Skip to content
2000
Volume 15, Issue 3
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

Background

Gallic acid (GA) is an important biomarker with significant relevance in the food, pharmaceutical, and environmental industries, requiring highly sensitive and selective detection techniques.

Aim

This study presents the development of a robust electrochemical sensor for GA detection, utilizing a zinc oxide/graphene oxide (ZnO/GO) nanocomposite-modified electrode, with a focus on applications for assessing the impact of GA on oral health.

Methods

GO was synthesized a modified Hummers' method, while ZnO nanoparticles with rod-shaped morphology were prepared hydrothermally. The ZnO/GO composite film was prepared by combining their dispersions and thermal treatment.

Results

UV-visible spectra confirmed the interaction between ZnO and GO through redshift, and FTIR analysis revealed characteristic Zn-O and C-O bonds. Cyclic voltammetry (CV) demonstrated that the ZnO/GO-modified electrode detects GA at a remarkably low potential (0.1 V vs. Ag/AgCl) compared to previously reported GA sensors.

Conclusion

This new sensor exhibited a low detection limit of 31 μM and a wide linear response range from 50 – 300 µM with excellent sensitivity (slope = 0.0537 µA/µM, R2 = 0.9971). In the future, this sensor may find some application in the field of dentistry to monitor the efficacy of the GA for patients undergoing dental treatments like dentin hypersensitivity, proliferation of oral bacteria, oral ulcer, plaque, remineralization, and gingivitis.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812375545250313081034
2025-03-21
2025-10-10
Loading full text...

Full text loading...

