Skip to content
2000
Volume 15, Issue 2
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

Magnetic nanoparticles (MNPs) represent a transformative advancement in the fight against cancer. They offer an innovative method for diagnosing the condition, managing its symptoms, and monitoring its progression in real-time. This paper explores the extraordinary potential of MNPs to revolutionize cancer therapy through advanced imaging methods, magnetic hyperthermia, and targeted drug delivery. Medical experts can now accurately target tumors using MNPs while inflicting minimum damage to healthy cells. The future innovation of personalized magneto-theranostic will involve MNPs by integrating real-time diagnostics with tailored treatment regimens based on the molecular profile of each patient's malignancy. MNPs will transform cancer immunotherapy through liquid biopsies for early cancer detection, gene therapy for resistant tumors, and immune modulation. Drug resistance and tumor recurrence represent significant challenges in oncology; nevertheless, MNPs, with breakthroughs such as biodegradable nanoparticle designs and enhancements facilitated by artificial intelligence, provide considerable promise for addressing these issues. Safer, more effective, and personalized cancer treatments are attainable, and this review illustrates the unequivocal potential of MNPs as a versatile, patient-centric strategy. In the future, MNPs may offer promise to cancer patients globally by enhancing survival rates and transforming cancer treatment to be more precise, minimally invasive, and adaptable.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812372775250207074104
2025-02-26
2025-10-13
Loading full text...

Full text loading...

References

  1. SiegelR.L. WagleN.S. CercekA. SmithR.A. JemalA. Colorectal cancer statistics, 2023.CA Cancer J. Clin.202373323325410.3322/caac.21772 36856579
    [Google Scholar]
  2. VallisJ. WangP.P. The role of diet and lifestyle in colorectal cancer incidence and survival.Gastrointestinal CancersExon Publications: Brisbane (AU)202210.36255/exon‑publications‑gastrointestinal‑cancers‑diet‑colorectal‑cancer 36343149
    [Google Scholar]
  3. RostampoorZ. AfrashtehS. MohammadianpanahM. GhaemH. ZeegersM.P. FararoueiM. Lifestyle, dietary pattern and colorectal cancer: A case-control study.BMC Nutr.202410113810.1186/s40795‑024‑00950‑x 39420424
    [Google Scholar]
  4. BishehsariF. MahdaviniaM. VaccaM. MalekzadehR. Mariani-CostantiniR. Epidemiological transition of colorectal cancer in developing countries: Environmental factors, molecular pathways, and opportunities for prevention.World J. Gastroenterol.201420206055607210.3748/wjg.v20.i20.6055 24876728
    [Google Scholar]
  5. KeumN. GiovannucciE. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies.Nat. Rev. Gastroenterol. Hepatol.2019161271373210.1038/s41575‑019‑0189‑8 31455888
    [Google Scholar]
  6. HammondW.A. SwaikaA. ModyK. Pharmacologic resistance in colorectal cancer: A review.Ther. Adv. Med. Oncol.201681578410.1177/1758834015614530 26753006
    [Google Scholar]
  7. OlguinJ.E. Mendoza-RodriguezM.G. Sanchez-BarreraC.A. TerrazasL.I. Is the combination of immunotherapy with conventional chemotherapy the key to increase the efficacy of colorectal cancer treatment?World J. Gastrointest. Oncol.202315225126710.4251/wjgo.v15.i2.251 36908325
    [Google Scholar]
  8. SawickiT. RuszkowskaM. DanielewiczA. NiedźwiedzkaE. ArłukowiczT. PrzybyłowiczK.E. A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis.Cancers2021139202510.3390/cancers13092025 33922197
    [Google Scholar]
  9. ChehelgerdiM. ChehelgerdiM. AllelaO.Q.B. PechoR.D.C. JayasankarN. RaoD.P. ThamaraikaniT. VasanthanM. ViktorP. LakshmaiyaN. SaadhM.J. AmajdA. Abo-ZaidM.A. Castillo-AcoboR.Y. IsmailA.H. AminA.H. Akhavan-SigariR. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation.Mol. Cancer202322116910.1186/s12943‑023‑01865‑0 37814270
    [Google Scholar]
  10. FanD. CaoY. CaoM. WangY. CaoY. GongT. Nanomedicine in cancer therapy.Signal Transduct. Target. Ther.20238129310.1038/s41392‑023‑01536‑y 37544972
    [Google Scholar]
  11. AladesuyiO.A. OluwafemiO.S. The role of magnetic nanoparticles in cancer management.Nano-Structures & Nano-Objects20233610105310.1016/j.nanoso.2023.101053
    [Google Scholar]
  12. ZhaoS. YuX. QianY. ChenW. ShenJ. Multifunctional magnetic iron oxide nanoparticles: An advanced platform for cancer theranostics.Theranostics202010146278630910.7150/thno.42564 32483453
    [Google Scholar]
  13. LiuX. ZhangY. WangY. ZhuW. LiG. MaX. ZhangY. ChenS. TiwariS. ShiK. ZhangS. FanH.M. ZhaoY.X. LiangX.J. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy.Theranostics20201083793381510.7150/thno.40805 32206123
    [Google Scholar]
  14. AraújoE.V. CarneiroS.V. NetoD.M.A. FreireT.M. CostaV.M. FreireR.M. FechineL.M.U.D. ClementeC.S. DenardinJ.C. dos SantosJ.C.S. Santos-OliveiraR. RochaJ.S. FechineP.B.A. Advances in surface design and biomedical applications of magnetic nanoparticles.Adv. Colloid Interface Sci.202432810316610.1016/j.cis.2024.103166 38728773
    [Google Scholar]
  15. RahmanM. Magnetic resonance imaging and iron-oxide nanoparticles in the era of personalized medicine.Nanotheranostics20237442444910.7150/ntno.86467 37650011
    [Google Scholar]
  16. DadfarS.M. RoemhildK. DrudeN.I. von StillfriedS. KnüchelR. KiesslingF. LammersT. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications.Adv. Drug Deliv. Rev.201913830232510.1016/j.addr.2019.01.005 30639256
    [Google Scholar]
  17. Harvell-SmithS. TungL.D. ThanhN.T.K. Magnetic particle imaging: Tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality.Nanoscale202214103658369710.1039/D1NR05670K 35080544
