Skip to content
2000
Volume 15, Issue 1
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

Targeted drug delivery systems are employed to administer pharmaceutical medication, facilitating the precise delivery of drugs to specific diseased areas. Various delivery methods utilize carriers such as antibodies, transdermal patches, biodegradable polymers, nanoparticles (NPs), liposomes, niosomes, and microspheres. Niosomes, on the other hand, represent a promising and innovative category of vesicular systems. Niosomes are vesicles formed by hydrating a combination of nonionic surfactants (NIOs) and cholesterol. These nonionic surfactant carriers serve as carriers for both lipophilic and amphiphilic drugs. In the drug delivery system using niosomes, the medication is enclosed within a vesicle. The niosomes in tuberculosis (TB) possess biodegradable and biocompatible properties, are nonimmunogenic, and demonstrate versatility in their structural composition. It is a serious and potentially contagious disease originating from the bacteria, . In a recent update, the WHO still estimated that the number of TB cases was 9.9 million in 2022. The use of niosomes improves the treatment of TB through the use of much more advanced technology and advanced drug nanocarriers. The main aim of this review paper is to summarize the structural compositions of niosomes with silent features and various preparation methods, as well as to complete the discussion about tuberculosis and its treatment/diagnosis. Finally, the comparison of niosomes with liposomes and their current applications in treating TB with several niosomal-drug carriers and treatment with niosomal formulations was performed.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812323829240919050438
2024-09-30
2025-06-12
Loading full text...

Full text loading...

References

  1. BhargavE. MadhuriN. RameshK. ManneA. RaviV. Targeted drug delivery - A review.World J. Pharm. Pharm. Sci.201331150169
    [Google Scholar]
  2. LiC. ZhuC.X. ZhangN. SuiS.H. ZhaoJ.B. Free vibration of self-powered nanoribbons subjected to thermal-mechanical-electrical fields based on a nonlocal strain gradient theory.Appl. Math. Model.202211058360210.1016/j.apm.2022.05.044
    [Google Scholar]
  3. LiC. LiuJ.J. ChengM. FanX.L. Nonlocal vibrations and stabilities in parametric resonance of axially moving viscoelastic piezoelectric nanoplate subjected to thermo-electro-mechanical forces.Compos., Part B Eng.201711615316910.1016/j.compositesb.2017.01.071
    [Google Scholar]
  4. BhardwajP. TripathiP. GuptaR. PandeyS. Niosomes: A review on niosomal research in the last decade.J. Drug Deliv. Sci. Technol.20205610158110.1016/j.jddst.2020.101581
    [Google Scholar]
  5. RajputA. MandlikS. PokharkarV. Nanocarrier-based approaches for the efficient delivery of anti-tubercular drugs and vaccines for management of tuberculosis.Front. Pharmacol.20211274994510.3389/fphar.2021.74994534992530
    [Google Scholar]
  6. PatelG. PrajapatiB. PathakY. Niosomes in tuberculosis.Tubercular Drug Delivery SystemsSpringerCham202323526010.1007/978‑3‑031‑14100‑3_12
    [Google Scholar]
  7. BuyaA.B. WitikaB.A. BapolisiA.M. MwilaC. MukubwaG.K. MemvangaP.B. MakoniP.A. NkangaC.I. Application of lipid-based nanocarriers for antitubercular drug delivery: A review.Pharmaceutics20211312204110.3390/pharmaceutics1312204134959323
    [Google Scholar]
