Skip to content
2000
Volume 15, Issue 3
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

Background

Traditional Tuberculosis (TB) treatments and analgesic therapies are often associated with resistance and poor patient compliance, highlighting the need for improved delivery systems. SLNPs, with their lipid matrix encapsulation, offer promising solutions to these challenges, making them valuable tools for enhancing TB treatment and analgesic effects.

Objective

The primary aim of this review was to assess and investigate the potential of SLNPs. This included evaluating their effectiveness in improving the Bioavailability (BA) and therapeutic results of anti-TB medications, along with their capacity to deliver prolonged analgesic effects. The formulation methods and applications of SLNPs have the potential to transform the treatment of tuberculosis and pain management.

Methods

This review utilized multiple electronic databases, including PubMed, Scopus, official websites, Google Scholar, Google Patent, and ResearchGate, to gather original review articles. Publications from the last 15 years, from August 31, 2009 to August 31, 2024, were selected for data compilation. The initial two authors conducted the selection, extraction, and review of the articles to compile the complete dataset.

Results

Over 70 studies, along with an additional 30, were selected for the review. These findings underscore the ability of SLNPs to overcome the obstacle of conventional drug therapies, supporting their application in TB treatment and pain management.

Conclusion

Most studies suggest that SLNPs represent a significant advancement in drug delivery, offering a modern formulation approach that can enhance TB treatment and provide effective analgesic relief. However, the extent of these benefits may be underreported.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812379362250602075954
2025-06-05
2025-10-10
Loading full text...

Full text loading...