    [Google Scholar]
  18. RarokarN. YadavS. SaojiS. BramheP. AgadeR. GuravS. KhedekarP. SubramaniyanV. WongL.S. KumarasamyV. Magnetic nanosystem a tool for targeted delivery and diagnostic application: Current challenges and recent advancement.Int. J. Pharm. X2024710023110.1016/j.ijpx.2024.100231 38322276
    [Google Scholar]
  19. BakiA. WiekhorstF. BleulR. Advances in magnetic nanoparticles engineering for biomedical applications—a review.Bioengineering202181013410.3390/bioengineering8100134 34677207
    [Google Scholar]
  20. DasP. JanaN.R. Biomedical applications of functional polyaspartamide-based materials.ACS Appl. Polym. Mater.20213104791481110.1021/acsapm.1c00785
    [Google Scholar]
  21. ComanescuC. Recent advances in surface functionalization of magnetic nanoparticles.Coatings20231310177210.3390/coatings13101772
    [Google Scholar]
  22. ZhuJ. WangJ. LiY. Recent advances in magnetic nanocarriers for tumor treatment.Biomed. Pharmacother.202315911422710.1016/j.biopha.2023.114227 36638597
    [Google Scholar]
  23. NogueiraJ. SoaresS.F. AmorimC.O. AmaralJ.S. SilvaC. MartelF. TrindadeT. Daniel-da-SilvaA.L. Magnetic driven nanocarriers for ph-responsive doxorubicin release in cancer therapy.Molecules202025233310.3390/molecules25020333 31947577
    [Google Scholar]
  24. HuaM.Y. YangH.W. ChuangC.K. TsaiR.Y. ChenW.J. ChuangK.L. ChangY.H. ChuangH.C. PangS.T. Magnetic-nanoparticle-modified paclitaxel for targeted therapy for prostate cancer.Biomaterials201031287355736310.1016/j.biomaterials.2010.05.061 20609471
    [Google Scholar]
  25. GuigouC. LalandeA. MillotN. BelharetK. Bozorg GrayeliA. Use of super paramagnetic iron oxide nanoparticles as drug carriers in brain and ear: State of the art and challenges.Brain Sci.202111335810.3390/brainsci11030358 33799690
    [Google Scholar]
  26. HayashiK. NakamuraM. SakamotoW. YogoT. MikiH. OzakiS. AbeM. MatsumotoT. IshimuraK. Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment.Theranostics20133636637610.7150/thno.5860 23781284
    [Google Scholar]
  27. SadhukhaT. WiedmannT.S. PanyamJ. Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy.Biomaterials201334215163517110.1016/j.biomaterials.2013.03.061 23591395
    [Google Scholar]
  28. HadadianY. AzimbagiradM. NavasE.A. PavanT.Z. A versatile induction heating system for magnetic hyperthermia studies under different experimental conditions.Rev. Sci. Instrum.201990707470110.1063/1.5080348 31370463
    [Google Scholar]
  29. KaushikS. ThomasJ. PanwarV. AliH. ChopraV. SharmaA. TomarR. GhoshD. In situ biosynthesized superparamagnetic iron oxide nanoparticles (SPIONS) induce efficient hyperthermia in cancer cells.ACS Appl. Bio Mater.20203277978810.1021/acsabm.9b00720 35019282
    [Google Scholar]
  30. WiartM. TavakoliC. HubertV. HristovskaI. DumotC. ParolaS. LerougeF. ChauveauF. Canet-SoulasE. PascualO. CormodeD.P. BrunE. ElleaumeH. Use of metal-based contrast agents for in vivo MR and CT imaging of phagocytic cells in neurological pathologies.J. Neurosci. Methods202338310972910.1016/j.jneumeth.2022.109729 36272462
    [Google Scholar]
  31. WahsnerJ. GaleE.M. Rodríguez-RodríguezA. CaravanP. Chemistry of MRI contrast agents: Current challenges and new frontiers.Chem. Rev.20191192957105710.1021/acs.chemrev.8b00363 30350585
    [Google Scholar]
  32. HeC. LuJ. LinW. Hybrid nanoparticles for combination therapy of cancer.J. Control. Release201521922423610.1016/j.jconrel.2015.09.029 26387745
    [Google Scholar]
  33. HuQ. KattiP.S. GuZ. Enzyme-responsive nanomaterials for controlled drug delivery.Nanoscale2014621122731228610.1039/C4NR04249B 25251024
    [Google Scholar]
  34. Taylor-PashowK.M.L. Della RoccaJ. HuxfordR.C. LinW. Hybrid nanomaterials for biomedical applications.Chem. Commun.201046325832584910.1039/c002073g 20623072
    [Google Scholar]
  35. Pereira GomesI. Aparecida DuarteJ. Chaves MaiaA.L. RubelloD. TownsendD.M. Branco de BarrosA.L. LeiteE.A. Thermosensitive nanosystems associated with hyperthermia for cancer treatment.Pharmaceuticals201912417110.3390/ph12040171 31775273
    [Google Scholar]
  36. PersanoS. DasP. PellegrinoT. Magnetic Nanostructures as Emerging Therapeutic Tools to Boost Anti-Tumour Immunity.Cancers20211311273510.3390/cancers13112735 34073106
    [Google Scholar]
  37. HeH. ZhongY. LiangX. TanW. ZhuJ. Yan WANG, C. Natural magnetite: An efficient catalyst for the degradation of organic contaminant.Sci. Rep.2015511013910.1038/srep10139 25958854
    [Google Scholar]
  38. WuW. HeQ. JiangC. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies.Nanoscale Res. Lett.200831139741510.1007/s11671‑008‑9174‑9 21749733
    [Google Scholar]
  39. Blanco-MantecónM. O’GradyK. Interaction and size effects in magnetic nanoparticles.J. Magn. Magn. Mater.2006296212413310.1016/j.jmmm.2004.11.580
    [Google Scholar]
  40. KandasamyG. MaityD. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics.Int. J. Pharm.2015496219121810.1016/j.ijpharm.2015.10.058 26520409
    [Google Scholar]
  41. SamrotA.V. JustinC. PadmanabanS. BurmanU. A study on the effect of chemically synthesized magnetite nanoparticles on earthworm: Eudrilus eugeniae.Appl. Nanosci.201771-2172310.1007/s13204‑016‑0542‑y
    [Google Scholar]
  42. IssaB. ObaidatI. AlbissB. HaikY. Magnetic nanoparticles: sSurface effects and properties related to biomedicine applications.Int. J. Mol. Sci.20131411212662130510.3390/ijms141121266 24232575
    [Google Scholar]
  43. SuciuM. IonescuC.M. CioritaA. TriponS.C. NicaD. Al-SalamiH. Barbu-TudoranL. Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements.Beilstein J. Nanotechnol.2020111092110910.3762/bjnano.11.94 32802712
