Skip to content
2000
Volume 19, Issue 3
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Background

Bacterial infections are becoming difficult to treat nowadays due to the development of resistance towards conventional treatments. Conventional topical formulations loaded with antibiotics display various disadvantages, like high dosing frequency, high toxicity, and poor patient compliance. The former limitations may sometimes lead to severe complications and hospitalization of patients. However, these can be overcome by employing vesicular nanocarriers for the delivery of antibiotics following the topical/transdermal route.

Objective

The objective of this review paper was to summarize the role of vesicular nanocarriers, like liposomes, elastic liposomes, niosomes, ethosomes, solid lipid nanoparticles, nanostructured lipid carriers, and nanoemulsions for topical/transdermal delivery of antibiotics, and patents associated with them.

Methods

Literature for the present review was collected using various search engines, like PubMed, Google Scholar, and Google Patents.

Results

Various literature investigations have revealed the and preclinical efficacy of vesicular nanocarrier systems in the delivery of antibiotics following the topical/transdermal route.

Conclusion

Vesicular nanocarrier systems, targeted delivery, may subside various side effects of antibiotics associated with conventional delivery, like high dosing frequency and poor patient compliance. However, their existence in the pharmaceutical market will be governed by effective clinical assessment and scale-up methodologies.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105250901231201024930
2024-01-09
2025-09-14
Loading full text...

Full text loading...

References

  1. LiZ. FangX. YuD. Transdermal drug delivery systems and their use in obesity treatment.Int. J. Mol. Sci.202122231275410.3390/ijms222312754
    [Google Scholar]
  2. RabieiM. KashanianS. SamavatiS.S. JamasbS. McInnesS.J.P. Nanomaterial and advanced technologies in transdermal drug delivery.J. Drug Target.202028435636710.1080/1061186X.2019.1693579 31851847
    [Google Scholar]
  3. KriplaniP. GuarveK. Transdermal drug delivery: A step towards treatment of cancer.Recent Patents Anticancer Drug Discov.202217325326710.2174/1574892816666211202154000 34856914
    [Google Scholar]
  4. RapalliV.K. MahmoodA. WaghuleT. Revisiting techniques to evaluate drug permeation through skin.Expert Opin. Drug Deliv.202118121829184210.1080/17425247.2021.2010702 34826250
    [Google Scholar]
  5. SabbaghF. KimB.S. Recent advances in polymeric transdermal drug delivery systems.J. Control. Release202234113214610.1016/j.jconrel.2021.11.025 34813879
    [Google Scholar]
  6. TiwariN. Osorio-BlancoE.R. SonzogniA. Esporrín-UbietoD. WangH. CalderónM. Nanocarriers for skin applications: Where do we stand?Angew. Chem. Int. Ed.2022613e20210796010.1002/anie.202107960 34487599
    [Google Scholar]
  7. PandeyM. ChoudhuryH. GorainB. Site-specific vesicular drug delivery system for skin cancer: A novel approach for targeting.Gels20217421810.3390/gels7040218
    [Google Scholar]
  8. PalmerB. DeLouiseL. Nanoparticle-enabled transdermal drug delivery systems for enhanced dose control and tissue targeting.Molecules20162112171910.3390/molecules21121719 27983701
    [Google Scholar]
  9. Jiménez-RodríguezA. Guardado-FélixD. Antunes-RicardoM. Challenges and strategies for topical and transdermal delivery of bioactive peptides.Crit. Rev. Ther. Drug Carrier Syst.202239113110.1615/CritRevTherDrugCarrierSyst.2021038141 34936316
    [Google Scholar]
  10. KumarL. UtrejaP. Transcending the cutaneous barrier through nanocarrier exploration for passive delivery of anti-hypertensive drugs: A critical review.Recent Pat. Nanotechnol.202014319320910.2174/1872210514666200519071734 32427090
