Skip to content
2000
Volume 15, Issue 3
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

Background

Despite advancements in cancer therapy, the delivery of anti-cancer agents remains a significant challenge due to the toxicity of conventional treatments to healthy tissues, and the limited solubility and bioavailability of some therapeutic agents. Delivery systems based on nanoparticles have emerged as an effective way to address these issues.

Objectives

The primary goal of this study was to assess the ability of functionalized Mesoporous Silica Nanoparticles (fMSNs) to transport 3,3'-diindolylmethane (DIM), a hydrophobic anticancer drug, to efficiently target Triple-Negative Breast Cancer cells (TNBCs), while posing the least number of adverse effects on cells that are healthy, and to evaluate the mechanism of action and potential cytotoxicity of DIM-fMSNs on TNBC cells.

Methods

Functionalized mesoporous silica nanoparticles were synthesized and characterized for uniformity and functionalization. DIM, a hydrophobic indole-based phytochemical, was loaded into the fMSNs to create DIM-fMSNs. The drug delivery system was tested on TNBC cells to assess its cellular uptake, bioavailability, and cytotoxic effects. Mechanistic studies were conducted to determine the pathways involved in DIM-fMSNs-induced cell death.

Results

Our findings demonstrate that the fMSNs effectively delivered drugs to MDA-MB-231 cell lines, resulting in significant suppression of the growth of cancer cells, and enhanced therapeutic efficacy , whilst demonstrating effective penetration into TNBC cells even at low concentrations. tests also showed that our nano-formulation was superior to toxic chemotherapy drugs like Doxorubicin in the treatment of TNBC at lower drug concentrations. Mechanistic studies involving the identification of key apoptotic proteins revealed that DIM-fMSNs induced mitochondria-mediated apoptosis as the underlying mechanism of cell death in TNBC cells. The formulation demonstrated increased therapeutic efficacy and drug bioavailability with fewer harmful side effects on nearby normal cells and tissues.

Conclusion

The study highlights the potential of DIM-loaded fMSNs as a potentially effective therapeutic approach for TNBC treatment. The use of fMSNs improved the solubility, bioavailability, and delivery of DIM, resulting in enhanced efficacy and reduced toxicity, introducing an innovative approach to future cancer therapies.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812373327250509094328
2025-05-13
2025-10-10
Loading full text...

Full text loading...