    [Google Scholar]
  44. ShobhanaN. GoudanavarP. MallammaT. AkondiB.R. Magnetic nano-particles: Properties, synthesis and its application in treatment of breast cancer-a critical review.J. Young Pharm.202416341642410.5530/jyp.2024.16.54
    [Google Scholar]
  45. SenguptaS. BallaV.K. A review on the use of magnetic fields and ultrasound for non-invasive cancer treatment.J. Adv. Res.2018149711110.1016/j.jare.2018.06.003 30109147
    [Google Scholar]
  46. LiuX.L. YangY. NgC.T. ZhaoL.Y. ZhangY. BayB.H. FanH.M. DingJ. Magnetic vortex nanorings: A new class of hyperthermia agent for highly efficient in vivo regression of tumors.Adv. Mater.201527111939194410.1002/adma.201405036 25655680
    [Google Scholar]
  47. ChengH.W. TsaoH.Y. ChiangC.S. ChenS.Y. Advances in magnetic nanoparticle‐mediated cancer immune‐theranostics.Adv. Healthc. Mater.2021101200145110.1002/adhm.202001451 33135398
    [Google Scholar]
  48. JiangX. WangJ. DengX. XiongF. ZhangS. GongZ. LiX. CaoK. DengH. HeY. LiaoQ. XiangB. ZhouM. GuoC. ZengZ. LiG. LiX. XiongW. The role of microenvironment in tumor angiogenesis.J. Exp. Clin. Cancer Res.202039120410.1186/s13046‑020‑01709‑5 32993787
    [Google Scholar]
  49. GuoY. RanY. WangZ. ChengJ. CaoY. YangC. LiuF. RanH. Magnetic-responsive and targeted cancer nanotheranostics by PA/MR bimodal imaging-guided photothermally triggered immunotherapy.Biomaterials201921911937010.1016/j.biomaterials.2019.119370 31357006
    [Google Scholar]
  50. HergtR. DutzS. MüllerR. ZeisbergerM. Magnetic particle hyperthermia: Nanoparticle magnetism and materials development for cancer therapy.J. Phys. Condens. Matter20061838S2919S293410.1088/0953‑8984/18/38/S26
    [Google Scholar]
  51. GolovinY.I. GribanovskyS.L. GolovinD.Y. KlyachkoN.L. MajougaA.G. MasterA.M. SokolskyM. KabanovA.V. Towards nanomedicines of the future: Remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields.J. Control. Release2015219436010.1016/j.jconrel.2015.09.038 26407671
    [Google Scholar]
  52. RohJ.H. KimD.W. LeeS.J. KimJ.Y. NaS.W. ChoiS.H. KimK.J. Intensity of extremely low-frequency electromagnetic fields produced in operating rooms during surgery at the standing position of anesthesiologists.Anesthesiology2009111227527810.1097/ALN.0b013e3181a9188b 19568164
    [Google Scholar]
  53. ColeA.J. YangV.C. DavidA.E. Cancer theranostics: The rise of targeted magnetic nanoparticles.Trends Biotechnol.201129732333210.1016/j.tibtech.2011.03.001 21489647
    [Google Scholar]
  54. FilipovicN. DjukicT. RadovicM. CvetkovicD. CurcicM. MarkovicS. PeulicA. JeremicB. Electromagnetic field investigation on different cancer cell lines.Cancer Cell Int.20141418410.1186/s12935‑014‑0084‑x
    [Google Scholar]
  55. CoşkunŞ. BalabanlıB. CansevenA. SeyhanN. Effects of continuous and intermittent magnetic fields on oxidative parameters in vivo.Neurochem. Res.200934223824310.1007/s11064‑008‑9760‑3 18563561
    [Google Scholar]
  56. VadalàM. Morales-MedinaJ.C. VallelungaA. PalmieriB. LaurinoC. IannittiT. Mechanisms and therapeutic effectiveness of pulsed electromagnetic field therapy in oncology.Cancer Med.20165113128313910.1002/cam4.861 27748048
    [Google Scholar]
  57. ReyaT. MorrisonS.J. ClarkeM.F. WeissmanI.L. Stem cells, cancer, and cancer stem cells.Nature2001414685910511110.1038/35102167 11689955
    [Google Scholar]
  58. LiL. NeavesW.B. Normal stem cells and cancer stem cells: The niche matters.Cancer Res.20066694553455710.1158/0008‑5472.CAN‑05‑3986 16651403
    [Google Scholar]
  59. AhnY.J. KongT.H. ChoiJ.S. YunW.S. KeyJ. SeoY.J. Strategies to enhance efficacy of SPION-labeled stem cell homing by magnetic attraction: A systemic review with meta-analysis.Int. J. Nanomedicine2019144849486610.2147/IJN.S204910
    [Google Scholar]
  60. SilvaL.H.A. CruzF.F. MoralesM.M. WeissD.J. RoccoP.R.M. Magnetic targeting as a strategy to enhance therapeutic effects of mesenchymal stromal cells.Stem Cell Res. Ther.201785810.1186/s13287‑017‑0523‑4
    [Google Scholar]
  61. UmerA. GhouriM.D. MuyizereT. AqibR.M. MuhayminA. CaiR. ChenC. Engineered nano–bio interfaces for stem cell therapy.Precision Chemistry20231634135610.1021/prechem.3c00056 37654807
    [Google Scholar]
  62. Mohd-ZahidM.H. MohamudR. Che AbdullahC.A. LimJ. AlemH. Wan HanaffiW.N. Colorectal cancer stem cells: A review of targeted drug delivery by gold nanoparticles.RSC Advances20201097398510.1039/C9RA08192E
    [Google Scholar]
  63. MirzaghavamiP.S. KhoeiS. KhoeeS. ShirvalilouS. Folic acid-conjugated magnetic triblock copolymer nanoparticles for dual targeted delivery of 5-fluorouracil to colon cancer cells.Cancer Nanotechnol.20221311210.1186/s12645‑022‑00120‑3
    [Google Scholar]
  64. MaY.S. LiW. LiuY. ShiY. LinQ.L. FuD. Targeting colorectal cancer stem cells as an effective treatment for colorectal cancer.Technol. Cancer Res. Treat.202019153303381989226110.1177/1533033819892261 32748700
    [Google Scholar]
  65. LiuD. HongY. LiY. HuC. YipT.C. YuW.K. ZhuY. FongC.C. WangW. AuS.K. WangS. YangM. Targeted destruction of cancer stem cells using multifunctional magnetic nanoparticles that enable combined hyperthermia and chemotherapy.Theranostics20201031181119610.7150/thno.38989 31938059
    [Google Scholar]
  66. EulbergD. FrömmingA. LapidK. MangasarianA. BarakA. The prospect of tumor microenvironment-modulating therapeutical strategies.Front. Oncol.202212107024310.3389/fonc.2022.1070243 36568151
    [Google Scholar]
  67. LiM. ZhangY. ZhangQ. LiJ. Tumor extracellular matrix modulating strategies for enhanced antitumor therapy of nanomedicines.Mater. Today Bio20221610036410.1016/j.mtbio.2022.100364 35875197