  8. BorhamM. OreibyA. El-GedawyA. HegazyY. KhalifaH.O. Al-GaabaryM. MatsumotoT. Review on bovine tuberculosis: An emerging disease associated with multidrug-resistant Mycobacterium species.Pathogens202211771510.3390/pathogens1107071535889961
    [Google Scholar]
  9. MehraryaM. GharehchelouB. Haghighi PoodehS. JamshidifarE. KarimifardS. Farasati FarB. AkbarzadehI. SeifalianA. Niosomal formulation for antibacterial applications.J. Drug Target.202230547649310.1080/1061186X.2022.203209435060818
    [Google Scholar]
  10. Vedha HariB.N. ChitraK. BhimavarapuR. KarunakaranP. MuthukrishnanN. RaniB.S. Novel technologies: A weapon against tuberculosis.Indian J. Pharmacol.201042633834410.4103/0253‑7613.7188721189901
    [Google Scholar]
  11. AhmadM.Z. BhatnagarD. LadheS. KumarD. PathakK. DasR.J. SarmaH. MustafaG. Liposomes and niosomes for targeted drug and gene delivery systems.Pharmaceutical Nanobiotechnology for Targeted TherapySpringerCham202233735910.1007/978‑3‑031‑12658‑1_12
    [Google Scholar]
  12. ChawC.S. Ah KimK.Y. Effect of formulation compositions on niosomal preparations.Pharm. Dev. Technol.201318366767210.3109/10837450.2012.67298822468904
    [Google Scholar]
  13. MarianecciC. Di MarzioL. RinaldiF. CeliaC. PaolinoD. AlhaiqueF. EspositoS. CarafaM. Niosomes from 80s to present: The state of the art.Adv. Colloid Interface Sci.201420518720610.1016/j.cis.2013.11.01824369107
    [Google Scholar]
  14. KuotsuK. KarimK.M. MandalA.S. BiswasN. GuhaA. ChatterjeeS. BeheraM. Niosome: A future of targeted drug delivery systems.J. Adv. Pharm. Technol. Res.20101437438010.4103/0110‑5558.7643522247876
    [Google Scholar]
  15. SinghS. AhujaA. Novel and innovative approach of nanotechnology with their applications in the management of infectious disease, tuberculosis: An overview.Recent Pat. Nanotechnol.202418214016310.2174/187221051666622052312272435616678
    [Google Scholar]
  16. YeoP.L. LimC.L. ChyeS.M. Kiong LingA.P. KohR.Y. Niosomes: A review of their structure, properties, methods of preparation, and medical applications.Asian Biomed.201811430131410.1515/abm‑2018‑0002
    [Google Scholar]
  17. MoghassemiS. HadjizadehA. Nano-niosomes as nanoscale drug delivery systems: An illustrated review.J. Control. Release2014185223610.1016/j.jconrel.2014.04.01524747765
    [Google Scholar]
  18. DurakS. Esmaeili RadM. Alp YetisginA. Eda SutovaH. KutluO. CetinelS. ZarrabiA. Niosomal drug delivery systems for ocular disease—Recent advances and future prospects.Nanomaterials (Basel)2020106119110.3390/nano1006119132570885
    [Google Scholar]
  19. LombardoD. KiselevM.A. Methods of liposomes preparation: Formation and control factors of versatile nanocarriers for biomedical and nanomedicine application.Pharmaceutics202214354310.3390/pharmaceutics1403054335335920
    [Google Scholar]
  20. KheilnezhadB. HadjizadehA. Factors affecting the penetration of niosome into the skin, their laboratory measurements and dependency to the niosome composition: A review.Curr. Drug Deliv.202118555556910.2174/156720181799920082016143832842940
    [Google Scholar]
  21. KeshwaniaP. KaurN. ChauhanJ. SharmaG. AfzalO. Alfawaz AltamimiA.S. AlmalkiW.H. Superficial dermatophytosis across the world’s populations: Potential benefits from nanocarrier-based therapies and rising challenges.ACS Omega2023835315753159910.1021/acsomega.3c0198837692246
    [Google Scholar]
  22. WitikaB.A. BasseyK.E. DemanaP.H. Siwe-NoundouX. PokaM.S. Current advances in specialised niosomal drug delivery: Manufacture, characterization and drug delivery applications.Int. J. Mol. Sci.20222317966810.3390/ijms2317966836077066