    [Google Scholar]
  11. KhanN. HarunM. NawazA. HarjohN. WongT. Nanocarriers and their actions to improve skin permeability and transdermal drug delivery.Curr. Pharm. Des.201521202848286610.2174/1381612821666150428145216 25925113
    [Google Scholar]
  12. PhataleV. VaipheiK.K. JhaS. PatilD. AgrawalM. AlexanderA. Overcoming skin barriers through advanced transdermal drug delivery approaches.J. Control. Release202235136138010.1016/j.jconrel.2022.09.025 36169040
    [Google Scholar]
  13. PierreM.B.R. Current applications and benefits of polymeric nanocarriers for the management of skin disorders.Curr. Med. Chem.202229385949596410.2174/0929867329666220525141021 35619267
    [Google Scholar]
  14. El-ZaafaranyG.M. NasrM. Insightful exploring of advanced nanocarriers for the topical/transdermal treatment of skin diseases.Pharm. Dev. Technol.202126101136115710.1080/10837450.2021.2004606 34751091
    [Google Scholar]
  15. SalaM. DiabR. ElaissariA. FessiH. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications.Int. J. Pharm.20185351-211710.1016/j.ijpharm.2017.10.046 29111097
    [Google Scholar]
  16. KahramanE. GüngörS. ÖzsoyY. Potential enhancement and targeting strategies of polymeric and lipid-based nanocarriers in dermal drug delivery.Ther. Deliv.201781196798510.4155/tde‑2017‑0075 29061106
    [Google Scholar]
  17. KakadiaP. ConwayB. Lipid nanoparticles for dermal drug delivery.Curr. Pharm. Des.201521202823282910.2174/1381612821666150428143730 25925115
    [Google Scholar]
  18. ThakurK. SharmaG. SinghB. KatareO.P. Topical drug delivery of anti-infectives employing lipid-based nanocarriers: Dermatokinetics as an important tool.Curr. Pharm. Des.201924435108512810.2174/1381612825666190118155843 30657036
    [Google Scholar]
  19. RussoA. ConciaE. CristiniF. Current and future trends in antibiotic therapy of acute bacterial skin and skin-structure infections.Clin. Microbiol. Infect.201622S2S27S3610.1016/S1198‑743X(16)30095‑7 27125562
    [Google Scholar]
  20. ThakurK. SharmaG. SinghB. ChhibberS. KatareO.P. Current state of nanomedicines in the treatment of topical infectious disorders.Recent Patents Anti-Infect. Drug Disc.201813212715010.2174/1574891X13666180529103804 29807522
    [Google Scholar]
  21. GleghornK. GrimshawE. KellyE.K. New antibiotics in the management of acute bacterial skin and skin structure infections.Skin Therapy Lett.201520579 26382907
    [Google Scholar]
  22. TranM.C.N. NaumovskiS. GoldsteinE.J.C. The times they are a-changin’: New antibacterials for skin and skin structure infections.Am. J. Clin. Dermatol.201516313714610.1007/s40257‑015‑0125‑9 25906205
    [Google Scholar]
  23. KolliparaR. DowningC. LeeM. GuidryJ. CurtisS. TyringS. Current and emerging drugs for acute bacterial skin and skin structure infections: An update.Expert Opin. Emerg. Drugs201419343144010.1517/14728214.2014.955015 25146459
    [Google Scholar]
  24. ZhuX. Radovic-MorenoA.F. WuJ. LangerR. ShiJ. Nanomedicine in the management of microbial infection – Overview and perspectives.Nano Today20149447849810.1016/j.nantod.2014.06.003 25267927
    [Google Scholar]
  25. JampilekJ. KralovaK. Advances in nanostructures for antimicrobial therapy.Materials2022157238810.3390/ma15072388 35407720
    [Google Scholar]
  26. GargU. JainK. Dermal and transdermal drug delivery through vesicles and particles: Preparation and applications.Adv. Pharm. Bull.20221214557 35517881
    [Google Scholar]
  27. SapkotaR. DashA.K. Liposomes and transferosomes: A breakthrough in topical and transdermal delivery.Ther. Deliv.202112214515810.4155/tde‑2020‑0122 33583219
    [Google Scholar]
  28. FangJ.Y. HwangT.L. HuangY.L. Liposomes as vehicles for enhancing drug delivery via skin routes.Curr. Nanosci.200621557010.2174/157341306775473791
