Skip to content
2000
Volume 15, Issue 2
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

Background

Therapeutic effects of plant metabolites have been used for the treatment of burns, wounds and infections over the centuries. Electrospun nanofibers containing plant metabolites have also been considered recently for the development of new and efficient wound dressings. has received much attention in traditional medicine due to its numerous healing properties.

Objective

In the present study, polyvinyl alcohol (PVA) nanofibers containing aqueous extracts of gum (FAE) were prepared and characterized. The antibacterial activity of nanofibers was investigated.

Methods

Electrospinning was utilized for the fabrication of PVA/FAE nanofibers. The morphology, physical and chemical properties of the synthesized nanofibers were investigated by scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, and contact angle test.

Results

The uniform nanofibers with the average diameter of 256 nm were obtained by using 8 wt.% PVA, 1:4 (w: w %) ratio of PVA/FAE, needle to collector distance of 13 cm, 20 kV voltage, collector rotation speed of 3 m/min, and flow rate of 0.5 mL/h. The use of FAE led to the increased diameter of nanofibers and their contact angle compared to PVA nanofibers. Interestingly, the PVA/FAE nanofibers displayed considerable antibacterial activity against and .

Conclusion

The overall results indicated that PVA/FAE nanofibers can be considered as a potential candidate for the preparation of wound dressings with antibacterial properties.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812369229250207064225
2025-02-11
2025-10-14
Loading full text...

Full text loading...

