Skip to content
2000
Volume 15, Issue 3
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

Introduction

Inter- and intramolecular hydroamination reactions serve as a prime example of sustainable organic chemistry. These reactions are catalytic, atom-economical (100% yield), and environmentally friendly, representing a process of fundamental simplicity where an amine is added to an alkyne substrate as well as alkenes or aromatic hydrocarbons.

Methods

To synthesize enamines with higher yield, which are important intermediates in many natural and synthetic compounds, copper supported on MoO/SiO mixed oxides was used as a highly effective catalyst for the direct hydroamination of phenylacetylene and α-naphthylamine. The catalysts were thoroughly characterized using techniques such as FT-IR, XRD, Raman, XPS, and measurements of acidic strength.

Results

Spectral data from FT-IR and Raman confirmed the successful incorporation of copper into the MoO/SiO framework. The catalytic system exhibited significant enhancements in both conversion efficiency and selectivity for the desired products, attributed to the unique properties of the Cu- MoO/SiO mixed oxide. This catalyst could be reused up to three cycles without any significant decline in activity, highlighting its environmental friendliness.

Conclusion

The method offers advantages over conventional approaches, including simplicity, reduced reaction time, complete atom economy, mild conditions, broad substrate compatibility, recyclability, and an uncomplicated product isolation process.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812369860250509115517
2025-05-13
2025-10-10
Loading full text...

Full text loading...

