Skip to content
2000
Volume 19, Issue 3
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Colloidal quantum well light-emitting diodes (CQW-LEDs) show great potential for applications in displays and lighting due to their advantages, such as high color purity, spectral tunability and compatibility with flexible electronics, as demonstrated in relevant papers and patents. So far, attention has been mainly devoted to pursuing device efficiencies rather than achieving device stability, leading to the fact that the lifetime of CQW-LEDs is far from the demand for practical applications. In this perspective, various approaches to enhance the stability of CQW-LEDs have been discussed, including the synthesis of stable CQW materials, the selection of stable transport layers, the improvement of charge balance, and the introduction of advanced encapsulation techniques.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105280923231215063047
2024-01-10
2025-12-14
Loading full text...

Full text loading...

/deliver/fulltext/nanotec/19/3/NANOTEC-19-3-01.html?itemId=/content/journals/nanotec/10.2174/0118722105280923231215063047&mimeType=html&fmt=ahah

References

  1. KhanA.H. BertrandG.H.V. TeitelboimA. CdSe/CdS/CdTe core/barrier/crown nanoplatelets: Synthesis, optoelectronic properties, and multiphoton fluorescence upconversion.ACS Nano20201444206421510.1021/acsnano.9b09147 32275814
    [Google Scholar]
  2. AntanovichA. YangL. ErwinS.C. CdSex S 1– x alloyed nanoplatelets with continuously tunable blue-green emission.Chem. Mater.20223423103611037210.1021/acs.chemmater.2c01920
    [Google Scholar]
  3. GrimJ.Q. ChristodoulouS. Di StasioF. Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells.Nat. Nanotechnol.201491189189510.1038/nnano.2014.213 25282045
    [Google Scholar]
  4. ZhangZ. SunH. Manipulation of the optical properties of colloidal 2D CdSe nanoplatelets.Adv. Photon. Res.202128210004510.1002/adpr.202100045
    [Google Scholar]
  5. YuJ. SharmaM. WangY. Modulating emission properties in a host–guest colloidal quantum well superlattice.Adv. Opt. Mater.2022104210175610.1002/adom.202101756
    [Google Scholar]
  6. IthurriaS. DubertretB. Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level.J. Am. Chem. Soc.200813049165041650510.1021/ja807724e 19554725
    [Google Scholar]
  7. ChristodoulouS. ClimenteJ.I. PlanellesJ. Chloride-induced thickness control in CdSe nanoplatelets.Nano Lett.201818106248625410.1021/acs.nanolett.8b02361 30178676
    [Google Scholar]
  8. SalzmannB.B.V. VliemJ.F. MaaskantD.N. From CdSe nanoplatelets to quantum rings by thermochemical edge reconfiguration.Chem. Mater.202133176853685910.1021/acs.chemmater.1c01618 34552306
    [Google Scholar]
  9. MitrofanovA. PrudnikauA. Di StasioF. Near-infrared-emitting Cdx Hg 1– x Se-based core/shell nanoplatelets.Chem. Mater.202133197693770210.1021/acs.chemmater.1c01682
    [Google Scholar]
  10. YuJ. ChenR. Optical properties and applications of two-dimensional CdSe nanoplatelets.InfoMat20202590592710.1002/inf2.12106
    [Google Scholar]
  11. ChenZ. NadalB. MahlerB. AubinH. DubertretB. Quasi-2D colloidal semiconductor nanoplatelets for narrow electroluminescence.Adv. Funct. Mater.201424329530210.1002/adfm.201301711
    [Google Scholar]
  12. LiuB. SharmaM. YuJ. Light-emitting diodes with cu-doped colloidal quantum wells: From ultrapure green, tunable dual-emission to white light.Small20191538190198310.1002/smll.201901983 31379086
    [Google Scholar]
  13. LiuB. AltintasY. WangL. Record high external quantum efficiency of 19.2% achieved in light-emitting diodes of colloidal quantum wells enabled by hot-injection shell growth.Adv. Mater.2020328190582410.1002/adma.201905824 31867764