    [Google Scholar]
  29. CaritaA.C. EloyJ.O. ChorilliM. LeeR.J. LeonardiG.R. Recent advances and perspectives in liposomes for cutaneous drug delivery.Curr. Med. Chem.201825560663510.2174/0929867324666171009120154 28990515
    [Google Scholar]
  30. LargeD.E. AbdelmessihR.G. FinkE.A. AugusteD.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application.Adv. Drug Deliv. Rev.202117611385110.1016/j.addr.2021.113851 34224787
    [Google Scholar]
  31. AntimisiarisS.G. MaraziotiA. KannavouM. Overcoming barriers by local drug delivery with liposomes.Adv. Drug Deliv. Rev.2021174538610.1016/j.addr.2021.01.019 33539852
    [Google Scholar]
  32. BozzutoG. MolinariA. Liposomes as nanomedical devices.Int. J. Nanomedicine20151097599910.2147/IJN.S68861 25678787
    [Google Scholar]
  33. FangJ.Y. LiuP.F. HuangC.M. Decreasing systemic toxicity via transdermal delivery of anticancer drugs.Curr. Drug Metab.20089759259710.2174/138920008785821693 18781910
    [Google Scholar]
  34. AsadiP. MehravaranA. SoltanlooN. AbastabarM. AkhtariJ. Nanoliposome-loaded antifungal drugs for dermal administration: A review.Curr. Med. Mycol.202171717810.18502/cmm.7.1.6247 34553102
    [Google Scholar]
  35. AhadA. Al-JenoobiF.I. Al-MohizeaA.M. AkhtarN. RaishM. AqilM. Systemic delivery of β-blockers via transdermal route for hypertension.Saudi Pharm. J.201523658760210.1016/j.jsps.2013.12.019 26702253
    [Google Scholar]
  36. AhadA. Al-SalehA.A. AkhtarN. Al-MohizeaA.M. Al-JenoobiF.I. Transdermal delivery of antidiabetic drugs: Formulation and delivery strategies.Drug Discov. Today201520101217122710.1016/j.drudis.2015.06.002 26100737
    [Google Scholar]
  37. RukavinaZ. Šegvić KlarićM. Filipović-GrčićJ. LovrićJ. VanićŽ. Azithromycin-loaded liposomes for enhanced topical treatment of methicillin-resistant Staphyloccocus aureus (MRSA) infections.Int. J. Pharm.20185531-210911910.1016/j.ijpharm.2018.10.024 30312749
    [Google Scholar]
  38. PandeyP.K. ParasharA.K. Formulation, characterization and evaluation of liposomal hydrogel for the treatment of antibiotic resistant propionibacterium acne.Curr Res Pharm Sci2021112657110.24092/CRPS.2021.110204
    [Google Scholar]
  39. MoyáM.L. López-LópezM. LebrónJ.A. Preparation and characterization of new liposomes. Bactericidal activity of cefepime encapsulated into cationic liposomes.Pharmaceutics2019112698010.3390/pharmaceutics11020069 30736367
    [Google Scholar]
  40. CarneiroG. SantosD.C.M. OliveiraM.C. Topical delivery and in vivo antileishmanial activity of paromomycin-loaded liposomes for treatment of cutaneous leishmaniasis.J. Liposome Res.2010201162310.3109/08982100903015025 19530897
    [Google Scholar]
  41. LiuJ. LiX. LiuL. BaiQ. SuiN. ZhuZ. Self-assembled ultrasmall silver nanoclusters on liposome for topical antimicrobial delivery.Colloids Surf. B Biointerfaces202120011161810.1016/j.colsurfb.2021.111618 33592456
    [Google Scholar]
  42. IngebrigtsenS.G. Škalko-BasnetN. HolsæterA.M. Development and optimization of a new processing approach for manufacturing topical liposomes-in-hydrogel drug formulations by dual asymmetric centrifugation.Drug Dev. Ind. Pharm.20164291375138310.3109/03639045.2015.1135940 26710826
    [Google Scholar]
  43. IngebrigtsenS.G. Škalko-BasnetN. de AlbuquerqueC.J.C. HolsæterA.M. Successful co-encapsulation of benzoyl peroxide and chloramphenicol in liposomes by a novel manufacturing method - dual asymmetric centrifugation.Eur. J. Pharm. Sci.20179719219910.1016/j.ejps.2016.11.017 27866016
    [Google Scholar]
  44. BensonH.A.E. Elastic liposomes for topical and transdermal drug delivery.Methods Mol. Biol.2017152210711710.1007/978‑1‑4939‑6591‑5_9 27837534
    [Google Scholar]