References

  1. Espinosa-PereiroJ. AguiarA. NaraE. MedinaA. MolinasG. TavaresM. TortolaT. GhimireS. AlfenaarJ.W.C. SturkenboomM.G.G. Magis-EscurraC. Sánchez-MontalvaA. BarrosH. DuarteR. Safety, efficacy and pharmacokinetics of daily optimised doses of rifampicin for the treatment of tuberculosis: A systematic review and bayesian network meta-analysis.Clin. Infect. Dis.202510ciaf00310.1093/cid/ciaf003 39792625
    [Google Scholar]
  2. AlsayedS.S.R. GunosewoyoH. Tuberculosis: Pathogenesis, current treatment regimens and new drug targets.Int. J. Mol. Sci.2023246520210.3390/ijms24065202 36982277
    [Google Scholar]
  3. BloomB.R. A half-century of research on tuberculosis: Successes and challenges.J. Exp. Med.20232209e2023085910.1084/jem.20230859 37552470
    [Google Scholar]
  4. MottaI. BoereeM. ChesovD. DhedaK. GüntherG. HorsburghC.R. KherabiY. LangeC. LienhardtC. McIlleronH.M. PatonN.I. StaggH.R. ThwaitesG. UdwadiaZ. Van CrevelR. VelásquezG.E. WilkinsonR.J. GuglielmettiL. MottaI. KherabiY. Van CrevelR. GuglielmettiL. Recent advances in the treatment of tuberculosis.Clin. Microbiol. Infect.20243091107111410.1016/j.cmi.2023.07.013 37482332
    [Google Scholar]
  5. KhawbungJ.L. NathD. ChakrabortyS. Drug resistant tuberculosis: A review.Comp. Immunol. Microbiol. Infect. Dis.20217410157410.1016/j.cimid.2020.101574 33249329
    [Google Scholar]
  6. SalariN. KanjooriA.H. Hosseinian-FarA. HasheminezhadR. MansouriK. MohammadiM. Global prevalence of drug-resistant tuberculosis: A systematic review and meta-analysis.Infect. Dis. Poverty20231215710.1186/s40249‑023‑01107‑x 37231463
    [Google Scholar]
  7. SunS. LiuL. ZhouM. LiuY. SunM. ZhaoL. The analgesic effect and potential mechanisms of acupuncture for migraine rats: A systematic review and meta-analysis.J. Pain Res.2023162525254210.2147/JPR.S422050 37521010
    [Google Scholar]
  8. MahmoodZ.A. MousaE.F. AddayS.T. Preparation and characterization of nano silver nitrate by Pyrus communis plant extract (peel and seeds) and biological activity study.Eurasian Chem. Commun20224732
    [Google Scholar]
  9. VoogtL. de VriesJ. MeeusM. StruyfF. MeuffelsD. NijsJ. Analgesic effects of manual therapy in patients with musculoskeletal pain: A systematic review.Man. Ther.201520225025610.1016/j.math.2014.09.001 25282440
    [Google Scholar]
  10. VarrassiG. YeamC.T. RekatsinaM. PergolizziJ.V. ZisP. PaladiniA. The expanding role of the COX inhibitor/opioid receptor agonist combination in the management of pain.Drugs202080141443145310.1007/s40265‑020‑01369‑x 32749653
    [Google Scholar]
  11. YakubovaD.A. ArsanukayevaH.S. ZakaevaI.A. NukhovaZ.I. SargulanovnaK.T. DadaevaE.B. MutsaevaM.V. HasanovaT.T. Development of vaginal suppositories modified with silver nanoparticle.Pharmacophore202415211912310.51847/uZV70TmXhl
    [Google Scholar]
  12. PaliwalR. PaliwalS.R. KenwatR. KurmiB.D. SahuM.K. Solid lipid nanoparticles: A review on recent perspectives and patents.Expert Opin. Ther. Pat.202030317919410.1080/13543776.2020.1720649 32003260
    [Google Scholar]
  13. SawP.E. XuX. ZhangM. CaoS. FarokhzadO.C. WuJ. Nanostructure engineering by simple tuning of lipid combinations.Angew. Chem. Int. Ed.202059156249625210.1002/anie.201916574 32017368
    [Google Scholar]
  14. MehnertW. MäderK. Solid lipid nanoparticles.Adv. Drug Deliv. Rev.2012648310110.1016/j.addr.2012.09.021 11311991
    [Google Scholar]
  15. ZhangH. YouX. WangX. CuiL. WangZ. XuF. LiM. YangZ. LiuJ. HuangP. KangY. WuJ. XiaX. Delivery of mRNA vaccine with a lipid-like material potentiates antitumor efficacy through Toll-like receptor 4 signaling.Proc. Natl. Acad. Sci. USA20211186e200519111810.1073/pnas.2005191118 33547233
    [Google Scholar]