    [Google Scholar]
  68. DiasA.M.M. CourteauA. BellayeP.S. KohliE. OudotA. DoulainP.E. PetitotC. WalkerP.M. DecréauR. CollinB. Superparamagnetic iron oxide nanoparticles for immunotherapy of cancers through macrophages and magnetic hyperthermia.Pharmaceutics20221411238810.3390/pharmaceutics14112388 36365207
    [Google Scholar]
  69. LiH. WangS. YangZ. MengX. NiuM. Nanomaterials modulate tumor-associated macrophages for the treatment of digestive system tumors.Bioact. Mater.20243637641210.1016/j.bioactmat.2024.03.003 38544737
    [Google Scholar]
  70. ZhangY. LiZ. HuangY. ZouB. XuY. Amplifying cancer treatment: Advances in tumor immunotherapy and nanoparticle-based hyperthermia.Front. Immunol.202314125878610.3389/fimmu.2023.1258786 37869003
    [Google Scholar]
  71. GuoZ. SawP.E. JonS. Non-invasive physical stimulation to modulate the tumor microenvironment: unveiling a new frontier in cancer therapy.BIO Integration20245110.15212/bioi‑2024‑0012
    [Google Scholar]
  72. RaskovH. OrhanA. ChristensenJ.P. GögenurI. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy.Br. J. Cancer2021124235936710.1038/s41416‑020‑01048‑4 32929195
    [Google Scholar]
  73. ZouM.Z. LiuW.L. ChenH.S. BaiX.F. GaoF. YeJ.J. ChengH. ZhangX.Z. Advances in nanomaterials for treatment of hypoxic tumor.Natl. Sci. Rev.202182nwaa16010.1093/nsr/nwaa160 34691571
    [Google Scholar]
  74. RuanC. SuK. ZhaoD. LuA. ZhongC. Nanomaterials for tumor hypoxia relief to improve the efficacy of ROS-generated cancer therapy.Front Chem.2021964915810.3389/fchem.2021.649158 33954158
    [Google Scholar]
  75. UthamanS. HuhK.M. ParkI.K. Tumor microenvironment-responsive nanoparticles for cancer theragnostic applications.Biomater. Res.20182212210.1186/s40824‑018‑0132‑z 30155269
    [Google Scholar]
  76. ChuS. ShiX. TianY. GaoF. pH-responsive polymer nanomaterials for tumor therapy.Front. Oncol.20221285501910.3389/fonc.2022.855019 35392227
    [Google Scholar]
  77. ShinnJ. KwonN. LeeS.A. LeeY. Smart pH-responsive nanomedicines for disease therapy.J. Pharm. Investig.202252442744110.1007/s40005‑022‑00573‑z 35573320
    [Google Scholar]
  78. MaiB.T. FernandesS. BalakrishnanP.B. PellegrinoT. Nanosystems based on magnetic nanoparticles and thermo- or ph-responsive polymers: An update and future perspectives.Acc. Chem. Res.2018515999101310.1021/acs.accounts.7b00549 29733199
    [Google Scholar]
  79. ZengY. MaJ. ZhanY. XuX. ZengQ. LiangJ. ChenX. Hypoxia-activated prodrugs and redox-responsive nanocarriers.Int. J. Nanomedicine2018136551657410.2147/IJN.S173431 30425475
    [Google Scholar]
  80. DebnathS.K. DebnathM. GhoshA. SrivastavaR. OmriA. Targeting tumor hypoxia with nanoparticle-based therapies: Challenges, opportunities, and clinical implications.Pharmaceuticals20241710138910.3390/ph17101389 39459028
    [Google Scholar]
  81. RanaA. AdhikaryM. SinghP.K. DasB.C. BhatnagarS. “Smart” drug delivery: A window to future of translational medicine.Front Chem.202310109559810.3389/fchem.2022.1095598 36688039
    [Google Scholar]
  82. ZhangM. GaoS. YangD. FangY. LinX. JinX. LiuY. LiuX. SuK. ShiK. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo.Acta Pharm. Sin. B20211182265228510.1016/j.apsb.2021.03.033 34522587
    [Google Scholar]
  83. SubrahmanyamN. GhandehariH. Harnessing extracellular matrix biology for tumor drug delivery.J. Pers. Med.20211128810.3390/jpm11020088 33572559
    [Google Scholar]
  84. GiustiniA.J. PetrykA.A. CassimS.M. TateJ.A. BakerI. HoopesP.J. Magnetic nanoparticle hyperthermia in cancer treatment.Nano Life2010101n02173210.1142/S1793984410000067 24348868
    [Google Scholar]
  85. SrirajaskanthanR. PreedyV.R. Utilization of magnetic nanoparticles for cancer therapy.Nanomedicine Cancer.CRC Press20119211210.1201/b11516‑7
    [Google Scholar]
  86. RezaeiB. YariP. SandersS.M. WangH. ChughV.K. LiangS. MostufaS. XuK. WangJ.P. Gómez-PastoraJ. WuK. Magnetic nanoparticles: A review on synthesis, characterization, functionalization, and biomedical applications.Small2024205230484810.1002/smll.202304848 37732364
    [Google Scholar]
  87. RochaJ.V.R. KrauseR. CardosoC.E.R. OliveiraN.C.A. SousaL.R. LimaE.M. Biomimetic magnetic nanocarriers for cancer therapy.2024 IEEE Int. Magn. Conf. - Short Pap. INTERMAG Short Pap.Rio de Janeiro, Brazil: IEEE20241210.1109/INTERMAGShortPapers61879.2024.10576801
    [Google Scholar]
  88. KhoslaA. LoneM. WaniI.A. Metallic, Magnetic, and Carbon‐Based Nanomaterials: Synthesis and Biomedical Applications.1st edWiley202510.1002/9781119870685
    [Google Scholar]
  89. JacintoC. SilvaW.F. GarciaJ. ZaragosaG.P. IlemC.N.D. SalesT.O. SantosH.D.A. CondeB.I.C. BarbosaH.P. MalikS. SharmaS.K. Nanoparticles based image-guided thermal therapy and temperature feedback.J. Mater. Chem. B Mater. Biol. Med.20241315410210.1039/D4TB01416B 39535040
    [Google Scholar]
  90. FarzinA. EtesamiS.A. QuintJ. MemicA. TamayolA. Magnetic nanoparticles in cancer therapy and diagnosis.Adv. Healthc. Mater.202099190105810.1002/adhm.201901058 32196144
    [Google Scholar]
  91. AlromiD. MadaniS. SeifalianA. Emerging application of magnetic nanoparticles for diagnosis and treatment of cancer.Polymers20211323414610.3390/polym13234146 34883649
    [Google Scholar]
  92. BehzadiM. VakiliB. EbrahiminezhadA. NezafatN. Iron nanoparticles as novel vaccine adjuvants.Eur. J. Pharm. Sci.202115910571810.1016/j.ejps.2021.105718 33465476
    [Google Scholar]
  93. NaletovaI. TomaselloB. AttanasioF. PleshkanV.V. Prospects for the use of metal-based nanoparticles as adjuvants for local cancer immunotherapy.Pharmaceutics2023155134610.3390/pharmaceutics15051346 37242588