References

  1. LiX. YangJ. PengL. SahinA.A. HuoL. WardK.C. O’ReganR. TorresM.A. MeiselJ.L. Triple-negative breast cancer has worse overall survival and cause-specific survival than non-triple-negative breast cancer.Breast Cancer Res. Treat.2017161227928710.1007/s10549‑016‑4059‑6 27888421
    [Google Scholar]
  2. HaidingerR. BauerfeindI. Long-term side effects of adjuvant therapy in primary breast cancer patients: results of a web-based survey.Breast Care (Basel)201914211111610.1159/000497233 31798383
    [Google Scholar]
  3. SouriM. SoltaniM. Moradi KashkooliF. Kiani ShahvandiM. Engineered strategies to enhance tumor penetration of drug-loaded nanoparticles.J. Control. Release202234122724610.1016/j.jconrel.2021.11.024 34822909
    [Google Scholar]
  4. ShahA. AftabS. NisarJ. AshiqM.N. IftikharF.J. Nanocarriers for targeted drug delivery.J. Drug Deliv. Sci. Technol.20216210242610.1016/j.jddst.2021.102426
    [Google Scholar]
  5. Dutta GuptaY. MackeyevY. KrishnanS. BhandaryS. Mesoporous silica nanotechnology: promising advances in augmenting cancer theranostics.Cancer Nanotechnol.2024151910.1186/s12645‑024‑00250‑w
    [Google Scholar]
  6. ChenL. ZhangS. DuanY. SongX. ChangM. FengW. ChenY. Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application.Chem. Soc. Rev.20245331167131510.1039/D1CS01022K 38168612
    [Google Scholar]
  7. ZhouS. ZhongQ. WangY. HuP. ZhongW. HuangC-B. YuZ-Q. DingC-D. LiuH. FuJ. Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases.Coord. Chem. Rev.202245221430910.1016/j.ccr.2021.214309
    [Google Scholar]
  8. KarimiM. MirshekariH. AliakbariM. Sahandi-ZangabadP. HamblinM.R. Smart mesoporous silica nanoparticles for controlled-release drug delivery.Nanotechnol. Rev.20165210.1515/ntrev‑2015‑0057
    [Google Scholar]
  9. SlowingI. ViveroescotoJ. WuC. LinV. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers.Adv. Drug Deliv. Rev.200860111278128810.1016/j.addr.2008.03.012 18514969
    [Google Scholar]
  10. KhalbasA.H. AlbayatiT.M. SaadyN.M.C. ZendehboudiS. SalihI.K. TofahM.L. Insights into drug loading techniques with mesoporous silica nanoparticles: Optimization of operating conditions and assessment of drug stability.J. Drug Deliv. Sci. Technol.20249610569810.1016/j.jddst.2024.105698
    [Google Scholar]
  11. RizziF. CastaldoR. LatronicoT. LasalaP. GentileG. LavorgnaM. StriccoliM. AgostianoA. ComparelliR. DepaloN. CurriM.L. FanizzaE. High surface area mesoporous silica nanoparticles with tunable size in the sub-micrometer regime: insights on the size and porosity control mechanisms.Molecules20212614424710.3390/molecules26144247 34299522
    [Google Scholar]
  12. Vallet-RegíM. ColillaM. Izquierdo-BarbaI. ManzanoM. Mesoporous Silica Nanoparticles for Drug Delivery: Current Insights.Molecules20172314710.3390/molecules23010047 29295564
    [Google Scholar]
  13. GhaferiM. Koohi Moftakhari EsfahaniM. RazaA. Al HarthiS. Ebrahimi ShahmabadiH. AlaviS.E. Mesoporous silica nanoparticles: synthesis methods and their therapeutic use-recent advances.J. Drug Target.202129213115410.1080/1061186X.2020.1812614 32815741
    [Google Scholar]
  14. Garrido-CanoI. Candela-NogueraV. HerreraG. CejalvoJ.M. LluchA. MarcosM.D. SancenonF. ErolesP. Martínez-MáñezR. Biocompatibility and internalization assessment of bare and functionalised mesoporous silica nanoparticles.Microp. Meso. Mater.202131011059310.1016/j.micromeso.2020.110593
    [Google Scholar]
  15. HuY. BaiS. WuX. TanS. HeY. Biodegradability of mesoporous silica nanoparticles.Ceram. Int.20214722310313104110.1016/j.ceramint.2021.08.129
    [Google Scholar]
  16. Vallet-RegíM. SchüthF. LozanoD. ColillaM. ManzanoM. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades?Chem. Soc. Rev.202251135365545110.1039/D1CS00659B 35642539
    [Google Scholar]