  45. HussainA. SinghS. SharmaD. WebsterT. ShafaatK. FarukA. Elastic liposomes as novel carriers: Recent advances in drug delivery.Int. J. Nanomedicine2017125087510810.2147/IJN.S138267 28761343
    [Google Scholar]
  46. ItaK. Current status of ethosomes and elastic liposomes in dermal and transdermal drug delivery.Curr. Pharm. Des.201622335120512610.2174/1381612822666160511150228 27165164
    [Google Scholar]
  47. JainS. PatelN. ShahM.K. KhatriP. VoraN. Recent advances in lipid-based vesicles and particulate carriers for topical and transdermal application.J. Pharm. Sci.2017106242344510.1016/j.xphs.2016.10.001 27865609
    [Google Scholar]
  48. HussainA. AltamimiM.A. AlshehriS. ImamS.S. SinghS.K. Vesicular elastic liposomes for transdermal delivery of rifampicin: In-vitro, in-vivo and in silico GastroPlus™ prediction studies.Eur. J. Pharm. Sci.202015110541110.1016/j.ejps.2020.105411 32505794
    [Google Scholar]
  49. EstupiñánÓ. RenduelesC. SuárezP. Nano-encapsulation of mithramycin in transfersomes and polymeric micelles for the treatment of sarcomas.J. Clin. Med.2021107135810.3390/jcm10071358 33806182
    [Google Scholar]
  50. AbdellatifA.A.H. TawfeekH.M. Transfersomal nanoparticles for enhanced transdermal delivery of clindamycin.AAPS PharmSciTech20161751067107410.1208/s12249‑015‑0441‑7 26511937
    [Google Scholar]
  51. Paiva-SantosA.C. SilvaA.L. GuerraC. Ethosomes as nanocarriers for the development of skin delivery formulations.Pharm. Res.202138694797010.1007/s11095‑021‑03053‑5 34036520
    [Google Scholar]
  52. NainwalN. JawlaS. SinghR. SaharanV.A. Transdermal applications of ethosomes – a detailed review.J. Liposome Res.201929210311310.1080/08982104.2018.1517160 30156120
    [Google Scholar]
  53. JafariA. DaneshamouzS. GhasemiyehP. Mohammadi-SamaniS. Ethosomes as dermal/transdermal drug delivery systems: Applications, preparation and characterization.J. Liposome Res.202213119 35695714
    [Google Scholar]
  54. NatshehH. VettoratoE. TouitouE. Ethosomes for dermal administration of natural active molecules.Curr. Pharm. Des.201925212338234810.2174/1381612825666190716095826 31333087
    [Google Scholar]
  55. GargV. SinghH. BimbrawhS. Ethosomes and transfersomes: Principles, perspectives and practices.Curr. Drug Deliv.2017145613633 27199229
    [Google Scholar]
  56. AbdulbaqiI.M. DarwisY. KhanN.A. AssiR.A. KhanA.A. Ethosomal nanocarriers: The impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials.Int. J. Nanomedicine2016112279230410.2147/IJN.S105016 27307730
    [Google Scholar]
  57. ChauhanN. VasavaP. KhanS.L. Ethosomes: A novel drug carrier.Ann. Med. Surg.20228210459510.1016/j.amsu.2022.104595 36124209
    [Google Scholar]
  58. LuJ. GuoT. FanY. Recent developments in the principles, modification and application prospects of functionalized ethosomes for topical delivery.Curr. Drug Deliv.202118557058210.2174/1567201817666200826093102 32851961
    [Google Scholar]
  59. IskandarsyahI. AprianiE.F. RosanaY. Formulation, characterization, and in vitro testing of azelaic acid ethosome-based cream against Propionibacterium acnes for the treatment of acne.J. Adv. Pharm. Technol. Res.2019102758010.4103/japtr.JAPTR_289_18 31041186
    [Google Scholar]
  60. MohammedM.I. MakkyA.M. TeaimaM.H. AbdellatifM.M. HamzawyM.A. KhalilM.A. Transdermal delivery of vancomycin hydrochloride using combination of nano-ethosomes and iontophoresis: In vitro and in vivo study.Drug Deliv.201623515581564 25726990
    [Google Scholar]
  61. MohammedM.I. MakkyA.M. AbdellatifM.M. Formulation and characterization of ethosomes bearing vancomycin hydrochloride for transdermal delivery.Int. J. Pharm. Pharm. Sci.20146190194
    [Google Scholar]
  62. KhanR. IrchhaiyaR. Niosomes: A potential tool for novel drug delivery.J. Pharm. Investig.201646319520410.1007/s40005‑016‑0249‑9