  16. LestariM.L. SinhaB. Potential nanoformulation approaches for delivery of hcc therapeutic agents.Nano-HCC Therapy2022838444810.2174/9789815039740122010012
    [Google Scholar]
  17. DuanY. DharA. PatelC. KhimaniM. NeogiS. SharmaP. Siva KumarN. VekariyaR.L. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems.RSC Advances20201045267772679110.1039/D0RA03491F 35515778
    [Google Scholar]
  18. KhairnarS.V. PagareP. ThakreA. NambiarA.R. JunnuthulaV. AbrahamM.C. KolimiP. NyavanandiD. DyawanapellyS. Review on the scale-up methods for the preparation of solid lipid nanoparticles.Pharmaceutics2022149188610.3390/pharmaceutics14091886 36145632
    [Google Scholar]
  19. SabouriZ. ShakourN. SabouriM. Tabrizi Hafez MoghaddasS.S. DarroudiM. Biochemical, structural characterization and assessing the biological effects of cinnamon nanoparticles.Biotechnol. Bioprocess Eng.202429116517510.1007/s12257‑024‑00004‑w
    [Google Scholar]
  20. ÜnerM. YenerG. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives.Int. J. Nanomedicine200723289300 18019829
    [Google Scholar]
  21. SivadasanD. RamakrishnanK. MahendranJ. RanganathanH. KaruppaiahA. RahmanH. Solid lipid nanoparticles: Applications and prospects in cancer treatment.Int. J. Mol. Sci.2023247619910.3390/ijms24076199 37047172
    [Google Scholar]
  22. del Pozo-RodríguezA. SolinísM.A. GascónA.R. PedrazJ.L. Short- and long-term stability study of lyophilized solid lipid nanoparticles for gene therapy.Eur. J. Pharm. Biopharm.200971218118910.1016/j.ejpb.2008.09.015 18940256
    [Google Scholar]
  23. MakoniP.A. Wa KasongoK. WalkerR.B. Short term stability testing of efavirenz-loaded solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC) dispersions.Pharmaceutics201911839710.3390/pharmaceutics11080397 31398820
    [Google Scholar]
  24. PalR. PandeyP. ChawraH.S. Singh, Ravindra Pal Niosomal as potential vesicular drug nano-carriers for the treatment of Tuberculosis (TB).Nanosci Nanotechnol.2025151e2210681232382910.2174/0122106812323829240919050438
    [Google Scholar]
  25. ViegasC. PatrícioA.B. PrataJ.M. NadhmanA. ChintamaneniP.K. FonteP. Solid lipid nanoparticles vs. nanostructured lipid carriers: A comparative review.Pharmaceutics2023156159310.3390/pharmaceutics15061593 37376042
    [Google Scholar]
  26. AssefiM. AtaeinaeiniM. NazariA. GholipourA. Vertiz-OsoresJ.J. Melody Calla-VásquezK. Zuhair Talib Al-NaqeebB. Hussein JassimK. KalajahiH.G. YasaminehS. DadashpourM. A state-of-the-art review on solid lipid nanoparticles as a nanovaccines delivery system.J. Drug Deliv. Sci. Technol.20238610462310.1016/j.jddst.2023.104623
    [Google Scholar]
  27. PunuG.F. HarahapY. AnjaniQ.K. HartriantiP. DonnellyR.F. RamadonD. Solid Lipid Nanoparticles (SLN): Formulation and Fabrication.Pharm. Sci. Res.2023105566
    [Google Scholar]
  28. NaseriN. ValizadehH. Zakeri-MilaniP. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application.Adv. Pharm. Bull.20155330531310.15171/apb.2015.043 26504751
    [Google Scholar]
  29. SastriK.T. RadhaG.V. PidikitiS. VajjhalaP. Solid lipid nanoparticles: Preparation techniques, their characterization, and an update on recent studies.J. Appl. Pharm. Sci.202010612614110.7324/JAPS.2020.10617
    [Google Scholar]
  30. AlmarbdZ.Z. AbbassN.M. Synthesis and characterization of TiO2, Ag2O, and graphene oxide nanoparticles with polystyrene as a nonocomposites and some of their applications.Eurasian Chem. Commun2022410331043
    [Google Scholar]
  31. NematiE. MokhtarzadehA. Panahi-AzarV. MohammadiA. HamishehkarH. Mesgari-AbbasiM. Ezzati Nazhad DolatabadiJ. de la GuardiaM. Ethambutol-loaded solid lipid nanoparticles as dry powder inhalable formulation for tuberculosis therapy.AAPS PharmSciTech201920312010.1208/s12249‑019‑1334‑y 30796625