  17. SarkarR. BiswasS. GhoshR. SamantaP. PakhiraS. MondalM. Dutta GuptaY. BhandaryS. SahaP. BhowmikA. HajraS. Exosome-sheathed porous silica nanoparticle-mediated co-delivery of 3,3′-diindolylmethane and doxorubicin attenuates cancer stem cell-driven EMT in triple negative breast cancer.J. Nanobiotechnology202422128510.1186/s12951‑024‑02518‑0 38796426
    [Google Scholar]
  18. MundžićM. UltimoA. MladenovićM. PavlovićA. GobboO.L. Ruiz-HernandezE. Santos-MartinezM.J. KneževićN.Ž. Chlorotoxin-functionalized mesoporous silica nanoparticles for pH-responsive paclitaxel delivery to Glioblastoma multiforme.Heliyon2025111e4115110.1016/j.heliyon.2024.e41151 39758413
    [Google Scholar]
  19. FeiH. JinY. JiangN. ZhouY. WeiN. LiuY. MiaoJ. ZhangL. LiR. ZhangA. DuS. Gint4.T-siHDGF chimera-capped mesoporous silica nanoparticles encapsulating temozolomide for synergistic glioblastoma therapy.Biomaterials202430612247910.1016/j.biomaterials.2024.122479 38295649
    [Google Scholar]
  20. LiZ.Y. LiuY. WangX.Q. LiuL.H. HuJ.J. LuoG.F. ChenW.H. RongL. ZhangX.Z. One-pot construction of functional mesoporous silica nanoparticles for the tumor-acidity-activated synergistic chemotherapy of glioblastoma.ACS Appl. Mater. Interfaces20135167995800110.1021/am402082d 23869943
    [Google Scholar]
  21. SlapakE.J. KongL. el MandiliM. NieuwlandR. KrosA. BijlsmaM.F. SpekC.A. ADAM9-responsive mesoporous silica nanoparticles for targeted drug delivery in pancreatic cancer.Cancers (Basel)20211313332110.3390/cancers13133321 34282781
    [Google Scholar]
  22. SlapakE.J. el MandiliM. Ten BrinkM.S. KrosA. BijlsmaM.F. SpekC.A. CAPN2-responsive mesoporous silica nanoparticles: A promising nanocarrier for targeted therapy of pancreatic cancer.Cancer Lett.202459021684510.1016/j.canlet.2024.216845 38589004
    [Google Scholar]
  23. LinQ. GuanS. PengM. YuH. A mesoporous silica-based nano-drug co-delivery system with gemcitabine for targeted therapy of pancreatic cancer.J. Coll. Physicians Surg. Pak.202434121456146310.29271/jcpsp.2024.12.1456 39648379
    [Google Scholar]
  24. LiY. DuoY. ZhaiP. HeL. ZhongK. ZhangY. HuangK. LuoJ. ZhangH. YuX. Dual targeting delivery of miR-328 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy.Nanomedicine (Lond.)201813141753177210.2217/nnm‑2017‑0353 30084727
    [Google Scholar]
  25. LiY. DuoY. BaoS. HeL. LingL. LuoJ. ZhangY. HuangH. ZhangH. YuX. EpCAM aptamer-functionalized polydopamine-coated mesoporous silica nanoparticles loaded with DM1 for targeted therapy in colorectal cancer.Int. J. Nanomedicine2017126239625710.2147/IJN.S143293 28894364
    [Google Scholar]
  26. Kamil Mohammad Al-MosawiA. BahramiA.R. NekooeiS. SaljooghiA.S. MatinM.M. Using magnetic mesoporous silica nanoparticles armed with EpCAM aptamer as an efficient platform for specific delivery of 5-fluorouracil to colorectal cancer cells.Front. Bioeng. Biotechnol.202310109583710.3389/fbioe.2022.1095837 36686226
    [Google Scholar]
  27. LiZ. ZhangY. ZhangK. WuZ. FengN. Biotinylated-lipid bilayer coated mesoporous silica nanoparticles for improving the bioavailability and anti-leukaemia activity of Tanshinone IIA.Artif. Cells Nanomed. Biotechnol.201846Suppl. 157858710.1080/21691401.2018.1431651 29374971
    [Google Scholar]
  28. LiZ. ZhangY. ZhuC. GuoT. XiaQ. HouX. LiuW. FengN. Folic acid modified lipid-bilayer coated mesoporous silica nanoparticles co-loading paclitaxel and tanshinone IIA for the treatment of acute promyelocytic leukemia.Int. J. Pharm.202058611957610.1016/j.ijpharm.2020.119576 32603839
    [Google Scholar]
  29. HeydariS.R. GhahremaniM.H. AtyabiF. BafkaryR. JaafariM.R. DinarvandR. Aptamer-modified chitosan-capped mesoporous silica nanoparticles for co-delivery of cytarabine and daunorubicin in leukemia.Int. J. Pharm.202364612349510.1016/j.ijpharm.2023.123495 37806507
    [Google Scholar]
  30. GuY. FeiZ. Mesoporous silica nanoparticles loaded with resveratrol are used for targeted breast cancer therapy.J. Oncol.2022202211110.1155/2022/8471331 36245986
    [Google Scholar]