References

  1. MüllerT.E. BellerM. Metal-initiated amination of alkenes and alkynes.Chem. Rev.199898267570410.1021/cr960433d 11848912
    [Google Scholar]
  2. PashaN. SeshuBabu N.; Venkateswara Rao, K.T.; Sai Prasad, P.S.; Lingaiah, N. A highly regioselective Cu-exchanged tungstophosphoric acid catalyst for hydroarylation and hydroamination of alkynes.Tetrahedron Lett.200950223924210.1016/j.tetlet.2008.10.131
    [Google Scholar]
  3. TanabeK. HoelderichW.F. Acid–base catalysis with metal oxides.Appl. Catal. A Gen.199918139943410.1016/S0926‑860X(98)00397‑4
    [Google Scholar]
  4. MillerD.C. GanleyJ.M. MusacchioA.J. SherwoodT.C. EwingW.R. KnowlesR.R. Anti-markovnikov hydroamination of unactivated alkenes with primary alkyl amines.J. Am. Chem. Soc.201914142165901659410.1021/jacs.9b08746 31603324
    [Google Scholar]
  5. FosterD. MoggachS.A. DortaR. Accessing phase-transfer catalysts and a phosphoramidite ligand via the asymmetric intramolecular hydroamination reaction.Organometallics202342131513152410.1021/acs.organomet.3c00124
    [Google Scholar]
  6. TengH.L. LuoY. WangB. ZhangL. NishiuraM. HouZ. Synthesis of chiral aminocyclopropanes by rare‐earth‐metal‐catalyzed cyclopropene hydroamination.Angew. Chem. Int. Ed.20165549154061541010.1002/anie.201609853 27862858
    [Google Scholar]
  7. BrunnerTS HartensteinL RoeskyPW Synthesis of enantiomeric pure zirconium and hafnium benzamidinate complexes.J. Organomet. Chem.2013730323610.1016/j.jorganchem.2012.08.026
    [Google Scholar]
  8. YonsonN. YimJ.C.H. SchaferL.L. Alkene hydroamination with a chiral zirconium catalyst. Connecting ligand design, precatalyst structure and reactivity trends.Inorg. Chim. Acta2014422142010.1016/j.ica.2014.07.073
    [Google Scholar]
  9. MikiY. HiranoK. SatohT. MiuraM. Copper-catalyzed intermolecular regioselective hydroamination of styrenes with polymethylhydrosiloxane and hydroxylamines.Angew. Chem. Int. Ed.20135241108301083410.1002/anie.201304365 24038866
    [Google Scholar]
  10. PirnotM.T. WangY.M. BuchwaldS.L. Copper hydride catalyzed hydroamination of alkenes and alkynes.Angew. Chem. Int. Ed.2016551485710.1002/anie.201507594 26661678
    [Google Scholar]
  11. SiposG. OuA. SkeltonB.W. FaliveneL. CavalloL. DortaR. Unusual NHC–Iridium(I) Complexes and Their Use in the Intramolecular Hydroamination of Unactivated Aminoalkenes.Chemistry201622206939694610.1002/chem.201600378 27059164
    [Google Scholar]
  12. ShigehisaH. KosekiN. ShimizuN. FujisawaM. NiitsuM. HiroyaK. Catalytic hydroamination of unactivated olefins using a Co catalyst for complex molecule synthesis.J. Am. Chem. Soc.201413639135341353710.1021/ja507295u 25236858
    [Google Scholar]
  13. HorniakovaJ. KomuraK. OsakiH. KubotaY. SugiY. The Hydroamination of methyl acrylates with amines over zeolites.Catal. Lett.20051023-419119610.1007/s10562‑005‑5854‑6
    [Google Scholar]
  14. AmruthamV. RadikovichA.M. MamedaN. GajulaK.S. Grigor’evaN.G. IvanovichK.B. AkulaV. NamaN. A heterogeneous catalytic and solvent-free approach to 1,2-dihydroquinoline derivatives from aromatic amines and alkynes by tandem hydroarylation-hydroamination.Catal. Commun.202013510588810.1016/j.catcom.2019.105888
    [Google Scholar]
  15. ShanbhagG.V. KumbarS.M. JosephT. HalligudiS.B. Heterogeneous intermolecular hydroamination of terminal alkynes with aromatic amines.Tetrahedron Lett.200647214114310.1016/j.tetlet.2005.11.001
    [Google Scholar]
  16. ShanbhagG.V. HalligudiS.B. Intermolecular hydroamination of alkynes catalyzed by zinc-exchanged montmorillonite clay.J. Mol. Catal. Chem.20042221-222322810.1016/j.molcata.2004.08.010
    [Google Scholar]
  17. TaoR. YinY. DuanY. SunY. SunY. ChengF. PanJ. LuC. WangY. Fe(OTf) 3 -catalyzed tandem Meyer-Schuster rearrangement/intermolecular hydroamination of 3-aryl propargyl alcohols for the synthesis of acyclic β-Aminoketones.Tetrahedron201773131762176810.1016/j.tet.2017.02.030
    [Google Scholar]
  18. RisiC. CiniE. PetricciE. SaponaroS. TaddeiM. In water markovnikov hydration and one‐pot reductive hydroamination of terminal alkynes under ruthenium nanoparticle catalysis.Eur. J. Inorg. Chem.2020202011-121000100310.1002/ejic.201901235
    [Google Scholar]
  19. ZelenayB. MuntonP. TianX. Díez-GonzálezS. A commercially available and user‐friendly catalyst for hydroamination reactions under technical conditions.Eur. J. Org. Chem.20192019294725473010.1002/ejoc.201900701
    [Google Scholar]
  20. PatelM. SaunthwalR.K. VermaA.K. Base-mediated hydroamination of alkynes.Acc. Chem. Res.201750224025410.1021/acs.accounts.6b00449 28128923
    [Google Scholar]
  21. DagadeS.P. DeshmukhJ.M. Recyclable nanocrystalline copper based on MoO3/SiO2 as an efficient catalyst for acylation of amines.Bull. Chem. React. Eng. Catal.20191419310410.9767/bcrec.14.1.2111.93‑104
    [Google Scholar]
  22. UmbarkarS.B. BiradarA.V. MathewS.M. ShelkeS.B. MalsheK.M. PatilP.T. DagdeS.P. NiphadkarS.P. DongareM.K. Vapor phase nitration of benzene using mesoporous MoO3/SiO2 solid acid catalyst.Green Chem.20068548849310.1039/b600094k
    [Google Scholar]
  23. El-SharkawyE.A. Structural characterization and catalytic activity of molybdenum oxide supported zirconia catalysts.Microporous Mesoporous Mater.20071021-312813710.1016/j.micromeso.2006.12.037
    [Google Scholar]
  24. RaoK.N. ReddyK.M. LingaiahN. SuryanarayanaI. PrasadP.S.S. Structure and reactivity of zirconium oxide-supported ammonium salt of 12-molybdophosphoric acid catalysts.Appl. Catal. A Gen.2006300213914610.1016/j.apcata.2005.10.051
    [Google Scholar]
  25. CidR. PecchiG. Potentiometric method for determining the number and relative strength of acid sites in colored catalysts.Appl. Catal.198514152110.1016/S0166‑9834(00)84340‑7
    [Google Scholar]
  26. KotbagiT.V. BiradarA.V. UmbarkarS.B. DongareM.K. Isolation, characterization and identification of catalytic active species in the MoO3/SiO2 catalyst during solid acid catalyzed reactions.ChemCatChem2013561531153710.1002/cctc.201200662
    [Google Scholar]
  27. BiesingerM.C. Advanced analysis of copper X‐ray photoelectron spectra.Surf. Interface Anal.201749131325133410.1002/sia.6239
    [Google Scholar]
  28. XuJ. ZhangY. XuX. FangX. XiR. LiuY. ZhengR. WangX. Dual-functional chiral Cu-catalyst-induced photoredox asymmetric cyanofluoro alkylation of alkenes.ACS Catal.201994030404510.1021/acscatal.9b00022
    [Google Scholar]
  29. UmbarkarS.B. KotbagiT.V. BiradarA.V. PasrichaR. ChanaleJ. DongareM.K. MamedeA.S. LancelotC. PayenE. Acetalization of glycerol using mesoporous MoO3/SiO2 solid acid catalyst.J. Mol. Catal. Chem.20093101-215015810.1016/j.molcata.2009.06.010
    [Google Scholar]
  30. StrohmeierB. LeydenD.E. FieldR.S. HerculesD.M. Surface spectroscopic characterization of Cu/Al2O3 catalysts.J. Catal.198594251453010.1016/0021‑9517(85)90216‑7
    [Google Scholar]
  31. ShanbhagG. JosephT. HalligudiS. Copper(II) ion exchanged AlSBA-15: A versatile catalyst for intermolecular hydroamination of terminal alkynes with aromatic amines.J. Catal.2007250227428210.1016/j.jcat.2007.06.007
    [Google Scholar]
  32. PandhareS.L. KotbagiT.V. DongareM.K. UmbarkarS.B. Copper exchanged SiO2/Al2O3 catalyst prepared by sol-gel method for intermolecular hydroamination of terminal alkynes.Curr. Catal.20132626910.2174/2211544711302010010
    [Google Scholar]
  33. SenguptaM. DasS. BordoloiA. Cu/Cu2O nanoparticle interface: Rational designing of a heterogeneous catalyst system for selective hydroamination.Molecular Catalysis2017440576510.1016/j.mcat.2017.05.028
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812369860250509115517
Loading
/content/journals/nanoasi/10.2174/0122106812369860250509115517
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test