References

  1. ZhouJ. YaoD. QianZ. HouS. LiL. JenkinsA.T.A. FanY. Bacteria-responsive intelligent wound dressing: Simultaneous in situ detection and inhibition of bacterial infection for accelerated wound healing.Biomaterials2018161112310.1016/j.biomaterials.2018.01.024 29421548
    [Google Scholar]
  2. SimõesD. MiguelS.P. RibeiroM.P. CoutinhoP. MendonçaA.G. CorreiaI.J. Recent advances on antimicrobial wound dressing: A review.Eur. J. Pharm. Biopharm.201812713014110.1016/j.ejpb.2018.02.022 29462687
    [Google Scholar]
  3. VentolaC.L. The antibiotic resistance crisis: Part 2: Management strategies and new agents.P&T2015405344352 25987823
    [Google Scholar]
  4. MakabentaJ.M.V. NabawyA. LiC.H. Schmidt-MalanS. PatelR. RotelloV.M. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections.Nat. Rev. Microbiol.2021191233610.1038/s41579‑020‑0420‑1 32814862
    [Google Scholar]
  5. Kenry; Lim, C.T. Nanofiber technology: Current status and emerging developments.Prog. Polym. Sci.20177011710.1016/j.progpolymsci.2017.03.002
    [Google Scholar]
  6. RasouliR. BarhoumA. BechelanyM. DufresneA. Nanofibers for biomedical and healthcare applications.Macromol. Biosci.2019192180025610.1002/mabi.201800256 30485660
    [Google Scholar]
  7. PadilV.V.T. CheongJ.Y. KpA. MakvandiP. ZareE.N. Torres-MendietaR. WacławekS. ČerníkM. KimI.D. VarmaR.S. Electrospun fibers based on carbohydrate gum polymers and their multifaceted applications.Carbohydr. Polym.202024711670510.1016/j.carbpol.2020.116705 32829833
    [Google Scholar]
  8. GounaniZ. PourianejadS. AsadollahiM.A. MeyerR.L. RosenholmJ.M. ArpanaeiA. Polycaprolactone-gelatin nanofibers incorporated with dual antibiotic-loaded carboxyl-modified silica nanoparticles.J. Mater. Sci.20205536171341715010.1007/s10853‑020‑05253‑7
    [Google Scholar]
  9. MehrasaM. AsadollahiM.A. Nasri-NasrabadiB. GhaediK. SalehiH. Dolatshahi-PirouzA. ArpanaeiA. Incorporation of mesoporous silica nanoparticles into random electrospun PLGA and PLGA/gelatin nanofibrous scaffolds enhances mechanical and cell proliferation properties.Mater. Sci. Eng. C201666253210.1016/j.msec.2016.04.031 27207035
    [Google Scholar]
  10. MehrasaM. AsadollahiM.A. GhaediK. SalehiH. ArpanaeiA. Electrospun aligned PLGA and PLGA/gelatin nanofibers embedded with silica nanoparticles for tissue engineering.Int. J. Biol. Macromol.20157968769510.1016/j.ijbiomac.2015.05.050 26045092
    [Google Scholar]
  11. EkramiE. Khodabandeh ShahrakyM. MahmoudifardM. MirtalebM.S. ShariatiP. Biomedical applications of electrospun nanofibers in industrial world: A review.Int. J. Polym. Mater.202372756157510.1080/00914037.2022.2032705
    [Google Scholar]
  12. SafariJ. EsteghlalS. KeramatM. KhalesiM. Fabrication of chitosan/pectin/PVA nanofibers using electrospinning technique.Nanosci. Nanotechnol. Asia202010213414110.2174/2210681208666181002124634
    [Google Scholar]
  13. YazdanpanahA. TahmasbiM. AmoabedinyG. NourmohammadiJ. MoztarzadehF. MozafariM. Fabrication and characterization of electrospun poly- L -lactide/gelatin graded tubular scaffolds: Toward a new design for performance enhancement in vascular tissue engineering.Prog. Nat. Sci.201525540541310.1016/j.pnsc.2015.09.009
    [Google Scholar]
  14. RajaramR. AngaiahS. LeeY.R. Polymer supported electrospun nanofibers with supramolecular materials for biological applications – a review.Int. J. Polym. Mater.202372131042105810.1080/00914037.2022.2075871
    [Google Scholar]
  15. Barros AraújoC.B. da Silva SoaresI.L. da Silva LimaD.P. BarrosR.M. de Lima DamascenoB.P.G. Oshiro-JuniorJ.A. Polyvinyl alcohol nanofibers blends as drug delivery system in tissue regeneration.Curr. Pharm. Des.202329151149116210.2174/1381612829666230508144912 37157221
    [Google Scholar]
  16. ZhangR. LeiM. HuB. TuH. HuM. Preparation of the garlic oil microcapsule/CS/PVA nanofiber membrane and the antibacterial properties.Fibers Polym.202223234335110.1007/s12221‑021‑3008‑0
    [Google Scholar]
  17. Muppalaneni, Polyvinyl alcohol in medicine and pharmacy: A perspective.J. Dev. Drugs20132310.4172/2329‑6631.1000112
    [Google Scholar]
  18. KhanU.A. RahmanH. NiazZ. QasimM. KhanJ. Tayyaba; Rehman, B. Antibacterial activity of some medicinal plants against selected human pathogenic bacteria.Eur. J. Microbiol. Immunol. (Bp.)20133427227410.1556/EuJMI.3.2013.4.6 24294497
    [Google Scholar]
  19. SalehiM. NaghaviM.R. BahmankarM. A review of Ferula species: Biochemical characteristics, pharmaceutical and industrial applications, and suggestions for biotechnologists.Ind. Crops Prod.201913911151110.1016/j.indcrop.2019.111511
    [Google Scholar]
  20. ZhouY. XinF. ZhangG. QuH. YangD. HanX. Recent advances on bioactive constituents in Ferula.Drug Dev. Res.201778732133110.1002/ddr.21402 28786182
    [Google Scholar]
  21. BoghratiZ. IranshahiM. Ferula species: A rich source of antimicrobial compounds.J. Herb. Med.20191610024410.1016/j.hermed.2018.10.009
    [Google Scholar]
  22. BouabidK. LamchouriF. ToufikH. FaouziM.E.A. Phytochemical investigation, in vitro and in vivo antioxidant properties of aqueous and organic extracts of toxic plant: Atractylis gummifera L.J. Ethnopharmacol.202025311264010.1016/j.jep.2020.112640 32027998
    [Google Scholar]
  23. MostafaA.A. Al-AskarA.A. AlmaaryK.S. DawoudT.M. SholkamyE.N. BakriM.M. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases.Saudi J. Biol. Sci.201825236136610.1016/j.sjbs.2017.02.004 29472791
    [Google Scholar]
  24. YangZ. XuD. LiuJ. LiuJ. LiL. ZhangL. LvJ. Fabrication and characterization of poly(vinyl alcohol)/carbon nanotube melt-spinning composites fiber.Prog. Nat. Sci.201525543744410.1016/j.pnsc.2015.09.014
    [Google Scholar]
  25. HemegH.A. MoussaI.M. IbrahimS. DawoudT.M. AlhajiJ.H. MubarakA.S. KabliS.A. AlsubkiR.A. TawfikA.M. MaroufS.A. Antimicrobial effect of different herbal plant extracts against different microbial population.Saudi J. Biol. Sci.202027123221322710.1016/j.sjbs.2020.08.015 33304127
    [Google Scholar]
  26. BhatnagerR. RaniR. Suneja DangA. Antibacterial activity of Ferula asafoetida: A comparison of red and white type.J. Appl. Biol. Biotechnol.2015321821
    [Google Scholar]
  27. AkhlaghiM. AbbasiM. SafariY. AmiriR. YoosefpourN. Data set on the antibacterial effects of the hydro-alcoholic extract of Ferula assafoetida plant on Listeria monocytogenes.Data Brief20182066767110.1016/j.dib.2018.08.057 30211257
    [Google Scholar]
  28. NiazmandR. RazavizadehB.M. Ferula asafoetida: chemical composition, thermal behavior, antioxidant and antimicrobial activities of leaf and gum hydroalcoholic extracts.J. Food Sci. Technol.20215862148215910.1007/s13197‑020‑04724‑8 33967312
    [Google Scholar]
  29. AnsariM.A. AlbetranH.M. AlheshibriM.H. TimoumiA. AlgarouN.A. AkhtarS. SlimaniY. AlmessiereM.A. AlahmariF.S. BaykalA. LowI.M. Synthesis of electrospun TiO2 nanofibers and characterization of their antibacterial and antibiofilm potential against Gram-positive and Gram-negative bacteria.Antibiotics (Basel)20209957210.3390/antibiotics9090572 32899195
    [Google Scholar]
  30. LvH. CuiS. YangQ. SongX. WangD. HuJ. ZhouY. LiuY. AgNPs-incorporated nanofiber mats: Relationship between AgNPs size/content, silver release, cytotoxicity, and antibacterial activity.Mater. Sci. Eng. C202111811133110.1016/j.msec.2020.111331 33254963
    [Google Scholar]
  31. AmalrajA. HaponiukJ.T. ThomasS. GopiS. Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum arabic/chitosan composite films incorporated with black pepper essential oil and ginger essential oil.Int. J. Biol. Macromol.202015136637510.1016/j.ijbiomac.2020.02.176 32084477
    [Google Scholar]
  32. HassibaA.J. ZowalatyM.E.E. WebsterT.J. AbdullahA.M. NasrallahG.K. KhalilK.A. LuytA.S. ElzatahryA.A. Synthesis, characterization, and antimicrobial properties of novel double layer nanocomposite electrospun fibers for wound dressing applications.Int. J. Nanomedicine2017122205221310.2147/IJN.S123417 28356737
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812369229250207064225
Loading
/content/journals/nanoasi/10.2174/0122106812369229250207064225
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test