  31. WangW. ZhongF. WangD. ZhaoY. PengD. LiS. NingQ. TangS. YuC.Y. WeiH. Dual gatekeepers-modified mesoporous organic silica nanoparticles for synergistic photothermal-chemotherapy of breast cancer.J. Colloid Interface Sci.202364611812810.1016/j.jcis.2023.05.018 37187045
    [Google Scholar]
  32. Garrido-CanoI. Adam-ArtiguesA. LameirinhasA. BlandezJ.F. Candela-NogueraV. LluchA. BermejoB. SancenónF. CejalvoJ.M. Martínez-MáñezR. ErolesP. Delivery of miR-200c-3p using tumor-targeted mesoporous silica nanoparticles for breast cancer therapy.ACS Appl. Mater. Interfaces20231532383233833410.1021/acsami.3c07541 37549382
    [Google Scholar]
  33. MoralesV. McConnellJ. Pérez-GarnesM. AlmendroN. SanzR. García-MuñozR.A. L -Dopa release from mesoporous silica nanoparticles engineered through the concept of drug-structure-directing agents for Parkinson’s disease.J. Mater. Chem. B Mater. Biol. Med.20219204178418910.1039/D1TB00481F 33989370
    [Google Scholar]
  34. SivamaruthiB.S. KapoorD.U. KukkarR.R. GaurM. ElossailyG.M. PrajapatiB.G. ChaiyasutC. Mesoporous silica nanoparticles: types, synthesis, role in the treatment of alzheimer’s disease, and other applications.Pharmaceutics20231512266610.3390/pharmaceutics15122666 38140007
    [Google Scholar]
  35. Montalvo-QuirósS. Vallet-RegíM. PalaciosA. AnguitaJ. Prados-RosalesR.C. GonzálezB. Luque-GarciaJ.L. Mesoporous silica nanoparticles as a potential platform for vaccine development against tuberculosis.Pharmaceutics20201212121810.3390/pharmaceutics12121218 33339306
    [Google Scholar]
  36. ClemensD.L. LeeB.Y. XueM. ThomasC.R. MengH. FerrisD. NelA.E. ZinkJ.I. HorwitzM.A. Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles.Antimicrob. Agents Chemother.20125652535254510.1128/AAC.06049‑11 22354311
    [Google Scholar]
  37. Montalvo-QuirósS. Gómez-GrañaS. Vallet-RegíM. Prados-RosalesR.C. GonzálezB. Luque-GarciaJ.L. Mesoporous silica nanoparticles containing silver as novel antimycobacterial agents against Mycobacterium tuberculosis.Colloids Surf. B Biointerfaces202119711140510.1016/j.colsurfb.2020.111405 33130523
    [Google Scholar]
  38. KimS.J. ChoiY. MinK.T. HongS. Dexamethasone-loaded radially mesoporous silica nanoparticles for sustained anti-inflammatory effects in rheumatoid arthritis.Pharmaceutics202214598510.3390/pharmaceutics14050985 35631571
    [Google Scholar]
  39. WuY. ChenW. ZengY. JiQ. YangY. GuoX. WangX. Inflammation-responsive mesoporous silica nanoparticles with synergistic anti-inflammatory and joint protection effects for rheumatoid arthritis treatment.Pharm. Res.20244171493150510.1007/s11095‑024‑03732‑z 38918308
    [Google Scholar]
  40. LiX. HouY. MengX. LiG. XuF. TengL. SunF. LiY. Folate receptor-targeting mesoporous silica-coated gold nanorod nanoparticles for the synergistic photothermal therapy and chemotherapy of rheumatoid arthritis.RSC Advances20211163567357410.1039/D0RA08689D 35424296
    [Google Scholar]
  41. Díaz-GarcíaD. Ferrer-DonatoÁ. Méndez-ArriagaJ.M. Cabrera-PintoM. Díaz-SánchezM. PrasharS. Fernandez-MartosC.M. Gómez-RuizS. Design of mesoporous silica nanoparticles for the treatment of amyotrophic lateral sclerosis (ALS) with a therapeutic cocktail based on leptin and pioglitazone.ACS Biomater. Sci. Eng.20228114838484910.1021/acsbiomaterials.2c00865 36240025
    [Google Scholar]
  42. Leyton-JaimesM.F. IvertP. HoeberJ. HanY. FeilerA. ZhouC. PankratovaS. Shoshan-BarmatzV. IsraelsonA. KozlovaE.N. Empty mesoporous silica particles significantly delay disease progression and extend survival in a mouse model of ALS.Sci. Rep.20201012067510.1038/s41598‑020‑77578‑x 33244084
    [Google Scholar]
  43. ThomsonC.A. HoE. StromM.B. Chemopreventive properties of 3,3′-diindolylmethane in breast cancer: evidence from experimental and human studies.Nutr. Rev.201674743244310.1093/nutrit/nuw010 27261275
    [Google Scholar]