    [Google Scholar]
  63. MasjediM. MontahaeiT. An illustrated review on nonionic surfactant vesicles (niosomes) as an approach in modern drug delivery: Fabrication, characterization, pharmaceutical, and cosmetic applications.J. Drug Deliv. Sci. Technol.20216110223410.1016/j.jddst.2020.102234
    [Google Scholar]
  64. AbdelkaderH. AlaniA.W.G. AlanyR.G. Recent advances in non-ionic surfactant vesicles (niosomes): Self-assembly, fabrication, characterization, drug delivery applications and limitations.Drug Deliv.20142128710010.3109/10717544.2013.838077 24156390
    [Google Scholar]
  65. ChenS. HanningS. FalconerJ. LockeM. WenJ. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications.Eur. J. Pharm. Biopharm.2019144183910.1016/j.ejpb.2019.08.015 31446046
    [Google Scholar]
  66. Cerqueira-CoutinhoC. dos SantosE.P. MansurC.R.E. Niosomes as nano-delivery systems in the pharmaceutical field.Crit. Rev. Ther. Drug Carrier Syst.201633219521210.1615/CritRevTherDrugCarrierSyst.2016016167 27651102
    [Google Scholar]
  67. GeX. WeiM. HeS. YuanW.E. Advances of non-ionic surfactant vesicles (Niosomes) and their application in drug delivery.Pharmaceutics20191125510.3390/pharmaceutics11020055 30700021
    [Google Scholar]
  68. OsanlooM. AssadpourS. MehravaranA. AbastabarM. AkhtariJ. Niosome-loaded antifungal drugs as an effective nanocarrier system: A mini review.Curr. Med. Mycol.2018443136 30815615
    [Google Scholar]
  69. KheilnezhadB. HadjizadehA. Factors affecting the penetration of niosome into the skin, their laboratory measurements and dependency to the niosome composition: A review.Curr. Drug Deliv.202118555556910.2174/1567201817999200820161438 32842940
    [Google Scholar]
  70. ThakurA.K. ChellappanD.K. DuaK. MehtaM. SatijaS. SinghI. Patented therapeutic drug delivery strategies for targeting pulmonary diseases.Expert Opin. Ther. Pat.202030537538710.1080/13543776.2020.1741547
    [Google Scholar]
  71. MoghassemiS. HadjizadehA. Nano-niosomes as nanoscale drug delivery systems: An illustrated review.J. Control. Release2014185223610.1016/j.jconrel.2014.04.015 24747765
    [Google Scholar]
  72. BudhirajaA. DhingraG. Development and characterization of a novel antiacne niosomal gel of rosmarinic acid.Drug Deliv.201522672373010.3109/10717544.2014.903010 24786487
    [Google Scholar]
  73. MuzzalupoR. PérezL. PinazoA. TavanoL. Pharmaceutical versatility of cationic niosomes derived from amino acid-based surfactants: Skin penetration behavior and controlled drug release.Int. J. Pharm.20175291-224525210.1016/j.ijpharm.2017.06.083 28668583
    [Google Scholar]
  74. MansouriM. KhayamN. JamshidifarE. Streptomycin sulfate–loaded niosomes enables increased antimicrobial and anti-biofilm activities.Front. Bioeng. Biotechnol.2021974509910.3389/fbioe.2021.745099 34778226
    [Google Scholar]
  75. AbdelazizA.A. ElbannaT.E. SonbolF.I. GamaleldinN.M. El MaghrabyG.M. Optimization of niosomes for enhanced antibacterial activity and reduced bacterial resistance: In vitro and in vivo evaluation.Expert Opin. Drug Deliv.201512216318010.1517/17425247.2014.942639 25135453
    [Google Scholar]
  76. BarakatH.S. KassemM.A. El-KhordaguiL.K. KhalafallahN.M. Vancomycin-eluting niosomes: A new approach to the inhibition of staphylococcal biofilm on abiotic surfaces.AAPS PharmSciTech20141551263127410.1208/s12249‑014‑0141‑8 24895077
    [Google Scholar]
  77. MirzaieA. PeiroviN. AkbarzadehI. Preparation and optimization of ciprofloxacin encapsulated niosomes: A new approach for enhanced antibacterial activity, biofilm inhibition and reduced antibiotic resistance in ciprofloxacin-resistant methicillin-resistance Staphylococcus aureus.Bioorg. Chem.202010310423110.1016/j.bioorg.2020.104231 32882442
    [Google Scholar]