    [Google Scholar]
  32. KumarR. SinghA. GargN. SirilP.F. Solid lipid nanoparticles for the controlled delivery of poorly water soluble non-steroidal anti-inflammatory drugs.Ultrason Sonochem,201840Pt A68669610.1016/j.ultsonch.2017.08.018 28946474
    [Google Scholar]
  33. de M Barbosa, R.; Ribeiro, L.N.M.; Casadei, B.R.; da Silva, C.M.G.; Queiróz, V.A.; Duran, N.; de Araújo, D.R.; Severino, P.; de Paula, E. Solid lipid nanoparticles for dibucaine sustained release.Pharmaceutics201810423110.3390/pharmaceutics10040231 30441802
    [Google Scholar]
  34. Shahab-NavaeiF. AsoodehA. Synthesis of optimized propolis solid lipid nanoparticles with desirable antimicrobial, antioxidant, and anti-cancer properties.Sci. Rep.20231311829010.1038/s41598‑023‑45768‑y 37880491
    [Google Scholar]
  35. GasparD.P. GasparM.M. EleutérioC.V. GrenhaA. BlancoM. GonçalvesL.M.D. TaboadaP. AlmeidaA.J. Remuñán-LópezC. Microencapsulated solid lipid nanoparticles as a hybrid platform for pulmonary antibiotic delivery.Mol. Pharm.20171492977299010.1021/acs.molpharmaceut.7b00169 28809501
    [Google Scholar]
  36. BoonmeP. SoutoE.B. WuttisantikulN. JongjitT. PichayakornW. Influence of lipids on the properties of solid lipid nanoparticles from microemulsion technique.Eur. J. Lipid Sci. Technol.2013115782082410.1002/ejlt.201200240
    [Google Scholar]
  37. KhatakS. MehtaM. AwasthiR. PaudelK.R. SinghS.K. GulatiM. HansbroN.G. HansbroP.M. DuaK. DurejaH. Solid lipid nanoparticles containing anti-tubercular drugs attenuate the Mycobacterium marinum infection.Tuberculosis202012510200810.1016/j.tube.2020.102008 33059322
    [Google Scholar]
  38. AbrishamiM. AbrishamiM. MahmoudiA. MosallaeiN. Vakili Ahrari RoodiM. Malaekeh-NikoueiB. Solid lipid nanoparticles improve the diclofenac availability in vitreous after intraocular injection.J. Drug Deliv.201620161510.1155/2016/1368481 27803815
    [Google Scholar]
  39. Becker PeresL. Becker PeresL. de AraújoP.H.H. SayerC. Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique.Colloids Surf. B Biointerfaces201614031732310.1016/j.colsurfb.2015.12.033 26764112
    [Google Scholar]
  40. AkandaM. MithuM.D.S.H. DouroumisD. Solid lipid nanoparticles: An effective lipid-based technology for cancer treatment.J. Drug Deliv. Sci. Technol.20238610470910.1016/j.jddst.2023.104709
    [Google Scholar]
  41. AndonovaV. PenevaP. Characterization methods for solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC).Curr. Pharm. Des.201823436630664210.2174/1381612823666171115105721 29141534
    [Google Scholar]
  42. ObinuA. PorcuE.P. PirasS. IbbaR. CartaA. MolicottiP. MigheliR. DalpiazA. FerraroL. RassuG. GaviniE. GiunchediP. Solid lipid nanoparticles as formulative strategy to increase oral permeation of a molecule active in multidrug-resistant tuberculosis management.Pharmaceutics20201212113210.3390/pharmaceutics12121132 33255304
    [Google Scholar]
  43. SawantK. VariaJ. DodiyaS. Cyclosporine a loaded solid lipid nanoparticles: Optimization of formulation, process variable and characterization.Curr. Drug Deliv.200851646910.2174/156720108783331069 18220553
    [Google Scholar]
  44. SantonocitoD. SarpietroM.G. CastelliF. LauroM.R. TorrisiC. RussoS. PugliaC. Development of solid lipid nanoparticles as dry powder: Characterization and formulation considerations.Molecules2023284154510.3390/molecules28041545 36838532
    [Google Scholar]
  45. BhartiM. AlamM.A. Koteswara RaoG.S.N. SharmaP.K. VarshneyS. Nanoformulation-based drug delivery system for viral diseases.Pharm. Nanotechnol.202311210512610.2174/2211738511666221201154154 36464883
    [Google Scholar]