  44. HajraS. BasuA. Singha RoyS. PatraA.R. BhattacharyaS. Attenuation of doxorubicin-induced cardiotoxicity and genotoxicity by an indole-based natural compound 3,3′-diindolylmethane (DIM) through activation of Nrf2/ARE signaling pathways and inhibiting apoptosis.Free Radic. Res.2017519-1081282710.1080/10715762.2017.1381694 28922986
    [Google Scholar]
  45. HongC. FirestoneG.L. BjeldanesL.F. Bcl-2 family-mediated apoptotic effects of 3,3′-diindolylmethane (DIM) in human breast cancer cells.Biochem. Pharmacol.20026361085109710.1016/S0006‑2952(02)00856‑0 11931841
    [Google Scholar]
  46. PaltsevM. KiselevV. MuyzhnekE. DrukhV. KuznetsovI. PchelintsevaO. Comparative preclinical pharmacokinetics study of 3,3′-diindolylmethane formulations: is personalized treatment and targeted chemoprevention in the horizon?EPMA J.2013412510.1186/1878‑5085‑4‑25 24325835
    [Google Scholar]
  47. RenG. SuH. WangS. The combined method to synthesis silica nanoparticle by Stöber process.J. Sol-Gel Sci. Technol.202096110812010.1007/s10971‑020‑05322‑y
    [Google Scholar]
  48. RashidiL. GanjiF. Vasheghani-FarahaniE. Fluorescein isothiocyanate‐dyed mesoporous silica nanoparticles for tracking antioxidant delivery.IET Nanobiotechnol.201711445446210.1049/iet‑nbt.2016.0120 28530196
    [Google Scholar]
  49. GhoshA. BhowmikA. BhandaryS. PutatundaS. LaskarA. BiswasA. DoluiS. BanerjeeB. KhanR. DasN. ChakrabortyA. GhoshM.K. SenP.C. Formulation and antitumorigenic activities of nanoencapsulated nifetepimine: A promising approach in treating triple negative breast carcinoma.Nanomedicine20161271973198510.1016/j.nano.2016.04.011 27133192
    [Google Scholar]
  50. LyJ.D. GrubbD.R. LawenA. The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update.Apoptosis20038211512810.1023/A:1022945107762 12766472
    [Google Scholar]
  51. EleftheriadisT. PissasG. LiakopoulosV. StefanidisI. Cytochrome c as a potentially clinical useful marker of mitochondrial and cellular damage.Front. Immunol.2016727910.3389/fimmu.2016.00279 27489552
    [Google Scholar]
  52. MadarI. SultanG. ChelliahR. OhD-H. Screening for anticancer activity: trypan blue exclusion assay.In: Methods in Actinobacteriology; Dharumadurai, D. Ed.; Springer Protocols Handbooks:New York, NYHumana202244344810.1007/978‑1‑0716‑1728‑1_59
    [Google Scholar]
  53. BianchiniG. BalkoJ.M. MayerI.A. SandersM.E. GianniL. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease.Nat. Rev. Clin. Oncol.2016131167469010.1038/nrclinonc.2016.66 27184417
    [Google Scholar]
  54. NedeljkovićM. DamjanovićA. Mechanisms of chemotherapy resistance in triple-negative breast cancer—how we can rise to the challenge.Cells20198995710.3390/cells8090957 31443516
    [Google Scholar]
  55. Al-AntaryE.T. GupteA. CarterJ. KaafaraniM. HowardM. EdwardsH. GeY. TaubJ.W. Curing childhood cancer the “Natural” Way: Nature as the source of chemotherapy agents.Biochem. Pharmacol.202321311563010.1016/j.bcp.2023.115630 37263301
    [Google Scholar]
  56. HeX. LiaoY. LiuJ. SunS. Research progress of natural small-molecule compounds related to tumor differentiation.Molecules2022277212810.3390/molecules27072128 35408534
    [Google Scholar]
  57. ShanmugamM.K. WarrierS. KumarA.P. SethiG. ArfusoF. Potential role of natural compounds as anti-angiogenic agents in cancer.Curr. Vasc. Pharmacol.201715650351910.2174/1570161115666170713094319 28707601
    [Google Scholar]
  58. ChauhanV.P. StylianopoulosT. BoucherY. JainR.K. Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies.Annu. Rev. Chem. Biomol. Eng.20112128129810.1146/annurev‑chembioeng‑061010‑114300 22432620
    [Google Scholar]
  59. KumarM. KulkarniP. LiuS. ChemuturiN. ShahD.K. Nanoparticle biodistribution coefficients: A quantitative approach for understanding the tissue distribution of nanoparticles.Adv. Drug Deliv. Rev.202319411470810.1016/j.addr.2023.114708 36682420
    [Google Scholar]
  60. HaripriyaaM. SuthindhiranK. Pharmacokinetics of nanoparticles: current knowledge, future directions and its implications in drug delivery.Future J. Pharm. Sci.20239111310.1186/s43094‑023‑00569‑y