References

  1. SanchesP.R.S. CarneiroB.M. BatistaM.N. BragaA.C.S. LorenzónE.N. RahalP. CilliE.M. A conjugate of the lytic peptide Hecate and gallic acid: Structure, activity against cervical cancer, and toxicity.Amino Acids20154771433144310.1007/s00726‑015‑1980‑7 25868656
    [Google Scholar]
  2. SantamaríaE. MaestroA. ChowdhuryS. VílchezS. GonzálezC. Rheological study of pullulan-pectin mixtures to prepare gel beads using the drip method and evaluation as gallic acid release systems.Food Hydrocoll.202516011074711074710.1016/j.foodhyd.2024.110747
    [Google Scholar]
  3. HarlenW.C. PrakashS. YulianiS. BhandariB. Encapsulation of gallic acid in alginate/lactoferrin composite hydrogels: Physical properties and gallic acid diffusion.Food Hydrocoll.202516011078411078410.1016/j.foodhyd.2024.110784
    [Google Scholar]
  4. PrajatelistiaE. JuS.W. SanandiyaN.D. JunS.H. AhnJ.S. HwangD.S. Tunicate-inspired Gallic acid/metal ion complex for instant and efficient treatment of dentin hypersensitivity.Adv. Healthc. Mater.20165891992710.1002/adhm.201500878 26867019
    [Google Scholar]
  5. ChoubeyS. VarugheseL.R. KumarV. BeniwalV. Medicinal importance of gallic acid and its ester derivatives: A patent review.Pharm. Pat. Anal.20154430531510.4155/ppa.15.14 26174568
    [Google Scholar]
  6. AbrahamsD. BakerP.G.L. 3-methyl thiophene-modified boron-doped Diamond (BDD) electrodes as efficient catalysts for phenol detection-A case study for the detection of Gallic acid in three specific tea types.Foods20241315244710.3390/foods13152447 39123638
    [Google Scholar]
  7. ZhouT. ChenD. LiH. GeD. ChenX. Enhanced oxidase mimic activity of raspberry-like N-doped Mn3O4 with oxygen vacancies for efficient colorimetric detection of gallic acid coupled with smartphone.Food Chem.202444713891913891910.1016/j.foodchem.2024.138919 38452538
    [Google Scholar]
  8. SantagatiN.A. SalernoL. AttaguileG. SavocaF. RonsisvalleG. Simultaneous determination of catechins, rutin, and gallic acid in Cistus species extracts by HPLC with diode array detection.J. Chromatogr. Sci.200846215015610.1093/chromsci/46.2.150 18366875
    [Google Scholar]
  9. WangY. ChenJ. ZhouK. ChenJ. ZhangJ. HuaY. ChenJ. GuoH. QiuX. A boronic acid functionalized terbium metal–organic framework for fluorescence detection and adsorption of gallic acid.Spectrochim. Acta A Mol. Biomol. Spectrosc.202532712542512542510.1016/j.saa.2024.125425 39541646
    [Google Scholar]
  10. HuC. YinY. HuangC. DongY. LiuJ. XiaoF. YangS. Cobalt-nitrogen co-doped carbon dots for the colorimetric and fluorometric dual-mode detection of gallic acid.Microchem. J.202419710973510973510.1016/j.microc.2023.109735
    [Google Scholar]
  11. GhodakeG. ShindeS. KadamA. SarataleR.G. SarataleG.D. SyedA. ShairO. AlsaediM. KimD-Y. Gallic acid-functionalized silver nanoparticles as colorimetric and spectrophotometric probe for detection of Al3+ in aqueous medium.J. Ind. Eng. Chem.20208224325310.1016/j.jiec.2019.10.019
    [Google Scholar]
  12. GuoM. ZhuG. MishchenkoY. ButenkoA. KovalenkoV. RozhkovaT. ZhaoH. Highly sensitive electrochemical detection of gallic acid in tea samples by using single-walled carbon nanotubes@silica dioxide nanoparticles decorated electrode.Int. J. Electrochem. Sci.2023181010029110.1016/j.ijoes.2023.100291
    [Google Scholar]
  13. QinF. HuT. YouL. ChenW. JiaD. HuN. QiW. Electrochemical detection of Gallic acid in green tea using molecularly imprinted polymers on TiO2@CNTs nanocomposite modified glassy carbon electrode.Int. J. Electrochem. Sci.202217422042610.20964/2022.04.06
    [Google Scholar]
  14. SridharanG. MuruganR.V. AtchudanR. AryaS. SundramoorthyA.K. Electrochemical detection of dopamine using green synthesized gold nanoparticles from Strobilanthes kunthiana’s leaf extract.Nano Life2025152245001510.1142/S1793984424500156
    [Google Scholar]
  15. SundramoorthyA.K. Vignesh KumarT.H. GunasekaranS. Graphene-based nanosensors and smart food packaging systems for food safety and quality monitoring.Graphene Bioelectronics.Amsterdam, NetherlandElsevier201826730610.1016/B978‑0‑12‑813349‑1.00012‑3
    [Google Scholar]
  16. GuanF. DongH. XiangY. ZhangM. HuangJ. WangG. ShenZ. XuD. SunX. GuoY. ZhaoS. Novel electrochemical aptasensor based on floral zinc oxide/reduced graphene oxide/colloidal gold composite for the detection of tetracycline, doxycycline and oxytetracycline in milk.J. Electrochem. Soc.20221691212750110.1149/1945‑7111/ac9d6d
    [Google Scholar]
  17. ZhangX. ZhangY.C. MaL.X. One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid.Sens. Actuators B Chem.201622748849610.1016/j.snb.2015.12.073
    [Google Scholar]