    [Google Scholar]
  14. BaiP. HuA. DengY. CdSe/CdSeS nanoplatelet light-emitting diodes with ultrapure green color and high external quantum efficiency.J. Phys. Chem. Lett.202213399051905710.1021/acs.jpclett.2c02633 36153736
    [Google Scholar]
  15. ShabaniF. Dehghanpour BarujH. YurdakulI. Deep-red-emitting colloidal quantum well light-emitting diodes enabled through a complex design of core/crown/double shell heterostructure.Small2022188210611510.1002/smll.202106115 34894078
    [Google Scholar]
  16. İzmirM. SharmaA. ShendreS. Blue-emitting CdSe nanoplatelets enabled by sulfur-alloyed heterostructures for light-emitting diodes with low turn-on voltage.ACS Appl. Nano Mater.2022511367137610.1021/acsanm.1c03939
    [Google Scholar]
  17. KelestemurY. ShynkarenkoY. AnniM. YakuninS. De GiorgiM.L. KovalenkoM.V. Colloidal CdSe quantum wells with graded shell composition for low-threshold amplified spontaneous emission and highly efficient electroluminescence.ACS Nano20191312138991390910.1021/acsnano.9b05313 31769648
    [Google Scholar]
  18. SorrentinoR. WorselyR. LagonegroP. Hybrid MoS2/PEDOT:PSS transporting layers for interface engineering of nanoplatelet-based light-emitting diodes.Dalton Trans.202150269208921410.1039/D1DT01066B 34125122
    [Google Scholar]
  19. QuJ. RastogiP. GrébovalC. Nanoplatelet-based light-emitting diode and its use in all-nanocrystal lifi-like communication.ACS Appl. Mater. Interfaces20201219220582206510.1021/acsami.0c05264 32292032
    [Google Scholar]
  20. PuC. DaiX. ShuY. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots.Nat. Commun.202011193710.1038/s41467‑020‑14756‑5 32071297
    [Google Scholar]
  21. RastogiP. PalazonF. PratoM. Di StasioF. KrahneR. Enhancing the performance of CdSe/CdS dot-in-rod light-emitting diodes via surface ligand modification.ACS Appl. Mater. Interfaces20181065665567210.1021/acsami.7b18780 29355299
    [Google Scholar]
  22. ZhangY. ZhangH. MaM. GuoX. WangH. The influence of ligands on the preparation and optical properties of water-soluble CdTe quantum dots.Appl. Surf. Sci.200925594747475310.1016/j.apsusc.2008.09.009
    [Google Scholar]
  23. DengZ. CaoL. TangF. ZouB. A new route to zinc-blende CdSe nanocrystals: Mechanism and synthesis.J. Phys. Chem. B200510935166711667510.1021/jp052484x 16853121
    [Google Scholar]
  24. QuL. PengX. Control of photoluminescence properties of CdSe nanocrystals in growth.J. Am. Chem. Soc.200212492049205510.1021/ja017002j 11866620
    [Google Scholar]
  25. ZhangF. WangS. WangL. Super color purity green quantum dot light-emitting diodes fabricated by using CdSe/CdS nanoplatelets.Nanoscale2016824121821218810.1039/C6NR02922A 27251020
    [Google Scholar]
  26. AltintasY. QuliyevaU. GungorK. Highly stable, near-unity efficiency atomically flat semiconductor nanocrystals of CdSe/ZnS hetero-nanoplatelets enabled by zns-shell hot-injection growth.Small2019158180485410.1002/smll.201804854 30701687
    [Google Scholar]
  27. RossinelliA.A. RiedingerA. Marqués-GallegoP. KnüselP.N. AntolinezF.V. NorrisD.J. High-temperature growth of thick-shell CdSe/CdS core/shell nanoplatelets.Chem. Commun. 201753719938994110.1039/C7CC04503D 28829454
    [Google Scholar]
  28. ShendreS. DelikanliS. LiM. Ultrahigh-efficiency aqueous flat nanocrystals of CdSe/CdS@Cd1x ZnxS colloidal core/crown@alloyed-shell quantum wells.Nanoscale201911130131010.1039/C8NR07879C
    [Google Scholar]
  29. PolovitsynA. DangZ. MovillaJ.L. Synthesis of Air-Stable CdSe/ZnS core–shell nanoplatelets with tunable emission wavelength.Chem. Mater.201729135671568010.1021/acs.chemmater.7b01513
    [Google Scholar]