    [Google Scholar]
  23. GharbaviM. AmaniJ. Kheiri-ManjiliH. DanafarH. SharafiA. Niosome: A promising nanocarrier for natural drug delivery through blood-brain barrier.Adv. Pharmacol. Sci.2018201811510.1155/2018/684797130651728
    [Google Scholar]
  24. GeX. WeiM. HeS. YuanW.E. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery.Pharmaceutics20191125510.3390/pharmaceutics1102005530700021
    [Google Scholar]
  25. Ag SeleciD. SeleciM. WalterJ.G. StahlF. ScheperT. Niosomes as nanoparticular drug carriers: Fundamentals and recent applications.J. Nanomater.20162016310.1155/2016/7372306
    [Google Scholar]
  26. MoammeriA. ChegeniM.M. SahrayiH. GhafelehbashiR. MemarzadehF. MansouriA. AkbarzadehI. AbtahiM.S. HejabiF. RenQ. Current advances in niosomes applications for drug delivery and cancer treatment.Mater. Today Bio20232310083710.1016/j.mtbio.2023.10083737953758
    [Google Scholar]
  27. DaveD. MullaT. Niosomes: A comprehensive review of structure, preparation and application.World J. Pharm. Pharm. Sci.20231211499153710.20959/wjpps202311‑26076
    [Google Scholar]
  28. MoghtaderiM. SedaghatniaK. BourbourM. FatemizadehM. Salehi MoghaddamZ. HejabiF. HeidariF. QuaziS. Farasati FarB. Niosomes: A novel targeted drug delivery system for cancer.Med. Oncol.2022391224010.1007/s12032‑022‑01836‑336175809
    [Google Scholar]
  29. ReddyB.S. PadmanJ.S. SantoshV. Niosomes as nanocarrier systems: A review.Int. J. Pharm. Sci. Res.2012361560
    [Google Scholar]
  30. ChenS. HanningS. FalconerJ. LockeM. WenJ. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications.Eur. J. Pharm. Biopharm.2019144183910.1016/j.ejpb.2019.08.01531446046
    [Google Scholar]
  31. GD.B. PV.L. Recent advances of non-ionic surfactant-based nano-vesicles (niosomes and proniosomes): A brief review of these in enhancing transdermal delivery of drug.Future J. Pharm. Sci.20206110010.1186/s43094‑020‑00117‑y
    [Google Scholar]
  32. KhoeeS. YaghoobianM. Chapter 6 - Niosomes: A novel approach in modern drug delivery systems.Nanostructures for Drug DeliveryElsevier201720723710.1016/B978‑0‑323‑46143‑6.00006‑3
    [Google Scholar]
  33. GuglevaV. TitevaS. RangelovS. MomekovaD. Design and in vitro evaluation of doxycycline hyclate niosomes as a potential ocular delivery system.Int. J. Pharm.201956711843110.1016/j.ijpharm.2019.06.02231207279
    [Google Scholar]
  34. ThabetY. ElsabahyM. EissaN.G. Methods for preparation of niosomes: A focus on thin-film hydration method.Methods202219991510.1016/j.ymeth.2021.05.00434000392
    [Google Scholar]
  35. KauslyaA. BorawakeP.D. ShindeJ.V. ChavanR.S. Niosomes: A novel carrier drug delivery system.J. Drug Deliv. Ther.202111116217010.22270/jddt.v11i1.4479
    [Google Scholar]
  36. ChakayaJ. KhanM. NtoumiF. AklilluE. FatimaR. MwabaP. KapataN. MfinangaS. HasnainS.E. KatotoP.D.M.C. BulabulaA.N.H. Sam-AguduN.A. NachegaJ.B. TiberiS. McHughT.D. AbubakarI. ZumlaA. Global tuberculosis report 2020 – Reflections on the global tb burden, treatment and prevention efforts.Int. J. Infect. Dis.2021113Suppl 1Suppl. 1S7S1210.1016/j.ijid.2021.02.10733716195
    [Google Scholar]
  37. JohnstonJ.C. CooperR. MenziesD. Treatment of tuberculosis disease.Can. J. Respir. Crit. Care Sleep Med.20226Suppl. 1667610.1080/24745332.2022.2036504
    [Google Scholar]
  38. NairA. GreenyA. NandanA. SahR.K. JoseA. DyawanapellyS. JunnuthulaV. K vA. SadanandanP. Advanced drug delivery and therapeutic strategies for tuberculosis treatment.J. Nanobiotechnology202321141410.1186/s12951‑023‑02156‑y37946240