  18. SubashR. MadhivananK. AtchudanR. AryaS. SundramoorthyA.K. Development of an electrochemical sensor for the detection of paracetamol using graphitic carbon nitride and single-walled carbon nanotubes.Diamond Related Materials202515211194011194010.1016/j.diamond.2024.111940
    [Google Scholar]
  19. DubeyA. SinghA. SundramoorthyA.K. DixitS. VatinN.I. RatherM.D. AryaS. Synthesis and characterization of GO/TiO2-based electrode for the detection of ethyl lactate: A simulant of chemical warfare agent.J. Environ. Chem. Eng.202513111515510.1016/j.jece.2024.115155
    [Google Scholar]
  20. ShihY.J. WuZ.L. LinS.K. Electrochemical detection of paracetamol using zeolitic imidazolate framework and graphene oxide derived zinc/nitrogen-doped carbon.Sens. Actuators B Chem.202440913560013560010.1016/j.snb.2024.135600
    [Google Scholar]
  21. HeshamN. MahmoudA.M. HegazyM.A. WagdyH.A. Electrochemical sensor modified with graphene oxide decorated with copper oxide nanoparticles for velpatasvir’s monitoring in spiked human plasma.J. Electrochem. Soc.2024171505751110.1149/1945‑7111/ad4a98
    [Google Scholar]
  22. RajendranJ. KannanT.S. DhanasekaranL.S. MuruganP. AtchudanR. ALOthman, Z.A.; Ouladsmane, M.; Sundramoorthy, A.K. Preparation of 2D Graphene/MXene nanocomposite for the electrochemical determination of hazardous bisphenol A in plastic products.Chemosphere2022287Pt 213210610.1016/j.chemosphere.2021.132106 34507149
    [Google Scholar]
  23. IslamR. SahaS.S. RaenR. IslamN. IslamT. Unveiling the synthesis, characteristics, electrical conductivity, photocatalytic activity, and electrochemical activity of eco-friendly zinc oxide nanoparticles.Adv. Sens. Ener. Mater.20243310010510.1016/j.asems.2024.100105
    [Google Scholar]
  24. AbdallaR. MahmoudA.M. Abou Al-AlameinA.M. GalalM.M. El MouslyD.A. Point-of-care sensor using modified nickel-doped zinc oxide nanoparticle carbon paste electrode for homovanillic acid cancer biomarker detection in urine.J. Electrochem. Soc.20241711111750910.1149/1945‑7111/ad8ca9
    [Google Scholar]
  25. AparnaS.M. RakhiR.B. A non-enzymatic electrochemical sensor based on zinc oxide/reduced graphene oxide (ZnO/rGO) nanocomposite for effective detection of urea.Mater. Sci. Eng. B202531211786211786210.1016/j.mseb.2024.117862
    [Google Scholar]
  26. PandiyanR. VeerakumarP. ChenS.M. RameshkumarP. N-doped ZnWO4 nanorods decorated on N-doped reduced graphene oxide sheets for electrochemical detection of diphenylamine.ACS Appl. Nano Mater.2024711125071252010.1021/acsanm.4c00956
    [Google Scholar]
  27. HuangM.S. GovindasamyM. ChinnapaiyanS. LinY.T. LuS.Y. SamukawaS. HuangC-H. Electrochemical biosensor based on an atomic layered composite of graphene oxide/graphene as an electrode material towards selective and sensitive detection of miRNA-21.Microchem. J.202419911011211011210.1016/j.microc.2024.110112
    [Google Scholar]
  28. MunusamyN. Don DisouzaF.P. ChenS.M. KrishnanK. JothinathanM.K.D. PrakashB. Facile fabrication of bismuth oxide anchored graphene oxide for the effective electrochemical sensing of diuron.J. Taiwan Inst. Chem. Eng.202416510570810570810.1016/j.jtice.2024.105708
    [Google Scholar]
  29. LiuY. XiaoY. ZhangY. GaoX. WangH. NiuB. LiW. ZnO-rGO-based electrochemical biosensor for the detection of organophosphorus pesticides.Bioelectrochemistry202415610859910859910.1016/j.bioelechem.2023.108599 37988979
    [Google Scholar]
  30. HummersW.S.Jr OffemanR.E. Preparation of graphitic oxide.J. Am. Chem. Soc.19588061339133910.1021/ja01539a017
    [Google Scholar]
  31. ZakA.K. AbrishamiM.E. MajidW.H.A. YousefiR. HosseiniS.M. Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol–gel combustion method.Ceram. Int.201137139339810.1016/j.ceramint.2010.08.017
    [Google Scholar]
  32. KaliyaperumalV. AlharbiR.I. RajendhranH. GopalD.R. Al-OtibiF.O. Beta-cyclodextrin– Phyllanthus emblica emulsion for zinc oxide nanoparticles: Characteristics and photocatalysis.Green Process. Synth.20241312024005610.1515/gps‑2024‑0056
    [Google Scholar]
  33. KaurG. SondhiS. KaurP.S. KambojA. VermaS. Synthesis and characterisation of zinc oxide nanoparticles and its antimicrobial activity against Staphylococcus aureus and Micrococcus.Int. J. Nanopart.20211329610.1504/IJNP.2021.116775
    [Google Scholar]
  34. ArfinT. BushraR. MohammadF. Electrochemical sensor for the sensitive detection of o-nitrophenol using graphene oxide-poly(ethyleneimine) dendrimer-modified glassy carbon electrode.Graphene Technol.201611-411510.1007/s41127‑016‑0002‑1
    [Google Scholar]
  35. AfzalH. IkramM. AliS. ShahzadiA. AqeelM. HaiderA. ImranM. AliS. Enhanced drug efficiency of doped ZnO–GO (graphene oxide) nanocomposites, a new gateway in drug delivery systems (DDSs).Mater. Res. Express20207101540510.1088/2053‑1591/ab61ae
    [Google Scholar]