  78. RezaeizadehM. EskanlouA. SoltaniH. PardakhtyA. MoshafiM.H. Hosseini-NejadF. Preparation of stable clindamycin phosphate niosomes by combination of sorbitan esters and their ethoxylaed derivatives.J. Pharm. Innov.20221741189119810.1007/s12247‑021‑09594‑x
    [Google Scholar]
  79. RajpootK. Solid lipid nanoparticles: A promising nanomaterial in drug delivery.Curr. Pharm. Des.201925373943395910.2174/1381612825666190903155321 31481000
    [Google Scholar]
  80. LiuM. WenJ. SharmaM. Solid lipid nanoparticles for topical drug delivery: Mechanisms, dosage form perspectives, and translational status.Curr. Pharm. Des.202026273203321710.2174/1381612826666200526145706 32452322
    [Google Scholar]
  81. MuH. HolmR. Solid lipid nanocarriers in drug delivery: Characterization and design.Expert Opin. Drug Deliv.201815877178510.1080/17425247.2018.1504018 30064267
    [Google Scholar]
  82. Scioli MontotoS. MuracaG. RuizM.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects.Front. Mol. Biosci.2020758799710.3389/fmolb.2020.587997 33195435
    [Google Scholar]
  83. SoutoE.B. BaldimI. OliveiraW.P. SLN and NLC for topical, dermal, and transdermal drug delivery.Expert Opin. Drug Deliv.202017335737710.1080/17425247.2020.1727883 32064958
    [Google Scholar]
  84. Fonseca-SantosB. SilvaP.B. RigonR.B. SatoM.R. ChorilliM. Formulating SLN and NLC as innovative drug delivery systems for non-invasive routes of drug administration.Curr. Med. Chem.202027223623365610.2174/0929867326666190624155938 31232233
    [Google Scholar]
  85. PandeyS. ShaikhF. GuptaA. TripathiP. YadavJ.S. A recent update: Solid lipid nanoparticles for effective drug delivery.Adv. Pharm. Bull.20221211733 35517874
    [Google Scholar]
  86. NasrollahzadehM. GanjiF. TaghizadehS.M. Vasheghani-FarahaniE. Mohiti-AsliM. Drug in adhesive transdermal patch containing antibiotic-loaded solid lipid nanoparticles.J. Biosci. Bioeng.2022134547147610.1016/j.jbiosc.2022.08.003 36151004
    [Google Scholar]
  87. MhangoE.K.G. KalhapureR.S. JadhavM. Preparation and optimization of meropenem-loaded solid lipid nanoparticles: In vitro evaluation and molecular modeling.AAPS PharmSciTech20171862011202510.1208/s12249‑016‑0675‑z 27933586
    [Google Scholar]
  88. Abou El-ezzD. Abdel-RahmanL.H. Al-FarhanB.S. Enhanced in vivo wound healing efficacy of a novel hydrogel loaded with Copper (II) Schiff Base Quinoline Complex (CuSQ) solid lipid nanoparticles.Pharmaceuticals202215897810.3390/ph15080978 36015126
    [Google Scholar]
  89. SeverinoP. ChaudM.V. ShimojoA. Sodium alginate-cross-linked polymyxin B sulphate-loaded solid lipid nanoparticles: Antibiotic resistance tests and HaCat and NIH/3T3 cell viability studies.Colloids Surf. B Biointerfaces201512919119710.1016/j.colsurfb.2015.03.049 25863712
    [Google Scholar]
  90. IbrahimU.H. DevnarainN. OmoloC.A. MocktarC. GovenderT. Biomimetic pH/lipase dual responsive vitamin-based solid lipid nanoparticles for on-demand delivery of vancomycin.Int. J. Pharm.202160712096010.1016/j.ijpharm.2021.120960 34333022
    [Google Scholar]
  91. WalduckA. SangwanP. VoQ.A. Treatment of Staphylococcus aureus skin infection in vivo using rifampicin loaded lipid nanoparticles.RSC Advances20201055336083361910.1039/D0RA06120D 35515067
    [Google Scholar]
  92. ShazlyG.A. Ciprofloxacin controlled-solid lipid nanoparticles: Characterization, in vitro release, and antibacterial activity assessment.BioMed Res. Int.201720172120734 28194408
    [Google Scholar]
  93. WaghuleT. RapalliV.K. GorantlaS. Nanostructured lipid carriers as potential drug delivery systems for skin disorders.Curr. Pharm. Des.202026364569457910.2174/1381612826666200614175236 32534562
    [Google Scholar]
