Skip to content
2000
Volume 15, Issue 2
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

This review explores the growing field of neurotherapeutics, focusing on biofunctionalized nanocarriers as innovative systems to deliver therapeutic agents, such as curcumin, across the blood-brain barrier (BBB). It highlights the limitations of conventional methods and presents nanocarriers as promising solutions for overcoming these challenges. The methodology examines experimental techniques used to investigate curcumin-loaded nanoparticles and their application in treating neurological conditions like multiple sclerosis, Parkinson’s, Alzheimer’s, and Huntington’s disease. By integrating nanotechnology, pharmacology, and neuroscience, the review emphasizes the potential of smart vehicles to enhance brain-targeted therapies and outlines a path for future research. Future research should refine nanocarrier design for better specificity and efficiency in crossing the BBB, enhancing brain-targeted drug delivery. Advancements in nanotechnology may enable personalized neurotherapeutics tailored to patients' genetics and disease progression. Translating these innovations to clinical use will require addressing regulatory hurdles and conducting trials. In recent case studies, biofunctionalized exosomes and lipid-based nanocarriers efficiently transported curcumin across the blood-brain barrier, reducing inflammation in spinal cord injury models and amyloid plaque accumulation in Alzheimer's models, highlighting curcumin's potential in treating neuroinflammatory and neurodegenerative diseases. Multifunctional nanoparticles capable of delivering multiple drugs or combining diagnostic and therapeutic functions could transform neurological disorder treatment. Exploring other neurotherapeutic compounds beyond curcumin and studying the long-term safety, toxicity, and immune response of nanocarriers will be crucial for clinical success.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812340671250108064331
2025-01-29
2025-10-14
Loading full text...

Full text loading...