  36. AhmadS.Z.N. SallehW.N.W. YusofN. YusopM.Z.M. HamdanR. AwangN.A. Efficient removal of Pb(II) from aqueous solution using zinc oxide/graphene oxide composite. IOP Conf. Ser. Mater. Sci. Eng.,202073605200210.1088/1757‑899X/736/5/052002
    [Google Scholar]
  37. SugiantoS. AstutiB. RahayuE.F. SulistyaningsihT. YasirohN. YantiI.F. AryantoD. Hydrothermal synthesis of GO/ZnO composites and their micromorphology and electrochemical performance.Int. J. Electrochem. Sci.202318510010910.1016/j.ijoes.2023.100109
    [Google Scholar]
  38. ChikereC.O. FaisalN.H. Kong-Thoo-LinP. FernandezC. Interaction between amorphous Zirconia nanoparticles and graphite: Electrochemical applications for Gallic acid sensing using carbon paste electrodes in wine.Nanomaterials (Basel)202010353710.3390/nano10030537 32192127
    [Google Scholar]
  39. FalahiS. FalahiS. ZarejousheghaniM. EhrlichH. JosephY. RahimiP. Electrochemical sensing of Gallic acid in beverages using a 3D bio-nanocomposite based on carbon nanotubes/spongin-atacamite.Biosensors (Basel)202313226210.3390/bios13020262 36832028
    [Google Scholar]
  40. TashkhourianJ. Nami-AnaS.F. A sensitive electrochemical sensor for determination of gallic acid based on SiO2 nanoparticle modified carbon paste electrode.Mater. Sci. Eng. C20155210311010.1016/j.msec.2015.03.017 25953546
    [Google Scholar]
  41. ChikereC.O. FaisalN.H. Kong Thoo LinP. FernandezC. The synergistic effect between graphene oxide nanocolloids and silicon dioxide nanoparticles for gallic acid sensing.J. Solid State Electrochem.20192361795180910.1007/s10008‑019‑04267‑9
    [Google Scholar]
  42. SouzaL.P. CalegariF. ZarbinA.J.G. Marcolino-JúniorL.H. BergaminiM.F. Voltammetric determination of the antioxidant capacity in wine samples using a carbon nanotube modified electrode.J. Agric. Food Chem.201159147620762510.1021/jf2005589 21692474
    [Google Scholar]
  43. NovakI. ŠerugaM. Komorsky-LovrićŠ. Electrochemical characterization of epigallocatechin gallate using square‐wave voltammetry.Electroanalysis20092191019102510.1002/elan.200804509
    [Google Scholar]
  44. BaghayeriM. AmiriA. HasheminejadE. MahdaviB. Poly(aminohippuric acid)–sodium dodecyl sulfate/functionalized graphene oxide nanocomposite for amplified electrochemical sensing of gallic acid.J. Indian Chem. Soc.20181591931193810.1007/s13738‑018‑1390‑3
    [Google Scholar]
  45. GaoF. ZhengD. TanakaH. ZhanF. YuanX. GaoF. WangQ. An electrochemical sensor for gallic acid based on Fe2O3/electro-reduced graphene oxide composite: Estimation for the antioxidant capacity index of wines.Mater. Sci. Eng. C20155727928710.1016/j.msec.2015.07.025 26354265
    [Google Scholar]
  46. FeminusJ.J. ManikandanR. NarayananS.S. DeepaP.N. Determination of gallic acid using poly(glutamic acid): Graphene modified electrode.J. Chem. Sci.201913121110.1007/s12039‑018‑1587‑0
    [Google Scholar]
  47. KrishnanV. GunasekaranE. PrabhakaranC. KanagavalliP. AnanthV. VeerapandianM. Electropolymerized methylene blue on graphene oxide framework for the direct voltammetric detection of gallic acid.Mater. Chem. Phys.202329512707112707110.1016/j.matchemphys.2022.127071
    [Google Scholar]
  48. WangX. TanW. WangY. WuD. KongY. Electrosynthesis of poly(m-phenylenediamine) on the nanocomposites of palygorskite and ionic liquid for electrocatalytic sensing of gallic acid.Sens. Actuators B Chem.2019284637210.1016/j.snb.2018.12.133
    [Google Scholar]
  49. Abdel-HamidR. NewairE.F. Adsorptive stripping voltammetric determination of gallic acid using an electrochemical sensor based on polyepinephrine/glassy carbon electrode and its determination in black tea sample.J. Electroanal. Chem. (Lausanne)2013704323710.1016/j.jelechem.2013.06.006
    [Google Scholar]
  50. CumpstonM. LiT. PageM.J. ChandlerJ. WelchV.A. HigginsJ.P.T. ThomasJ. Updated guidance for trusted systematic reviews: A new edition of the cochrane handbook for systematic reviews of interventions.Cochrane Libr.20191010ED00014210.1002/14651858.ED000142 31643080
    [Google Scholar]
  51. HessA.S. HessJ.R. Understanding standard deviations and standard errors.Transfusion20165661259126110.1111/trf.13625 27145184
    [Google Scholar]
  52. AltmanD.G. BlandJ.M. Standard deviations and standard errors.BMJ2005331752190310.1136/bmj.331.7521.903 16223828
    [Google Scholar]
  53. KokulnathanT ChenSM Praseodymium vanadate-decorated sulfur-doped carbon nitride hybrid nanocomposite: the role of a synergistic electrocatalyst for the detection of metronidazole.ACS Applied Materials & Interfaces,201925, 1187893905
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812375545250313081034
Loading
/content/journals/nanoasi/10.2174/0122106812375545250313081034
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test