  46. MohantaB.C. DindaS.C. MishraG. PaleiN.N. DusthackeerV.N.A. Formulation, characterization, in vitro anti-tubercular activity and cytotoxicity study of solid lipid nanoparticles of Isoniazid.Nano Biomed. Eng.201810437939110.5101/nbe.v10i4.p379‑391
    [Google Scholar]
  47. DuongV.A. NguyenT.T.L. MaengH.J. Preparation of solid lipid nanoparticles and nanostructured lipid carriers for drug delivery and the effects of preparation parameters of solvent injection method.Molecules20202520478110.3390/molecules25204781 33081021
    [Google Scholar]
  48. KhannaK. SharmaN. RawatS. KhanN. KarwasraR. HasanN. KumarA. JainG.K. NishadD.K. KhannaS. PopliH. BhatnagarA. Intranasal solid lipid nanoparticles for management of pain: A full factorial design approach, characterization & Gamma Scintigraphy.Chem. Phys. Lipids202123610506010.1016/j.chemphyslip.2021.105060 33582127
    [Google Scholar]
  49. AkbariJ. SaeediM. AhmadiF. HashemiS.M.H. BabaeiA. YaddollahiS. RostamkalaeiS.S. Asare-AddoK. NokhodchiA. Solid lipid nanoparticles and nanostructured lipid carriers: A review of the methods of manufacture and routes of administration.Pharm. Dev. Technol.202227552554410.1080/10837450.2022.2084554 35635506
    [Google Scholar]
  50. HouD. XieC. HuangK. ZhuC. The production and characteristics of solid lipid nanoparticles (SLNs).Biomaterials200324101781178510.1016/S0142‑9612(02)00578‑1 12593960
    [Google Scholar]
  51. RoyK. MarilingaiahN.R. KumarA. Palya NarayanaswamyM. YelamaggadC.V. Doddakunche ShivaramuP. S, V.; Singh, S.K.; Rangappa, D. Phase-controlled construction of copper-leaf-like 2D NiS for enhanced supercapacitor performance: A supercritical fluid approach.Mater. Today Commun.20254211120210.1016/j.mtcomm.2024.111202
    [Google Scholar]
  52. ParhiR. SureshP. Production of solid lipid nanoparticles-drug loading and release mechanism.J. Chem. Pharm. Res.201021211227
    [Google Scholar]
  53. MukherjeeS. RayS. ThakurR.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system.Indian J. Pharm. Sci.200971434935810.4103/0250‑474X.57282 20502539
    [Google Scholar]
  54. Mendoza-MuñozN. Urbán-MorlánZ. Leyva-GómezG. Zambrano-ZaragozaM.L. ¨Piñón-Segundo, E.; Quintanar-Guerrero, D. Solid lipid nanoparticles: An approach to improve oral drug delivery.J. Pharm. Pharm. Sci.20212450953210.18433/jpps31788 34644523
    [Google Scholar]
  55. WongH. BendayanR. RauthA. LiY. WuX. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles.Adv. Drug Deliv. Rev.200759649150410.1016/j.addr.2007.04.008 17532091
    [Google Scholar]
  56. AlaviM. HamidiM. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles.Drug Metab. Pers. Ther.20193412018003210.1515/dmpt‑2018‑0032 30707682
    [Google Scholar]
  57. Scioli MontotoS. MuracaG. RuizM.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects.Front. Mol. Biosci.2020758799710.3389/fmolb.2020.587997 33195435
    [Google Scholar]
  58. LiuM. WenJ. SharmaM. Solid lipid nanoparticles for topical drug delivery: Mechanisms, dosage form perspectives, and translational status.Curr. Pharm. Des.202026273203321710.2174/1381612826666200526145706 32452322
    [Google Scholar]
  59. GuglevaV. AndonovaV. Drug delivery to the brain – lipid nanoparticles-based approach.Pharmacia202370111312010.3897/pharmacia.70.e98838
    [Google Scholar]
  60. AdjeiI.M. SharmaB. LabhasetwarV. Nanoparticles: Cellular uptake and cytotoxicity.Adv. Exp. Med. Biol.2014811739110.1007/978‑94‑017‑8739‑0_5 24683028
    [Google Scholar]
  61. PandeyA. Solid lipid nanoparticles: A multidimensional drug delivery system.EnvChem for a Sustainable World20203924929510.1007/978‑3‑030‑29207‑2_8
    [Google Scholar]