  94. Czajkowska-KośnikA. SzekalskaM. WinnickaK. Nanostructured lipid carriers: A potential use for skin drug delivery systems.Pharmacol. Rep.201971115616610.1016/j.pharep.2018.10.008 30550996
    [Google Scholar]
  95. HaiderM. AbdinS.M. KamalL. OriveG. Nanostructured lipid carriers for delivery of chemotherapeutics: A review.Pharmaceutics202012328810.3390/pharmaceutics12030288 32210127
    [Google Scholar]
  96. DobrevaM. StefanovS. AndonovaV. Natural lipids as structural components of solid lipid nanoparticles and nanostructured lipid carriers for topical delivery.Curr. Pharm. Des.202026364524453510.2174/1381612826666200514221649 32410552
    [Google Scholar]
  97. KalaveS. ChatterjeeB. ShahP. MisraA. Transdermal delivery of macromolecules using nano lipid carriers.Curr. Pharm. Des.202127424330434010.2174/1381612827666210820095330 34414868
    [Google Scholar]
  98. AkbariJ. SaeediM. AhmadiF. Solid lipid nanoparticles and nanostructured lipid carriers: A review of the methods of manufacture and routes of administration.Pharm. Dev. Technol.202227552554410.1080/10837450.2022.2084554 35635506
    [Google Scholar]
  99. AlalaiweA. WangP.W. LuP.L. ChenY.P. FangJ.Y. YangS.C. Synergistic anti-MRSA activity of cationic nanostructured lipid carriers in combination with oxacillin for cutaneous application.Front. Microbiol.20189149310.3389/fmicb.2018.01493 30034381
    [Google Scholar]
  100. de BarrosD.P.C. ReedP. AlvesM. SantosR. OlivaA. Biocompatibility and antimicrobial activity of nanostructured lipid carriers for topical applications are affected by type of oils used in their composition.Pharmaceutics20211311195010.3390/pharmaceutics13111950 34834365
    [Google Scholar]
  101. Costa-FernandezS. MatosJ.K.R. ScheunemannG.S. Nanostructured lipid carriers containing chitosan or sodium alginate for co-encapsulation of antioxidants and an antimicrobial agent for potential application in wound healing.Int. J. Biol. Macromol.202118366868010.1016/j.ijbiomac.2021.04.168 33930450
    [Google Scholar]
  102. LewiesA. WentzelJ.F. JordaanA. BezuidenhoutC. Du PlessisL.H. Interactions of the antimicrobial peptide nisin Z with conventional antibiotics and the use of nanostructured lipid carriers to enhance antimicrobial activity.Int. J. Pharm.20175261-224425310.1016/j.ijpharm.2017.04.071 28461263
    [Google Scholar]
  103. ShettigarP. KolandM. SindhoorS.M. PrabhuA. Formulation and evaluation of clarithromycin loaded nanostructured lipid carriers for the treatment of acne.J. Pharm. Res. Int.202133263810.9734/jpri/2021/v33i40B32260
    [Google Scholar]
  104. ElmowafyM. ShalabyK. AliH.M. Impact of nanostructured lipid carriers on dapsone delivery to the skin: In vitro and in vivo studies.Int. J. Pharm.201957211878110.1016/j.ijpharm.2019.118781 31715347
    [Google Scholar]
  105. ChhowalaI.S. JaniD.M. DharamsiA.B. ShindheG.A. PatelR.A. Formulation and evaluation of nano particulate drug delivery system for an effective treatment of acne.Int J Pharm Res Tech201881426
    [Google Scholar]
  106. PandeyP. GulatiN. MakhijaM. PurohitD. DurejaH. Nanoemulsion: A novel drug delivery approach for enhancement of bioavailability.Recent Pat. Nanotechnol.202014427629310.2174/1872210514666200604145755 32496999
    [Google Scholar]
  107. RaiV.K. MishraN. YadavK.S. YadavN.P. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications.J. Control. Release201827020322510.1016/j.jconrel.2017.11.049 29199062
    [Google Scholar]
  108. ShakeelF. ShafiqS. HaqN. AlanaziF.K. AlsarraI.A. Nanoemulsions as potential vehicles for transdermal and dermal delivery of hydrophobic compounds: An overview.Expert Opin. Drug Deliv.20129895397410.1517/17425247.2012.696605 22703228
    [Google Scholar]
  109. RoyA. NishchayaK. RaiV.K. Nanoemulsion-based dosage forms for the transdermal drug delivery applications: A review of recent advances.Expert Opin. Drug Deliv.202219330331910.1080/17425247.2022.2045944 35196938