    [Google Scholar]
  61. HoshyarN. GrayS. HanH. BaoG. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction.Nanomedicine (Lond.)201611667369210.2217/nnm.16.5 27003448
    [Google Scholar]
  62. GalabovaB.B. Mesoporous silica nanoparticles: Synthesis, functionalization, drug loading and release - A review.Trop. J. Pharm. Res.20222051091110010.4314/tjpr.v20i5.30
    [Google Scholar]
  63. LiH. ChenX. ShenD. WuF. PleixatsR. PanJ. Functionalized silica nanoparticles: classification, synthetic approaches and recent advances in adsorption applications.Nanoscale20211338159981601610.1039/D1NR04048K 34546275
    [Google Scholar]
  64. GhobadiM. SalehiS. ArdestaniM.T.S. Mousavi-KhattatM. ShakeranZ. KhosraviA. CordaniM. ZarrabiA. Amine-functionalized mesoporous silica nanoparticles decorated by silver nanoparticles for delivery of doxorubicin in breast and cervical cancer cells.Eur. J. Pharm. Biopharm.202420111434910.1016/j.ejpb.2024.114349 38848782
    [Google Scholar]
  65. JelínekM. BalušíkováK. SchmiedlováM. Němcová-FürstováV. ŠrámekJ. StančíkováJ. ZanardiI. OjimaI. KovářJ. The role of individual caspases in cell death induction by taxanes in breast cancer cells.Cancer Cell Int.2015151810.1186/s12935‑015‑0155‑7 25685064
    [Google Scholar]
  66. KaymazS.V. NobarH.M. SarıgülH. SoylukanC. AkyüzL. YüceM. Nanomaterial surface modification toolkit: Principles, components, recipes, and applications.Adv. Colloid Interface Sci.202332210303510.1016/j.cis.2023.103035 37931382
    [Google Scholar]
  67. PeterJ. NechikkattuR. MohanA. Maria ThomasA. HaC.S. Stimuli-responsive organic-inorganic mesoporous silica hybrids: A comprehensive review on synthesis and recent advances.Mater. Sci. Eng. B202127011523210.1016/j.mseb.2021.115232
    [Google Scholar]
  68. CormaA. BotellaP. Rivero-BucetaE. Silica-Based Stimuli-Responsive Systems for Antitumor Drug Delivery and Controlled Release.Pharmaceutics202214111010.3390/pharmaceutics14010110 35057006
    [Google Scholar]
  69. ZhaoH. LiY. ChenJ. ZhangJ. YangQ. CuiJ. ShiA. WuJ. Environmental stimulus-responsive mesoporous silica nanoparticles as anticancer drug delivery platforms.Colloids Surf. B Biointerfaces202423411375810.1016/j.colsurfb.2024.113758 38241892
    [Google Scholar]
  70. MohanA. SanthamoorthyM. LeeY.C. Recent advances in the pH-responsive organic–inorganic mesoporous hybrid silica for targeted drug delivery.Eur. Polym. J.202420611278310.1016/j.eurpolymj.2024.112783
    [Google Scholar]
  71. ChangJ. MoL. SongJ. WangX. LiuH. MengC. WuY. A pH-responsive mesoporous silica nanoparticle-based drug delivery system for targeted breast cancer therapy.J. Mater. Chem. B Mater. Biol. Med.202210173375338510.1039/D1TB02828F 35388835
    [Google Scholar]
  72. TabasiH. Hamed MosavianM.T. SabouriZ. KhazaeiM. DarroudiM. pH-responsive and CD44-targeting by Fe3O4/MSNs-NH2 nanocarriers for Oxaliplatin loading and colon cancer treatment.Inorg. Chem. Commun.202112510843010.1016/j.inoche.2020.108430
    [Google Scholar]
  73. ZhuY. BaiY. HeJ. QiuX. Advances in the stimuli-responsive mesoporous silica nanoparticles as drug delivery system nanotechnology for controlled release and cancer therapy. 3 Biotech.,202313827410.1007/s13205‑023‑03651‑7 37457870
    [Google Scholar]
  74. JiangY. SalleyD. SharmaA. KeenanG. MullinM. CroninL. An artificial intelligence enabled chemical synthesis robot for exploration and optimization of nanomaterials.Sci. Adv.2022840eabo262610.1126/sciadv.abo2626 36206340
    [Google Scholar]
  75. TaoH. WuT. AldeghiM. WuT.C. Aspuru-GuzikA. KumachevaE. Nanoparticle synthesis assisted by machine learning.Nat. Rev. Mater.20216870171610.1038/s41578‑021‑00337‑5
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812373327250509094328
Loading
/content/journals/nanoasi/10.2174/0122106812373327250509094328
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test