    [Google Scholar]
  94. Est-WitteS.E. LivingstonN.K. OmotosoM.O. GreenJ.J. SchneckJ.P. Nanoparticles for generating antigen-specific T cells for immunotherapy.Semin. Immunol.20215610154110.1016/j.smim.2021.101541 34922816
    [Google Scholar]
  95. Lafuente-GómezN. de LázaroI. DhanjaniM. García-SorianoD. SobralM.C. SalasG. MooneyD.J. SomozaÁ. Multifunctional magnetic nanoparticles elicit anti-tumor immunity in a mouse melanoma model.Mater. Today Bio20232310081710.1016/j.mtbio.2023.100817 37822453
    [Google Scholar]
  96. LlopizD. DotorJ. ZabaletaA. LasarteJ.J. PrietoJ. Borrás-CuestaF. SarobeP. Combined immunization with adjuvant molecules poly(I:C) and anti-CD40 plus a tumor antigen has potent prophylactic and therapeutic antitumor effects.Cancer Immunol. Immunother.2008571192910.1007/s00262‑007‑0346‑8 17564702
    [Google Scholar]
  97. GuoY. TangL. A Magnetic Nanovaccine Enhances Cancer Immunotherapy.ACS Cent. Sci.20195574774910.1021/acscentsci.9b00325 31139709
    [Google Scholar]
  98. HuangL. LiuZ. WuC. LinJ. LiuN. Magnetic nanoparticles enhance the cellular immune response of DENDRITIC CELL tumor vaccines by realizing the cytoplasmic delivery of tumor antigens.Bioeng. Transl. Med.202382e1040010.1002/btm2.10400 36925683
    [Google Scholar]
  99. BeattyG.L. GladneyW.L. Immune escape mechanisms as a guide for cancer immunotherapy.Clin. Cancer Res.201521468769210.1158/1078‑0432.CCR‑14‑1860 25501578
    [Google Scholar]
  100. RenG. ZhouX. LongR. XieM. KankalaR.K. WangS. ZhangY.S. LiuY. Biomedical applications of magnetosomes: State of the art and perspectives.Bioact. Mater.202328274910.1016/j.bioactmat.2023.04.025 37223277
    [Google Scholar]
  101. KorangathP. JinL. YangC.T. HealyS. GuoX. KeS. GrüttnerC. HuC. GabrielsonK. FooteJ. ClarkeR. IvkovR. Iron oxide nanoparticles inhibit tumor progression and suppress lung metastases in mouse models of breast cancer.ACS Nano20241815105091052610.1021/acsnano.3c12064 38564478
    [Google Scholar]
  102. SzwedM. MarczakA. Application of nanoparticles for magnetic hyperthermia for cancer treatment—the current state of knowledge.Cancers2024166115610.3390/cancers16061156 38539491
    [Google Scholar]
  103. DayN.B. WixsonW.C. ShieldsC.W.IV Magnetic systems for cancer immunotherapy.Acta Pharm. Sin. B20211182172219610.1016/j.apsb.2021.03.023 34522583
    [Google Scholar]
  104. KumariN. ChoiS.H. Tumor-associated macrophages in cancer: Recent advancements in cancer nanoimmunotherapies.J. Exp. Clin. Cancer Res.20224116810.1186/s13046‑022‑02272‑x 35183252
    [Google Scholar]
  105. BasakU. SarkarT. MukherjeeS. ChakrabortyS. DuttaA. DuttaS. NayakD. KaushikS. DasT. SaG. Tumor-associated macrophages: An effective player of the tumor microenvironment.Front. Immunol.202314129525710.3389/fimmu.2023.1295257 38035101
    [Google Scholar]
  106. MohapatraA. SathiyamoorthyP. ParkI.K. Metallic nanoparticle-mediated immune cell regulation and advanced cancer immunotherapy.Pharmaceutics20211311186710.3390/pharmaceutics13111867 34834282
    [Google Scholar]
  107. LeiH. PanY. WuR. LvY. Innate immune regulation under magnetic fields with possible mechanisms and therapeutic applications.Front. Immunol.20201158277210.3389/fimmu.2020.582772 33193393
    [Google Scholar]
  108. YuX. FangC. ZhangK. SuC. Recent advances in nanoparticles-based platforms targeting the PD-1/PD-L1 pathway for cancer treatment.Pharmaceutics2022148158110.3390/pharmaceutics14081581 36015206
    [Google Scholar]
  109. JungcharoenP. ThivakorakotK. ThientanukijN. KosachunhanunN. VichapattanaC. PanaamponJ. SaengboonmeeC. Magnetite nanoparticles: An emerging adjunctive tool for the improvement of cancer immunotherapy. Exp. Target.Anti-tumor Ther.20245231633110.37349/etat.2024.00220 38745773
    [Google Scholar]
  110. SadoA.I. BatoolW. AhmedA. ZafarS. PatelS.K. MohanA. ZiaU. AminpoorH. KumarV. TejwaneyU. Role of microRNA in colorectal carcinoma (CRC): A narrative review.Ann. Med. Surg.202486130831810.1097/MS9.0000000000001494 38222721
    [Google Scholar]
  111. LiuJ. GuoB. RNA-based therapeutics for colorectal cancer: Updates and future directions.Pharmacol. Res.202015210455010.1016/j.phrs.2019.104550 31866285
    [Google Scholar]
  112. JiangL. QiY. YangL. MiaoY. RenW. LiuH. HuangY. HuangS. ChenS. ShiY. CaiL. Remodeling the tumor immune microenvironment via siRNA therapy for precision cancer treatment.Asian J. Pharm. Sci.202318510085210.1016/j.ajps.2023.100852 37920650
    [Google Scholar]
  113. EbrahimiN. ManaviM.S. NazariA. MomayeziA. FaghihkhorasaniF. Rasool Riyadh AbdulwahidA.H. Rezaei-TazangiF. KaveiM. RezaeiR. MobarakH. ArefA.R. FangW. Nano-scale delivery systems for siRNA delivery in cancer therapy: New era of gene therapy empowered by nanotechnology.Environ. Res.2023239Pt 211726310.1016/j.envres.2023.117263 37797672
    [Google Scholar]
  114. WangB. HuS. TengY. ChenJ. WangH. XuY. WangK. XuJ. ChengY. GaoX. Current advance of nanotechnology in diagnosis and treatment for malignant tumors.Signal Transduct. Target. Ther.20249120010.1038/s41392‑024‑01889‑y 39128942
    [Google Scholar]
  115. ChoiY. SeokS.H. Advancing cancer immunotherapy through siRNA-based gene silencing for immune checkpoint blockade.Adv. Drug Deliv. Rev.202420911530610.1016/j.addr.2024.115306
    [Google Scholar]
  116. SunL. LiuH. YeY. LeiY. IslamR. TanS. TongR. MiaoY.B. CaiL. Smart nanoparticles for cancer therapy.Signal Transduct. Target. Ther.20238141810.1038/s41392‑023‑01642‑x 37919282
    [Google Scholar]