  62. AttamaA.A. UmeyorC.E. The use of solid lipid nanoparticles for sustained drug release.Ther. Deliv.20156666968410.4155/tde.15.23 26149784
    [Google Scholar]
  63. ParthibanR. SathishkumarS. RamakrishnanP. Design and evaluation of acyclovir-loaded solid lipid nanoparticles for sustained release.Drug Invent. Today2020141108111
    [Google Scholar]
  64. CostaC.P. BarreiroS. MoreiraJ.N. SilvaR. AlmeidaH. SousaLobo J.M.; Silva, A.C. In vitro studies on nasal formulations of nanostructured lipid carriers (NLC) and solid lipid nanoparticles (SLN).Pharmaceuticals202114871110.3390/ph14080711 34451808
    [Google Scholar]
  65. CometaS. BonifacioM.A. TrapaniG. Di GioiaS. DazziL. De GiglioE. TrapaniA. In vitroinvestigations on dopamine loaded solid lipid nanoparticles.J. Pharm. Biomed. Anal.202018511325710.1016/j.jpba.2020.113257 32199326
    [Google Scholar]
  66. SameeA. UsmanF. WaniT.A. FarooqM. ShahH.S. JavedI. AhmadH. KhanR. ZargarS. KausarS. Sulconazole-loaded solid lipid nanoparticles for enhanced antifungal activity: In vitro and in vivo approach.Molecules20232822750810.3390/molecules28227508 38005230
    [Google Scholar]
  67. SumanS.K. ChandrasekaranN. Priya DossC.G. Micro-nanoemulsion and nanoparticle-assisted drug delivery against drug-resistant tuberculosis: Recent developments.Clin. Microbiol. Rev.2023364e00088e2310.1128/cmr.00088‑23 38032192
    [Google Scholar]
  68. VasamM. GoulikarR.K. Approaches for designing and delivering solid lipid nanoparticles of distinct antitubercular drugs.J. Biomater. Sci. Polym. Ed.202334682884310.1080/09205063.2022.2144791 36341573
    [Google Scholar]
  69. PandeyR. SharmaS. KhullerG.K. Oral solid lipid nanoparticle-based antitubercular chemotherapy.Tuberculosis2005855-641542010.1016/j.tube.2005.08.009 16256437
    [Google Scholar]
  70. BeraH. ZhaoC. TianX. CunD. YangM. Mannose-decorated solid-lipid nanoparticles for alveolar macrophage targeted delivery of rifampicin.Pharmaceutics202416342910.3390/pharmaceutics16030429 38543323
    [Google Scholar]
  71. Mariano FernandezC.M. KleinubingS.A. KaramT.K. LorenzettiF.B. PalomoC.T. Moreira de OliveiraB.P. Hess GonçalvesO. Cristiani GazimZ. RomagnoloM.B. Caleffi-FerracioliK.R. de Lima ScodroR.B. Development, characterization and anti-Mycobacterium tuberculosis activity of solid lipid nanoparticles for oral Piper corcovadensis roots extract delivery.Bol. Latinoam. Caribe Plantas Med. Aromat.2023226
    [Google Scholar]
  72. JainD. BajajA. MaskareR. BrarooP. BabulN. KaoH. Design of solid lipid nanoparticles of the NSAID dexflurbiprofen for topical delivery.J. Pain2013144S8610.1016/j.jpain.2013.01.680
    [Google Scholar]
  73. GoyalN. JeroldF. Biocosmetics: Technological advances and future outlook.Environ. Sci. Pollut. Res. Int.20213010251482516910.1007/s11356‑021‑17567‑3 34825334
    [Google Scholar]
  74. BarmanS. SchefflerA. RuckT. LehrichC. BalzV. WiendlH. MeuthS. HartungH.P. MelzerN. GoebelsN. Effect of alemtuzumab (LEMTRADA®) treatment on the peripheral immune repertoire in multiple sclerosis patients (4148).Neurology20209415_supplement4148.(Suppl.)10.1212/WNL.94.15_supplement.4148
    [Google Scholar]
  75. FieldsS.Z. IgwemezieL.N. KaulS. SchacterL.P. SchilderR.J. LitamP.P. HimplerB.S. McAleerC. WrightJ. BarbhaiyaR.H. Phase I study of etoposide phosphate (etopophos) as a 30-minute infusion on days 1, 3, and 5.Clin. Cancer Res.199511105111 9815892
    [Google Scholar]
  76. PanseM.L. PhalkeS.D. World Market of Omega-3 Fatty Acids.In: Omega-3 Fatty Acids.ChamSpringer20167988
    [Google Scholar]
  77. NielloudF. Current galenical research challenges in human dermatology: Application for the development of products for sensitive and atopic skin.. Université Montpellier: Faculté de Pharmacie,2003
