MA. Loxoprofen nanosponges: Formulation, characterization and ex-vivo study.Intern J Applied Pharma202214223324110.22159/ijap.2022v14i2.43670
    [Google Scholar]
  109. HarshaG. ShaikN.B. LakshmiP.K. LathaK. Formulation and evaluation of sertaconazole nitrate loaded nanosponges for topical application.Res J Pharma Techno202114289590210.5958/0974‑360X.2021.00159.1
    [Google Scholar]
  110. VenkateshD.N. BalamuruganS.D. ManishaM. BhowmikH. Formulation and characterization of ketoconazole loaded nanosponges in hydrogel for treating topical fungal infections.Conference on Drug Design and Discovery Technologies20193405010.1039/9781839160783‑00340
    [Google Scholar]
  111. GhoseA. NabiB. RehmanS. Development and evaluation of polymeric nanosponge hydrogel for terbinafine hydrochloride: Statistical optimization, in vitro and in vivo studies.Polymers20201212290310.3390/polym12122903 33287406
    [Google Scholar]
  112. KapileshwariG.R. BarveA.R. KumarL. BhideP.J. JoshiM. ShirodkarR.K. Novel drug delivery system of luliconazole: Formulation and characterisation.J. Drug Deliv. Sci. Technol.20205510130210.1016/j.jddst.2019.101302
    [Google Scholar]
  113. GangadharappaH.V. Chandra PrasadS.M. SinghR.P. Formulation, in vitro and in vivo evaluation of celecoxib nanosponge hydrogels for topical application.J. Drug Deliv. Sci. Technol.20174148850110.1016/j.jddst.2017.09.004
    [Google Scholar]
  114. ZidanM.F. IbrahimH.M. AfounaM.I. IbrahimE.A. In vitro and in vivo evaluation of cyclodextrin-based nanosponges for enhancing oral bioavailability of atorvastatin calcium.Drug Dev. Ind. Pharm.20184481243125310.1080/03639045.2018.1442844 29452493
    [Google Scholar]
  115. DesaiC. PrabhakarB. Cyclodextrin nanosponges for solubility enhancement and release modulation of cilostazol.Drug Dev. Ind. Pharm.2015411015891607
    [Google Scholar]
  116. DeshmukhR. HarwanshR.K. PaulS.D. ShuklaR. Controlled release of sulfasalazine loaded amidated pectin microparticles through Eudragit S 100 coated capsule for management of inflammatory bowel disease.J. Drug Deliv. Sci. Technol.20205510149510.1016/j.jddst.2019.101495
    [Google Scholar]
  117. BahadurS. SachanN. HarwanshR.K. DeshmukhR. Nanoparticlized system: promising approach for the management of Alzheimer’s disease through intranasal delivery.Curr. Pharm. Des.202026121331134410.2174/1381612826666200311131658 32160843
    [Google Scholar]
  118. HarwanshR.K. BahadurS. DeshmukhR. RahmanM.A. Exciting potential of nanoparticlized lipidic system for effective treatment of breast cancer and clinical updates: A translational prospective.Curr. Pharm. Des.202026111191120510.2174/1381612826666200131101156 32003686
    [Google Scholar]
  119. a RahmanM.A. Abul BarkatH. HarwanshR.K. DeshmukhR. Carbon-based nanomaterials: Carbon nanotubes, graphene, and fullerenes for the control of burn infections and wound healing.Curr. Pharm. Biotechnol.202223121483149610.2174/1389201023666220309152340 35264085
    [Google Scholar]
  120. b JhonsonE YollinP CookD Sulpur doped carbon-based nanomatarial and methods of forming the some.US2023192-491A12023
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105246668231012113121
Loading
/content/journals/nanotec/10.2174/0118722105246668231012113121
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test