    [Google Scholar]
  39. YaribeygiH. MalekiM. JamialahmadiT. ShakhpazyanN.K. KesharwaniP. SahebkarA. Nanoparticles with SGLT2 inhibitory activity: Possible benefits and future.Diabetes Metab. Syndr.2023171010286910.1016/j.dsx.2023.10286937778134
    [Google Scholar]
  40. SeungK.J. KeshavjeeS. RichM.L. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis.Cold Spring Harb. Perspect. Med.201559a01786310.1101/cshperspect.a01786325918181
    [Google Scholar]
  41. BhatZ.S. RatherM.A. MaqboolM. AhmadZ. Drug targets exploited in Mycobacterium tuberculosis: Pitfalls and promises on the horizon.Biomed. Pharmacother.20181031733174710.1016/j.biopha.2018.04.17629864964
    [Google Scholar]
  42. SiaI.G. WielandM.L. Current concepts in the management of tuberculosis.Mayo Clin. Proc.201186424836110.4065/mcp.2010.0820
    [Google Scholar]
  43. KiazykS. BallT.B. Latent tuberculosis infection: An overview.Can. Commun. Dis. Rep.2017433/4626610.14745/ccdr.v43i34a0129770066
    [Google Scholar]
  44. ZuñigaJ. Torres-GarcíaD. Santos-MendozaT. Rodriguez-ReynaT.S. GranadosJ. YunisE.J. Cellular and humoral mechanisms involved in the control of tuberculosis.Clin. Dev. Immunol.2012201211810.1155/2012/19392322666281
    [Google Scholar]
  45. BussiC. GutierrezM.G. Mycobacterium tuberculosis infection of host cells in space and time.FEMS Microbiol. Rev.201943434136110.1093/femsre/fuz00630916769
    [Google Scholar]
  46. MaphasaR.E. MeyerM. DubeA. The macrophage response to Mycobacterium tuberculosis and opportunities for autophagy inducing nanomedicines for tuberculosis therapy.Front. Cell. Infect. Microbiol.20211061841410.3389/fcimb.2020.61841433628745
    [Google Scholar]
  47. SuárezI. FüngerS.M. KrögerS. RademacherJ. FätkenheuerG. RybnikerJ. The diagnosis and treatment of tuberculosis.Dtsch. Arztebl. Int.20191164372973510.3238/arztebl.2019.0729
    [Google Scholar]
  48. ZarepourA. EgilA.C. Cokol CakmakM. Esmaeili RadM. CetinY. AydinlikS. Ozaydin InceG. ZarrabiA. Fabrication of a dual-drug-loaded smart niosome-g-chitosan polymeric platform for lung cancer treatment.Polymers (Basel)202315229810.3390/polym1502029836679179
    [Google Scholar]
  49. BarteldsR. NematollahiM.H. PolsT. StuartM.C.A. PardakhtyA. AsadikaramG. PoolmanB. Niosomes, an alternative for liposomal delivery.PLoS One2018134e019417910.1371/journal.pone.019417929649223
    [Google Scholar]
  50. MarianecciC. PetralitoS. RinaldiF. HaniehP.N. CarafaM. Some recent advances on liposomal and niosomal vesicular carriers.J. Drug Deliv. Sci. Technol.20163225626910.1016/j.jddst.2015.10.008
    [Google Scholar]
  51. HamishehkarH. RahimpourY. KouhsoltaniM. Niosomes as a propitious carrier for topical drug delivery.Expert Opin. Drug Deliv.201310226127210.1517/17425247.2013.74631023252629
    [Google Scholar]
  52. vR.S. GV.O. Formulation development, evaluation and optimization of medicated lip rouge containing niosomal acyclovir for the management of recurrent herpes labialis.Int. J. Appl. Pharm.201796212710.22159/ijap.2017v9i6.19349
    [Google Scholar]
  53. AghajaniA. KazemiT. EnayatifardR. AmiriF.T. NarenjiM. Investigating the skin penetration and wound healing properties of niosomal pentoxifylline cream.Eur. J. Pharm. Sci.202015110543410.1016/j.ejps.2020.10543432590122
    [Google Scholar]
  54. GuptaA. SinghS. KotlaN.G. WebsterT.J. Formulation and evaluation of a topical niosomal gel containing a combination of benzoyl peroxide and tretinoin for antiacne activity.Int. J. Nanomedicine20141017118225565812