    [Google Scholar]
  110. SoutoE.B. CanoA. Martins-GomesC. CoutinhoT.E. ZielińskaA. SilvaA.M. Microemulsions and nanoemulsions in skin drug delivery.Bioengineering20229415810.3390/bioengineering9040158 35447718
    [Google Scholar]
  111. ElsewedyH.S. ShehataT.M. SolimanW.E. Tea tree oil nanoemulsion-based hydrogel vehicle for enhancing topical delivery of neomycin.Life2022127101110.3390/life12071011 35888099
    [Google Scholar]
  112. AbdellatifM.M. ElakkadY.E. ElwakeelA.A. AllamR.M. MousaM.R. Formulation and characterization of propolis and tea tree oil nanoemulsion loaded with clindamycin hydrochloride for wound healing: In-vitro and in-vivo wound healing assessment.Saudi Pharm. J.202129111238124910.1016/j.jsps.2021.10.004 34819785
    [Google Scholar]
  113. ValizadehA. ShirzadM. PourmandM.R. FarahmandfarM. SereshtiH. AmaniA. Levofloxacin nanoemulsion gel has a powerful healing effect on infected wound in streptozotocin-induced diabetic rats.Drug Deliv. Transl. Res.202111129230410.1007/s13346‑020‑00794‑5 32529392
    [Google Scholar]
  114. OliveiraC. CoelhoC. TeixeiraJ.A. Ferreira-SantosP. BotelhoC.M. Nanocarriers as active ingredients enhancers in the cosmetic industry—The European and North America regulation challenges.Molecules2022275166910.3390/molecules27051669 35268769
    [Google Scholar]
  115. KurmiB.D. TekchandaniP. PaliwalR. PaliwalS.R. Transdermal drug delivery: Opportunities and challenges for controlled delivery of therapeutic agents using nanocarriers.Curr. Drug Metab.201718548149510.2174/1389200218666170222150555 28228076
    [Google Scholar]
  116. KumarA. BehlT. ChadhaS. Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects.Int. J. Biol. Macromol.20201491262127410.1016/j.ijbiomac.2020.02.048 32044364
    [Google Scholar]
  117. TewabeA. AbateA. TamrieM. SeyfuA. Abdela SirajE. Targeted drug delivery—from magic bullet to nanomedicine: Principles, challenges, and future perspectives.J. Multidiscip. Healthc.2021141711172410.2147/JMDH.S313968 34267523
    [Google Scholar]
  118. KolimiP. NaralaS. YoussefA.A.A. NyavanandiD. DudhipalaN. A systemic review on development of mesoporous nanoparticles as a vehicle for transdermal drug delivery.Nanotheranostics202371708910.7150/ntno.77395 36593800
    [Google Scholar]
  119. YounisM.A. TawfeekH.M. AbdellatifA.A.H. Abdel-AleemJ.A. HarashimaH. Clinical translation of nanomedicines: Challenges, opportunities, and keys.Adv. Drug Deliv. Rev.202218111408310.1016/j.addr.2021.114083 34929251
    [Google Scholar]
  120. BakerJ.R. Nanoemulsion therapeutic compositions and methods of using the same.US Patent US20160158179A12016
    [Google Scholar]
  121. ReghalA. Lipid nanoparticles comprising antibiotics and their uses in therapy.France Patent FR3017294A12015
    [Google Scholar]
  122. KeckC.D. Compositions containing lipid micro- or nanoparticles for the enhancement of the dermal action of solid particles.European Patent EP2218447B12017
    [Google Scholar]
  123. CalK Wosicka-FrackowiakH Solid lipid nanoparticles of roxithromycin for hair loss or acne.Spain Patent ES2712979T32019
    [Google Scholar]
  124. SachdevaM.S. PatlollaR. Nanoparticle formulations for skin delivery.US Patent US8715736B22014
    [Google Scholar]
  125. BakerJ.R.Jr Antimicrobial nanoemulsion compositions and methods.United States patent US87717312014
    [Google Scholar]
  126. ShenoyD. Nanostructured compositions having antibacterial, antifungal, anti-yeast, and/or anti-viral properties.Canada Patent CA2648360A12007
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105250901231201024930
Loading
/content/journals/nanotec/10.2174/0118722105250901231201024930
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test