  30. DufourM. QuJ. GrebovalC. MéthivierC. LhuillierE. IthurriaS. Halide ligands to release strain in cadmium chalcogenide nanoplatelets and achieve high brightness.ACS Nano20191355326533410.1021/acsnano.8b09794 30974938
    [Google Scholar]
  31. XuQ. LiX. LinQ. ShenH. WangH. DuZ. Improved efficiency of all-inorganic quantum-dot light-emitting diodes via interface engineering.Front Chem.2020826510.3389/fchem.2020.00265 32391315
    [Google Scholar]
  32. WeiS. MiaoJ. ShiQ. ShaoS. ZhangL. Stable and efficient QLEDs with crystallographic TiO2 as the electron transportation layer and improved carrier transportation by chlorination.J. Mater. Sci. Mater. Electron.20213289795980310.1007/s10854‑021‑05639‑6
    [Google Scholar]
  33. YoonS.H. GwakD. KimH.H. Insertion of an inorganic barrier layer as a method of improving the performance of quantum dot light-emitting diodes.ACS Photonics20196374374810.1021/acsphotonics.8b01672
    [Google Scholar]
  34. LeeY. KimH.M. KimJ. JangJ. Remarkable lifetime improvement of quantum-dot light emitting diodes by incorporating rubidium carbonate in metal-oxide electron transport layers.J. Mater. Chem. C Mater. Opt. Electron. Devices2019732100821009110.1039/C9TC02683E
    [Google Scholar]
  35. ZengJ. LiY. FanX. Significant breakthroughs in interface engineering for high-performance colloidal QLEDs: A mini review.J. Phys. D Appl. Phys.2023563434300110.1088/1361‑6463/acd0ba
    [Google Scholar]
  36. ZhangJ. SunY. YeS. SongJ. QuJ. Heterostructures in two-dimensional cdse nanoplatelets: Synthesis, optical properties, and applications.Chem. Mater.202032229490950710.1021/acs.chemmater.0c02593
    [Google Scholar]
  37. YinJ. YangH. Gutiérrez-ArzaluzL. Luminescence and stability enhancement of inorganic perovskite nanocrystals via selective surface ligand binding.ACS Nano20211511179981800510.1021/acsnano.1c06480 34723469
    [Google Scholar]
  38. LiuJ. YangZ. YeB. A review of stability-enhanced luminescent materials: Fabrication and optoelectronic applications.J. Mater. Chem. C Mater. Opt. Electron. Devices20197174934495510.1039/C8TC06292G
    [Google Scholar]
  39. LiuB. DelikanliS. GaoY. DedeD. GungorK. DemirH.V. Nanocrystal light-emitting diodes based on type II nanoplatelets.Nano Energy20184711512210.1016/j.nanoen.2018.02.004
    [Google Scholar]
  40. DengY. PengF. LuY. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage.Nat. Photonics202216750551110.1038/s41566‑022‑00999‑9
    [Google Scholar]
  41. YuR. YinF. ZhouD. ZhuH. JiW. Efficient quantum-dot light-emitting diodes enabled via a charge manipulating structure.J. Phys. Chem. Lett.202314194548455310.1021/acs.jpclett.3c00853 37159440
    [Google Scholar]
  42. JiW. TianY. ZengQ. Efficient quantum dot light-emitting diodes by controlling the carrier accumulation and exciton formation.ACS Appl. Mater. Interfaces2014616140011400710.1021/am5033567 25026558
    [Google Scholar]
  43. ChoS.Y. OhN. NamS. JiangY. ShimM. Enhanced device lifetime of double-heterojunction nanorod light-emitting diodes.Nanoscale20179186103611010.1039/C7NR01404J 28447691
    [Google Scholar]
  44. PanJ. ChenJ. HuangQ. WangL. LeiW. A highly efficient quantum dot light emitting diode via improving the carrier balance by modulating the hole transport.RSC Advances2017769433664337210.1039/C7RA08302E
    [Google Scholar]
  45. ChengC. LiuA. BaG. High-efficiency quantum-dot light-emitting diodes enabled by boosting the hole injection.J. Mater. Chem. C Mater. Opt. Electron. Devices20221040152001520610.1039/D2TC03138H
    [Google Scholar]
  46. CaoW. XiangC. YangY. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring.Nat. Commun.201891260810.1038/s41467‑018‑04986‑z 29973590