    [Google Scholar]
  78. HovanesianJ. ChesterT. SorensonR.C. A prospective study of cyclosporine A 0.1% combined with loteprednol 0.2% vs cyclosporine a 0.05% alone in the treatment of dry eye.Clin. Ophthalmol.2023172181219110.2147/OPTH.S419600 37554931
    [Google Scholar]
  79. LiaoR. SunZ.C. WangL. XianC. LinR. ZhuoG. WangH. FangY. LiuY. YangR. WuJ. ZhangZ. Inhalable and bioactive lipid-nanomedicine based on bergapten for targeted acute lung injury therapy via orchestrating macrophage polarization.Bioact. Mater.20254340642210.1016/j.bioactmat.2024.09.020 39411684
    [Google Scholar]
  80. SarangiM.K. PadhiS. Solid lipid nanoparticles–A review.Drugs2016571149
    [Google Scholar]
  81. NatarajanA. BeenaP.M. DevnikarA.V. MaliS. A systemic review on tuberculosis.Indian J. Tuberc.202067329531110.1016/j.ijtb.2020.02.005 32825856
    [Google Scholar]
  82. HorsburghC.R. BarryC.E. LangeC. Treatment of tuberculosis.N. Engl. J. Med.2015373222149216010.1056/NEJMra1413919 26605929
    [Google Scholar]
  83. MitraS.P. Lipid nano-particles in medicine: Production, stability and drug delivery-A review.J. Surf Sci. Technol201127115
    [Google Scholar]
  84. OhashiN. KohnoT. Analgesic effect of acetaminophen: A review of known and novel mechanisms of action.Front. Pharmacol.2020111158028910.3389/fphar.2020.580289 33328986
    [Google Scholar]
  85. PawarV. MaskeP. KhanA. GhoshA. KeshariR. BhattM. SrivastavaR. Responsive nanostructure for targeted drug delivery.J. Nanotheranostics202341558510.3390/jnt4010004
    [Google Scholar]
  86. ChokshiN.V. KhatriH.N. PatelM.M. Formulation, optimization, and characterization of rifampicin-loaded solid lipid nanoparticles for the treatment of tuberculosis.Drug Dev. Ind. Pharm.201844121975198910.1080/03639045.2018.1506472 30058392
    [Google Scholar]
  87. KumarA. SarmaM. PratimP. RaniN. Lung-targeted solid lipid nanoparticles for enhanced pulmonary delivery of anti-tubercular drugs: A novel approach to improve bioavailability.J. Angiotherapy202481212
    [Google Scholar]
  88. Chaves TorresN.M. Quijano RodríguezJ.J. Porras AndradeP.S. ArriagaM.B. NettoE.M. Factors predictive of the success of tuberculosis treatment: A systematic review with meta-analysis.PLoS One20191412e022650710.1371/journal.pone.0226507 31881023
    [Google Scholar]
  89. RabahiM.F. Silva JúniorJ.L.R. FerreiraA.C.G. Tannus-SilvaD.G.S. CondeM.B. Tuberculosis treatment.J. Bras. Pneumol.201743647248610.1590/s1806‑37562016000000388 29340497
    [Google Scholar]
  90. DahlJ.B. NielsenR.V. WetterslevJ. NikolajsenL. HamunenK. KontinenV.K. HansenM.S. KjerJ.J. MathiesenO. Post‐operative analgesic effects of paracetamol, NSAIDs, glucocorticoids, gabapentinoids and their combinations: A topical review.Acta Anaesthesiol. Scand.201458101165118110.1111/aas.12382 25124340
    [Google Scholar]
  91. SubrotoE. AndoyoR. IndiartoR. Solid lipid nanoparticles: Review of the current research on encapsulation and delivery systems for active and antioxidant compounds.Antioxidants202312363310.3390/antiox12030633 36978881
    [Google Scholar]
  92. AyeshaB.T. ErumA. ShahidN. TulainU.R. SaleemU. An effective approach in osteoarthritis: Diacerein-loaded solid lipid nanoparticles, preparation and evaluation for targeted therapy.J. Drug Deliv. Sci. Technol.202510810685610.1016/j.jddst.2025.106856
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812379362250602075954
Loading
/content/journals/nanoasi/10.2174/0122106812379362250602075954
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Analgesic; drug delivery; nanocarriers; solid-lipid nanoparticles; tuberculosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test