  117. ArrizabalagaJ.H. CaseyJ.S. BeccaJ.C. LiuY. JensenL. HayesD.J. Development of magnetic nanoparticles for the intracellular delivery of miR-148b in non-small cell lung cancer.Biomed. Eng. Adv.2022310003110.1016/j.bea.2022.100031
    [Google Scholar]
  118. LeeS.W.L. PaolettiC. CampisiM. OsakiT. AdrianiG. KammR.D. MattuC. ChionoV. MicroRNA delivery through nanoparticles.J. Control. Release2019313809510.1016/j.jconrel.2019.10.007 31622695
    [Google Scholar]
  119. ZareM. PemmadaR. MadhavanM. ShailajaA. RamakrishnaS. KandiyilS.P. DonahueJ.M. ThomasV. Encapsulation of miRNA and siRNA into nanomaterials for cancer therapeutics.Pharmaceutics2022148162010.3390/pharmaceutics14081620 36015246
    [Google Scholar]
  120. SchadeA. MüllerP. DelyaginaE. VoroninaN. SkorskaA. LuxC. Magnetic nanoparticle based nonviral microrna delivery into freshly isolated CD105 + hMSCs.Stem Cells Int.2014201411110.1155/2014/197154
    [Google Scholar]
  121. KarpinskaK. Dual conjugation of magnetic nanoparticles with antibodies and siRNA for cell-specific gene silencing in vascular cells.Front. Drug Deliv.20244141673710.3389/fddev.2024.1416737
    [Google Scholar]
  122. LiuC.H. LinC.H. ChenY.J. WuW.C. WangC.C. Multifunctional magnetic nanocarriers for delivery of siRNA and shRNA plasmid to mammalian cells: Characterization, adsorption and release behaviors.Colloids Surf. B Biointerfaces202221911286110.1016/j.colsurfb.2022.112861 36162177
    [Google Scholar]
  123. GuoP. CobanO. SneadN.M. TrebleyJ. HoeprichS. GuoS. ShuY. Engineering RNA for targeted siRNA delivery and medical application.Adv. Drug Deliv. Rev.201062665066610.1016/j.addr.2010.03.008 20230868
    [Google Scholar]
  124. LiT. YangY. QiH. CuiW. ZhangL. FuX. HeX. LiuM. LiP. YuT. CRISPR/Cas9 therapeutics: Progress and prospects.Signal Transduct. Target. Ther.2023813610.1038/s41392‑023‑01309‑7 36646687
    [Google Scholar]
  125. HryhorowiczM. GrześkowiakB. MazurkiewiczN. ŚledzińskiP. LipińskiD. SłomskiR. Improved delivery of CRISPR/Cas9 system using magnetic nanoparticles into Porcine Fibroblast.Mol. Biotechnol.201961317318010.1007/s12033‑018‑0145‑9 30560399
    [Google Scholar]
  126. KarnV. SandhyaS. HsuW. ParasharD. SinghH.N. JhaN.K. GuptaS. DubeyN.K. KumarS. CRISPR/Cas9 system in breast cancer therapy: Advancement, limitations and future scope.Cancer Cell Int.202222123410.1186/s12935‑022‑02654‑3 35879772
    [Google Scholar]
  127. WangY. PengY. ZiG. ChenJ. PengB. Co-delivery of Cas9 mRNA and guide RNAs for editing of LGMN gene represses breast cancer cell metastasis.Sci. Rep.2024141809510.1038/s41598‑024‑58765‑6 38582932
    [Google Scholar]
  128. XuX. LiuC. WangY. KoivistoO. ZhouJ. ShuY. ZhangH. Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment.Adv. Drug Deliv. Rev.202117611389110.1016/j.addr.2021.113891 34324887
    [Google Scholar]
  129. RohiwalS.S. DvorakovaN. KlimaJ. VaskovicovaM. SeniglF. SloufM. PavlovaE. StepanekP. BabukaD. BenesH. EllederovaZ. StiegerK. Polyethylenimine based magnetic nanoparticles mediated non-viral CRISPR/Cas9 system for genome editing.Sci. Rep.2020101461910.1038/s41598‑020‑61465‑6 32165679
    [Google Scholar]
  130. MylkieK. NowakP. RybczynskiP. Ziegler-BorowskaM. Polymer-coated magnetite nanoparticles for protein immobilization.Materials202114224810.3390/ma14020248 33419055
    [Google Scholar]
  131. ReddyL.H. AriasJ.L. NicolasJ. CouvreurP. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications.Chem. Rev.2012112115818587810.1021/cr300068p 23043508
    [Google Scholar]
  132. YewY.P. ShameliK. MiyakeM. Ahmad KhairudinN.B.B. MohamadS.E.B. NaikiT. LeeK.X. Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: A review.Arab. J. Chem.20201312287230810.1016/j.arabjc.2018.04.013
    [Google Scholar]
  133. GamageA. ThiviyaP. LiyanapathiranageA. WasanaM.L.D. JayakodiY. BandaraA. ManamperiA. DassanayakeR.S. EvonP. MerahO. MadhujithT. Polysaccharide-based bioplastics: Eco-friendly and sustainable solutions for packaging.J. Compos. Sci.202481041310.3390/jcs8100413
    [Google Scholar]
  134. PaltaneaG. Magnetic nanoparticles used in oncology.Materials202114594810.3390/ma14205948
    [Google Scholar]
  135. PicchiD.F. BiglioneC. HorcajadaP. Nanocomposites based on magnetic nanoparticles and metal–organic frameworks for therapy, diagnosis, and theragnostics.ACS Nanoscience Au2024428511410.1021/acsnanoscienceau.3c00041 38644966
    [Google Scholar]
  136. ZhangD. LiuL. WangJ. ZhangH. ZhangZ. XingG. WangX. LiuM. Drug-loaded PEG-PLGA nanoparticles for cancer treatment.Front. Pharmacol.20221399050510.3389/fphar.2022.990505 36059964
    [Google Scholar]
  137. MakadiaH.K. SiegelS.J. Poly Lactic-co-Glycolic acid (PLGA) as biodegradable controlled drug delivery carrier.Polymers2011331377139710.3390/polym3031377 22577513
    [Google Scholar]
  138. WangT. ChangT.M.S. Superparamagnetic artificial cells PLGA-Fe3O4 micro/nanocapsules for cancer targeted delivery.Cancers20231524580710.3390/cancers15245807 38136352
    [Google Scholar]
  139. LiangC. LiN. CaiZ. LiangR. ZhengX. DengL. FengL. GuoR. WeiB. Co-encapsulation of magnetic Fe 3 O 4 nanoparticles and doxorubicin into biocompatible PLGA-PEG nanocarriers for early detection and treatment of tumours.Artif. Cells Nanomed. Biotechnol.20194714211422110.1080/21691401.2019.1687500 31713444
    [Google Scholar]
  140. JiangM. LiuQ. ZhangY. WangH. ZhangJ. ChenM. YueZ. WangZ. WeiX. ShiS. WangM. HouY. WangZ. ShengF. TianN. WangY. Construction of magnetic drug delivery system and its potential application in tumor theranostics.Biomed. Pharmacother.202215411354510.1016/j.biopha.2022.113545 36007274
    [Google Scholar]