    [Google Scholar]
  47. ChiuP.C. YangS.H. Improvement in hole transporting ability and device performance of quantum dot light emitting diodes.Nanoscale Adv.20202140140710.1039/C9NA00618D 36133973
    [Google Scholar]
  48. YangJ. LeeJ. LeeJ. ParkT. AhnS.J. YiW. Mobility enhancement of hole transporting layer in quantum-dot light-emitting diodes incorporating single-walled carbon nanotubes.Diamond Related Materials20177315416010.1016/j.diamond.2016.09.005
    [Google Scholar]
  49. YuanQ. WangT. YuP. ZhangH. ZhangH. JiW. A review on the electroluminescence properties of quantum-dot light-emitting diodes.Org. Electron.20219010608610.1016/j.orgel.2021.106086
    [Google Scholar]
  50. PanJ. WeiC. WangL. Boosting the efficiency of inverted quantum dot light-emitting diodes by balancing charge densities and suppressing exciton quenching through band alignment.Nanoscale201810259260210.1039/C7NR06248F 29234769
    [Google Scholar]
  51. LeeY. JeongB.G. RohH. Enhanced lifetime and efficiency of red quantum dot light-emitting diodes with Y-Doped ZnO Sol–Gel electron-transport layers by reducing excess electron injection.Adv. Quantum Technol.201811170000610.1002/qute.201700006
    [Google Scholar]
  52. ChungD.S. LyuQ. CotellaG.F. ChunP. AzizH. Suppressing degradation in QLEDs via doping ZnO electron transport layer by halides.Adv. Opt. Mater.20231120230068610.1002/adom.202300686
    [Google Scholar]
  53. GiovanellaU. PasiniM. LorenzonM. Efficient solution-processed nanoplatelet-based light-emitting diodes with high operational stability in air.Nano Lett.20181863441344810.1021/acs.nanolett.8b00456 29722262
    [Google Scholar]
  54. HuS. ShabaniF. LiuB. High-performance deep red colloidal quantum well light-emitting diodes enabled by the understanding of charge dynamics.ACS Nano2022167108401085110.1021/acsnano.2c02967 35816171
    [Google Scholar]
  55. ChungD.S. Davidson-HallT. CotellaG. LyuQ. ChunP. AzizH. Significant lifetime enhancement in qleds by reducing interfacial charge accumulation via fluorine incorporation in the ZnO electron transport layer.Nano-Micro Lett.202214121210.1007/s40820‑022‑00970‑x 36333462
    [Google Scholar]
  56. LiangY. ShenC. ChenJ. Influence of the charge transfer on the lifetime of quantum-dot light-emitting diodes. 2019 16th China International Forum on Solid State Lighting & 2019 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS).2019206209
    [Google Scholar]
  57. ChenZ. SuQ. QinZ. ChenS. Effect and mechanism of encapsulation on aging characteristics of quantum-dot light-emitting diodes.Nano Res.202114132032710.1007/s12274‑020‑3091‑3
    [Google Scholar]
  58. ShenJ. FengY. Recent advances in encapsulation materials for light emitting diodes: A review.Silicon20231552163217210.1007/s12633‑022‑02171‑y
    [Google Scholar]
  59. ShinD.W. SuhY.H. LeeS. Waterproof flexible InP@ZnSeS quantum dot light-emitting diode.Adv. Opt. Mater.202086190136210.1002/adom.201901362
    [Google Scholar]
  60. GuoY GaoF HuangP Light-emitting diodes based on two-dimensional nanoplatelets.Energy mater adv202220222022/985794310.34133/2022/9857943
    [Google Scholar]
  61. XiaoP. YuY. ChengJ. Advances in perovskite light-emitting diodes possessing improved lifetime.Nanomaterials202111110310.3390/nano11010103 33406749
    [Google Scholar]
  62. AngioniE. Combined charge transporting and emitting layer with improved morphology and balanced charge transporting properties.US202226300A12022
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105280923231215063047
Loading
/content/journals/nanotec/10.2174/0118722105280923231215063047
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test