    [Google Scholar]
  55. ManosroiJ. ChankhampanC. KitdamrongthamW. ZhangJ. AbeM. AkihisaT. ManosroiW. ManosroiA. In vivo anti‐ageing activity of cream containing niosomes loaded with purple glutinous rice ( Oryza sativa Linn.) extract.Int. J. Cosmet. Sci.202042662263110.1111/ics.1265832812663
    [Google Scholar]
  56. GharbaviM. ParvanianS. LeilanM.P. TavangarS. ParchianlouM. SharafiA. Niosomes-based drug delivery in targeting the brain tumors via nasal delivery.Nasal Drug DeliverySpringerCham202327932410.1007/978‑3‑031‑23112‑4_14
    [Google Scholar]
  57. El-SayK.M. Abd-AllahF.I. LilaA.E. HassanA.E.S.A. KassemA.E.A. Diacerein niosomal gel for topical delivery: Development, in vitro and in vivo assessment.J. Liposome Res.2016261576810.3109/08982104.2015.102949525853339
    [Google Scholar]
  58. JacobS. NairA.B. Al-DhubiabB.E. Preparation and evaluation of niosome gel containing acyclovir for enhanced dermal deposition.J. Liposome Res.201727428329210.1080/08982104.2016.122489727558522
    [Google Scholar]
  59. AkbariJ. SaeediM. Morteza-SemnaniK. HashemiS.M.H. BabaeiA. EghbaliM. MohammadiM. RostamkalaeiS.S. Asare-AddoK. NokhodchiA. Innovative topical niosomal gel formulation containing diclofenac sodium (niofenac).J. Drug Target.202230110811710.1080/1061186X.2021.194106034116599
    [Google Scholar]
  60. MohamedA. BendasE.R. MohamedS. Abdel-JaleelG.A. Nasr-AllaS.M. Formulation and evaluation of topical niosomal gel of baclofen.J. Chem. Pharm. Res.201571277288
    [Google Scholar]
  61. MoghassemiS. HadjizadehA. OmidfarK. Formulation and characterization of bovine serum albumin-loaded niosome.AAPS PharmSciTech2017181273310.1208/s12249‑016‑0487‑126817764
    [Google Scholar]
  62. BarotT. RawtaniD. KulkarniP. Development, characterization and in vitro–in vivo evaluation of Farnesol loaded niosomal gel for applications in oral candidiasis treatment.Heliyon202179e0796810.1016/j.heliyon.2021.e0796834568596
    [Google Scholar]
  63. KumarB.S. KrishnaR. PsL. VasudevD.T. NairS.C. Formulation and evaluation of niosomal suspension of cefixime.Asian J. Pharm. Clin. Res.2017•••194201
    [Google Scholar]
  64. JinY. WenJ. GargS. Zhang Teng LR Liu Zhou Development of a novel niosomal system for oral delivery of Ginkgo biloba extract.Int. J. Nanomedicine2013842143010.2147/IJN.S3798423378764
    [Google Scholar]
  65. BragagniM. MenniniN. GhelardiniC. MuraP. Development and characterization of niosomal formulations of doxorubicin aimed at brain targeting.J. Pharm. Pharm. Sci.201215118419610.18433/J3230M22365096
    [Google Scholar]
  66. ManviS.R. GuptaV.R. SrikanthK. DevannaN. Formulation and evaluation of candesartan niosomal suspension.Res. J. Pharm. Technol.201251215701572
    [Google Scholar]
  67. ArzaniG. HaeriA. DaeihamedM. Bakhtiari-KaboutarakiH. DadashzadehS. Niosomal carriers enhance oral bioavailability of carvedilol: Effects of bile salt-enriched vesicles and carrier surface charge.Int. J. Nanomedicine2015104797481326251598
    [Google Scholar]
  68. SharmaS.K. ChauhanM. AnilkumarN. Span-60 niosomal oral suspension of fluconazole: Formulation and in vitro evaluation.Asian J. Pharm. Res.20091142156
    [Google Scholar]
  69. SitaV.G. JadhavD. VaviaP. Niosomes for nose-to-brain delivery of bromocriptine: Formulation development, efficacy evaluation and toxicity profiling.J. Drug Deliv. Sci. Technol.20205810179110.1016/j.jddst.2020.101791
    [Google Scholar]