  141. SinghJ. DuttaT. KimK.H. RawatM. SamddarP. KumarP. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation.J. Nanobiotechnology20181618410.1186/s12951‑018‑0408‑4 30373622
    [Google Scholar]
  142. PanditC. RoyA. GhotekarS. KhusroA. IslamM.N. EmranT.B. LamS.E. KhandakerM.U. BradleyD.A. Biological agents for synthesis of nanoparticles and their applications.J. King Saud Univ. Sci.202234310186910.1016/j.jksus.2022.101869
    [Google Scholar]
  143. PanduranganP. RakshiA.D. Arun SundarM.S. SamratA.V. MeenambigaS.S. VedanarayananV. MeenaR. Karthick Raja NamasivayamS. MoovendhanM. Integrating cutting-edge technologies: AI, IoT, blockchain and nanotechnology for enhanced diagnosis and treatment of colorectal cancer - A review.J. Drug Deliv. Sci. Technol.20249110519710.1016/j.jddst.2023.105197
    [Google Scholar]
  144. OsialM. PregowskaA. The application of artificial intelligence in magnetic hyperthermia based research.Future Internet2022141235610.3390/fi14120356
    [Google Scholar]
  145. NahhasA.F. NahhasA.F. WebsterT.J. The nano and artificial intelligence effect: Improved magnetic resonance imaging volumetry for multiple sclerosis.OpenNano20241810020910.1016/j.onano.2024.100209
    [Google Scholar]
  146. ZhouH. Mayorga-MartinezC.C. PanéS. ZhangL. PumeraM. Magnetically driven micro and nanorobots.Chem. Rev.202112184999504110.1021/acs.chemrev.0c01234 33787235
    [Google Scholar]
  147. KoleosoM. FengX. XueY. LiQ. MunshiT. ChenX. Micro/nanoscale magnetic robots for biomedical applications.Mater. Today Bio2020810008510.1016/j.mtbio.2020.100085 33299981
    [Google Scholar]
  148. HuM. GeX. ChenX. MaoW. QianX. YuanW.E. Micro/nanorobot: A promising targeted drug delivery system.Pharmaceutics202012766510.3390/pharmaceutics12070665 32679772
    [Google Scholar]
  149. KongX. GaoP. WangJ. FangY. HwangK.C. Advances of medical nanorobots for future cancer treatments.J. Hematol. Oncol.20231617410.1186/s13045‑023‑01463‑z 37452423
    [Google Scholar]
  150. AggarwalM. KumarS. The use of nanorobotics in the treatment therapy of cancer and its future aspects: A review.Cureus2022149e2936610.7759/cureus.29366 36304358
    [Google Scholar]
  151. GovindanB. SabriM.A. HaiA. BanatF. HaijaM.A. A review of advanced multifunctional magnetic nanostructures for cancer diagnosis and therapy integrated into an artificial intelligence approach.Pharmaceutics202315386810.3390/pharmaceutics15030868 36986729
    [Google Scholar]
  152. HilgerI. HiergeistR. HergtR. WinnefeldK. SchubertH. KaiserW.A. Thermal ablation of tumors using magnetic nanoparticles: An in vivo feasibility study.Invest. Radiol.2002371058058610.1097/00004424‑200210000‑00008 12352168
    [Google Scholar]
  153. ConnalS. CameronJ.M. SalaA. BrennanP.M. PalmerD.S. PalmerJ.D. PerlowH. BakerM.J. Liquid biopsies: The future of cancer early detection.J. Transl. Med.202321111810.1186/s12967‑023‑03960‑8 36774504
    [Google Scholar]
  154. BruusH. Theoretical Microfluidics.Oxford University Press Oxford199710.1093/oso/9780199235087.001.0001
    [Google Scholar]
  155. ChenP. HuangY.Y. BhaveG. HoshinoK. ZhangX. Inkjet-print micromagnet array on glass slides for immunomagnetic enrichment of circulating tumor cells.Ann. Biomed. Eng.20164451710172010.1007/s10439‑015‑1427‑z 26289942
    [Google Scholar]
  156. MaX. GongA. ChenB. ZhengJ. ChenT. ShenZ. WuA. Exploring a new SPION-based MRI contrast agent with excellent water-dispersibility, high specificity to cancer cells and strong MR imaging efficacy.Colloids Surf. B Biointerfaces2015126444910.1016/j.colsurfb.2014.11.045 25543982
    [Google Scholar]
  157. NeuweltA. SidhuN. HuC.A.A. MladyG. EberhardtS.C. SillerudL.O. Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation.AJR Am. J. Roentgenol.20152043W302W31310.2214/AJR.14.12733 25714316
    [Google Scholar]
  158. RaoY. ChenW. LiangX. HuangY. MiaoJ. LiuL. LouY. ZhangX. WangB. TangR. ChenZ. LuX. Epirubicin-loaded superparamagnetic iron-oxide nanoparticles for transdermal delivery: cancer therapy by circumventing the skin barrier.Small201511223924710.1002/smll.201400775 24925046
    [Google Scholar]
  159. SuD. WuK. SahaR. LiuJ. WangJ.P. Magnetic nanotechnologies for early cancer diagnostics with liquid biopsies: A review.J. Cancer Metastasis Treat.2020202010.20517/2394‑4722.2020.48
    [Google Scholar]
  160. GaloșD. GorzoA. BalacescuO. SurD. Clinical applications of liquid biopsy in colorectal cancer screening: Current challenges and future perspectives.Cells20221121349310.3390/cells11213493 36359889
    [Google Scholar]
  161. BhanaS. WangY. HuangX. Nanotechnology for enrichment and detection of circulating tumor cells.Nanomedicine201510121973199010.2217/nnm.15.32 26139129
    [Google Scholar]
  162. BashirS. Amn ZiaM. ShoukatM. KaleemI. BashirS. Nanoparticles as a novel key driver for the isolation and detection of circulating tumour cells.Sci. Rep.20241412258010.1038/s41598‑024‑67221‑4 39343959
    [Google Scholar]
  163. LiF. XuH. ZhaoY. Magnetic particles as promising circulating tumor cell catchers assisting liquid biopsy in cancer diagnosis: A review.Trends Analyt. Chem.202114511645310.1016/j.trac.2021.116453
    [Google Scholar]
  164. SassolasA. BlumL.J. Leca-BouvierB.D. Immobilization strategies to develop enzymatic biosensors.Biotechnol. Adv.201230348951110.1016/j.biotechadv.2011.09.003 21951558
    [Google Scholar]
  165. Jaffrezic-RenaultN. MarteletC. ChevolotY. CloarecJ.P. Biosensors and bio-bar code assays based on biofunctionalized magnetic microbeads.Sensors20077458961410.3390/s7040589
    [Google Scholar]
  166. StanciuL. WonY.H. GanesanaM. AndreescuS. Magnetic particle-based hybrid platforms for bioanalytical sensors.Sensors2009942976299910.3390/s90402976 22574058