  70. TeaimaM.H. El MohamadyA.M. El-NabarawiM.A. MohamedA.I. Formulation and evaluation of niosomal vesicles containing ondansetron HCL for trans-mucosal nasal drug delivery.Drug Dev. Ind. Pharm.202046575176110.1080/03639045.2020.175306132250181
    [Google Scholar]
  71. FahmyU. Badr-EldinS. AhmedO. AldawsariH. TimaS. AsfourH. Al-RabiaM. NegmA. SultanM. MadkhaliO. AlhakamyN. Intranasal niosomal in situ gel as a promising approach for enhancing flibanserin bioavailability and brain delivery: In vitro optimization and ex vivo/in vivo evaluation.Pharmaceutics202012648510.3390/pharmaceutics1206048532471119
    [Google Scholar]
  72. DeviS.G. UdupaN. Niosomal sumatriptan succinate for nasal administration.Indian J. Pharm. Sci.2000626479481
    [Google Scholar]
  73. ShrivastavaP. GautamL. JainA. VishwakarmaN. VyasS. VyasS.P. Nanomedicine and its applications in combating resistance relating to opportunistic pathogens with special reference to tuberculosis.Handbook of Research on Nano-Strategies for Combatting Antimicrobial Resistance and CancerIGI Global20218711310.4018/978‑1‑7998‑5049‑6.ch004
    [Google Scholar]
  74. BibhasC.M. SubasC.D. GitanjaliM. NarahariN.P. Exploring the use of lipid based nano-formulations for the management of tuberculosis.J. Nanosci. Curr. Res.2017211225722813
    [Google Scholar]
  75. SinghG. DwivediH. SarafS.K. SarafS.A. Niosomal delivery of isoniazid-development and characterization.Trop. J. Pharm. Res.201110210.4314/tjpr.v10i2.66564
    [Google Scholar]
  76. MehtaS.K. JindalN. KaurG. Quantitative investigation, stability and in vitro release studies of anti-TB drugs in Triton niosomes.Colloids Surf. B Biointerfaces201187117317910.1016/j.colsurfb.2011.05.01821640561
    [Google Scholar]
  77. El-RidyM.S. AbdelbaryA. NasrE.A. KhalilR.M. MostafaD.M. El-BatalA.I. Abd El-AlimS.H. Niosomal encapsulation of the antitubercular drug, pyrazinamide.Drug Dev. Ind. Pharm.20113791110111810.3109/03639045.2011.56060521417612
    [Google Scholar]
  78. El-RidyM.S. YehiaS.A. KassemM.A.E.M. MostafaD.M. NasrE.A. AsfourM.H. Niosomal encapsulation of ethambutol hydrochloride for increasing its efficacy and safety.Drug Deliv.2015221213610.3109/10717544.2013.86855624359403
    [Google Scholar]
  79. AnghoreD. KulkarniG.T. Development of novel nano niosomes as drug delivery system of Spermacoce hispida extract and in vitro antituberculosis activity.Curr. Nanomater.201721172310.2174/2405461502666170314151949
    [Google Scholar]
  80. JainC.P. VyasS.P. Preparation and characterization of niosomes containing rifampicin for lung targeting.J. Microencapsul.199512440140710.3109/026520495090872528583314
    [Google Scholar]
  81. AparajayP. DevA. Functionalized niosomes as a smart delivery device in cancer and fungal infection.Eur. J. Pharm. Sci.202216810605210.1016/j.ejps.2021.10605234740786
    [Google Scholar]
  82. VyasS.P. KharR.K. Niosomes: Targeted and controlled delivery of anticancer agents.Drug Dev. Ind. Pharm.199420122781280510.3109/03639049409038342
    [Google Scholar]
  83. UchegbuI.F. FlorenceA.T. Non-ionic surfactant vesicles (niosomes): Physical and pharmaceutical chemistry.Adv. Colloid Interface Sci.199558115510.1016/0001‑8686(95)00242‑I
    [Google Scholar]
  84. RuckmaniK. SankarV. Formulation and optimization of Zidovudine niosomes.AAPS PharmSciTech20101131119112710.1208/s12249‑010‑9480‑220635228
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812323829240919050438
Loading
/content/journals/nanoasi/10.2174/0122106812323829240919050438
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test