    [Google Scholar]
  167. ZouF. WangX. QiF. KohK. LeeJ. ZhouH. ChenH. Magneto-plamonic nanoparticles enhanced surface plasmon resonance TB sensor based on recombinant gold binding antibody.Sens. Actuators B Chem.201725035636310.1016/j.snb.2017.04.162
    [Google Scholar]
  168. SunT. LiM. ZhaoF. LiuL. Surface plasmon resonance biosensors with magnetic sandwich hybrids for signal amplification.Biosensors202212855410.3390/bios12080554 35892451
    [Google Scholar]
  169. MaterónE.M. MiyazakiC.M. CarrO. JoshiN. PiccianiP.H.S. DalmaschioC.J. DavisF. ShimizuF.M. Magnetic nanoparticles in biomedical applications: A review.Appl. Surf. Sci. Adv.2021610016310.1016/j.apsadv.2021.100163
    [Google Scholar]
  170. HosuO. TertisM. CristeaC. Implication of magnetic nanoparticles in cancer detection, screening and treatment.Magnetochemistry2019545510.3390/magnetochemistry5040055
    [Google Scholar]
  171. HaY. KimI. Recent developments in innovative magnetic nanoparticles-based immunoassays: From improvement of conventional immunoassays to diagnosis of covid-19.Biochip J.202216435136510.1007/s13206‑022‑00064‑1 35822174
    [Google Scholar]
  172. SmithM. MillerS. The ethical application of biometric facial recognition technology.AI Soc.202237116717510.1007/s00146‑021‑01199‑9 33867693
    [Google Scholar]
  173. WastiS. LeeI.H. KimS. LeeJ.H. KimH. Ethical and legal challenges in nanomedical innovations: A scoping review.Front. Genet.202314116339210.3389/fgene.2023.1163392 37252668
    [Google Scholar]
  174. MurikahW. NthengeJ.K. MusyokaF.M. Bias and ethics of AI systems applied in auditing - A systematic review.Sci. Am.202425e0228110.1016/j.sciaf.2024.e02281
    [Google Scholar]
  175. MittelstadtB. Principles alone cannot guarantee ethical AI.Nat. Mach. Intell.201911150150710.1038/s42256‑019‑0114‑4
    [Google Scholar]
  176. AyanoğluF.B. Elçi̇nA.E. Elçi̇nY.M. Bioethical issues in genome editing by CRISPR-Cas9 technology.Turk. J. Biol.202044211012010.3906/biy‑1912‑52 32256147
    [Google Scholar]
  177. BaranA. Nanotechnology: Legal and ethical issues.Econ. Manag.20168475410.1515/emj2016‑0005
    [Google Scholar]
  178. NovelliC. TaddeoM. FloridiL. Accountability in artificial intelligence: What it is and how it works.AI Soc.20243941871188210.1007/s00146‑023‑01635‑y
    [Google Scholar]
  179. NazerL.H. ZatarahR. WaldripS. KeJ.X.C. MoukheiberM. KhannaA.K. HicklenR.S. MoukheiberL. MoukheiberD. MaH. MathurP. Bias in artificial intelligence algorithms and recommendations for mitigation.PLOS Digit. Health202326e000027810.1371/journal.pdig.0000278 37347721
    [Google Scholar]
  180. FerraraE. Fairness and bias in artificial intelligence: A brief survey of sources, impacts, and mitigation strategies.Sci202361310.3390/sci6010003
    [Google Scholar]
  181. ShajarF. SaleemS. MushtaqN.U. ShahW.H. RasoolA. PadderS.A. Regulatory and ethical issues raised by the utilization of nanomaterials.Interaction of Nanomaterials With Living Cells. SheikhF.A. MajeedS. BeighM.A. SingaporeSpringer Nature Singapore202389992410.1007/978‑981‑99‑2119‑5_31
    [Google Scholar]
  182. TaherdoostH. Privacy and security of blockchain in healthcare: Applications, challenges, and future perspectives.Sci2023544110.3390/sci5040041
    [Google Scholar]
  183. NavyaP.N. KaphleA. SrinivasS.P. BhargavaS.K. RotelloV.M. DaimaH.K. Current trends and challenges in cancer management and therapy using designer nanomaterials.Nano Converg.2019612310.1186/s40580‑019‑0193‑2 31304563
    [Google Scholar]
  184. IranpourS. BahramiA.R. NekooeiS.Sh. SaljooghiA. MatinM.M. Improving anti-cancer drug delivery performance of magnetic mesoporous silica nanocarriers for more efficient colorectal cancer therapy.J. Nanobiotechnology202119131410.1186/s12951‑021‑01056‑3 34641857
    [Google Scholar]
  185. JiangH. BaoQ. YangT. YangM. MaoC. Precision treatment of colon cancer using doxorubicin-loaded metal–organic-framework-coated magnetic nanoparticles.ACS Appl. Mater. Interfaces20241637490034901210.1021/acsami.4c08602 39226043
    [Google Scholar]
  186. YusefiM. ShameliK. Lee-KiunM.S. TeowS.Y. MoeiniH. AliR.R. KiaP. JieC.J. AbdullahN.H. Chitosan coated magnetic cellulose nanowhisker as a drug delivery system for potential colorectal cancer treatment.Int. J. Biol. Macromol.202323312338810.1016/j.ijbiomac.2023.123388 36706873
    [Google Scholar]
  187. GonbadiP. JalalR. AkhlaghiniaB. GhasemzadehM.S. Tannic acid-modified magnetic hydrotalcite-based MgAl nanoparticles for the in vitro targeted delivery of doxorubicin to the estrogen receptor-overexpressing colorectal cancer cells.J. Drug Deliv. Sci. Technol.20226810302610.1016/j.jddst.2021.103026
    [Google Scholar]
  188. ChenQ. LiuS. Alkyl gallate derived magnetic clusters and photothermal controlled release lipid carrier.Colloids Surf. A Physicochem. Eng. Asp.202365613051810.1016/j.colsurfa.2022.130518
    [Google Scholar]
  189. SelimovicA. KaraG. DenkbasE.B. Magnetic gelatin nanoparticles as a biocompatible carrier system for small interfering RNA in human colorectal cancer: Synthesis, optimization, characterization, and cell viability studies.Mater. Today Commun.20223310461610.1016/j.mtcomm.2022.104616
    [Google Scholar]
  190. JiY. WangC. Magnetic iron oxide nanoparticle-loaded hydrogels for photothermal therapy of cancer cells.Front. Bioeng. Biotechnol.202311113052310.3389/fbioe.2023.1130523 37008029
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812372775250207074104
Loading
/content/journals/nanoasi/10.2174/0122106812372775250207074104
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test