References

  1. AggarwalB.B. HarikumarK.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases.Int. J. Biochem. Cell Biol.2009411405910.1016/j.biocel.2008.06.010 18662800
    [Google Scholar]
  2. AlsamydaiA. JaberN. Pharmacological aspects of curcumin: Review article.Int. J. Pharmacogn.2018531332610.13040/IJPSR.0975‑8232.IJP.5(6).313‑326
    [Google Scholar]
  3. BengmarkS. Curcumin, an atoxic antioxidant and natural NFkappaB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: A shield against acute and chronic diseases.JPEN J. Parenter. Enteral Nutr.2006301455110.1177/014860710603000145 16387899
    [Google Scholar]
  4. WangS.L. LiY. WenY. ChenY.F. NaL.X. LiS.T. SunC.H. Curcumin, a potential inhibitor of up-regulation of TNF-alpha and IL-6 induced by palmitate in 3T3-L1 adipocytes through NF-kappaB and JNK pathway.Biomed. Environ. Sci.2009221323910.1016/S0895‑3988(09)60019‑2 19462685
    [Google Scholar]
  5. GuoY.Z. HeP. FengA.M. Effect of curcumin on expressions of NF-κBp65, TNF-α and IL-8 in placental tissue of premature birth of infected mice.Asian Pac. J. Trop. Med.201710217517810.1016/j.apjtm.2017.01.004 28237485
    [Google Scholar]
  6. BecherB. SpathS. GovermanJ. Cytokine networks in neuroinflammation.Nat. Rev. Immunol.2017171495910.1038/nri.2016.123 27916979
    [Google Scholar]
  7. ZhangC. BrowneA. ChildD. TanziR.E. Curcumin decreases amyloid-β peptide levels by attenuating the maturation of amyloid-β precursor protein.J. Biol. Chem.201028537284722848010.1074/jbc.M110.133520 20622013
    [Google Scholar]
  8. SantosF.B. ChorilliM. GremiãoP.D.M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease.Int. J. Nanomedicine2015104981500310.2147/IJN.S87148 26345528
    [Google Scholar]
  9. LiJ. SabliovC. PLA/PLGA nanoparticles for delivery of drugs across the blood-brain barrier.Nanotechnol. Rev.20132324125710.1515/ntrev‑2012‑0084
    [Google Scholar]
  10. HuertasM.C.E. FessiH. ElaissariA. Polymer-based nanocapsules for drug delivery.Int. J. Pharm.20103851-211314210.1016/j.ijpharm.2009.10.018 19825408
    [Google Scholar]
  11. SubramaniP.A. PanatiK. NaralaV.R. Curcumin nanotechnologies and its anticancer activity.Nutr. Cancer201769338139310.1080/01635581.2017.1285405 28287321
    [Google Scholar]
  12. HussainZ. ThuH.E. NgS.F. KhanS. KatasH. Nanoencapsulation, an efficient and promising approach to maximize wound healing efficacy of curcumin: A review of new trends and state-of-the-art.Colloids Surf. B Biointerfaces201715022324110.1016/j.colsurfb.2016.11.036 27918967
    [Google Scholar]
  13. RahamanS.M. ChakrabortyM. MandalT. KhatunN. PatraA. ChakravartyM. SahaB. Engineering the reverse micellar-templated Co (OH) 2 nanospheres based Pickering emulsion and unveiling the mechanism of ambiguous phase separation.J. Mol. Liq.202441312590410.1016/j.molliq.2024.125904
    [Google Scholar]
  14. MandalT. RahamanS.M. SahaB. KhatunN. PatraA. MukherjeeA. NandiM. DhakD. RoyS. SahaB. Comprehensive evaluation of non-conventional lanthanum phosphate nanospheres inside water-in-oil microemulsion scaffolds and their utilization in the assessment of surfactant-free TiO 2 -based Pickering emulsion formulations.New J. Chem.20244822101121012510.1039/D4NJ01403K
    [Google Scholar]
  15. SzymusiakM. HuX. PlataL.P.A. CiupinskiP. WangZ.J. LiuY. Bioavailability of curcumin and curcumin glucuronide in the central nervous system of mice after oral delivery of nano-curcumin.Int. J. Pharm.2016511141542310.1016/j.ijpharm.2016.07.027 27426105
    [Google Scholar]
  16. RahamanS.M. ChakrabortyM. MandalT. KunduS. DhibarS. KumarD. IbrahimS.M. ChakravartyM. SahaB. Mechanically tuned lanthanum carbonate nanorods in water-in-oil microemulsion scaffolds.J. Mol. Liq.202337212120410.1016/j.molliq.2023.121204
    [Google Scholar]
  17. MasseriniM. Nanoparticles for brain drug delivery.ISRN Biochem.2013201311810.1155/2013/238428 25937958
    [Google Scholar]
  18. ZhangQ. PolyakovN.E. ChistyachenkoY.S. KhvostovM.V. FrolovaT.S. TolstikovaT.G. DushkinA.V. SuW. Preparation of curcumin self-micelle solid dispersion with enhanced bioavailability and cytotoxic activity by mechanochemistry.Drug Deliv.201825119820910.1080/10717544.2017.1422298 29302995
    [Google Scholar]
  19. ShinM.S. YuJ.S. LeeJ. JiY.S. JoungH.J. HanY.M. YooH.H. KangK.S. A hydroxypropyl methylcellulose-based solid dispersion of curcumin with enhanced bioavailability and its hepatoprotective activity.Biomolecules20199728110.3390/biom9070281 31311168
    [Google Scholar]
  20. KavithaV. NeethuC. DineshkumarB. KrishnakumarK. JohnA. Nanosuspension formulation: An improved drug delivery system.Nanosci. Nanotechnol. Int. J.2014415
    [Google Scholar]
  21. ArunkumarN. DeecaramanM. RaniC. Nanosuspension technology and its applications in drug delivery.Asian J. Pharm.20093316810.4103/0973‑8398.56293
    [Google Scholar]
  22. YadollahiR. VasilevK. SimovicS. Nanosuspension technologies for delivery of poorly soluble drugs.J. Nanomater.20152015121637510.1155/2015/216375
    [Google Scholar]
  23. KaurJ. BawaP. RajeshS.Y. SharmaP. GhaiD. JyotiJ. SomS. MohantaS. RatheeH. MalikA.H. SinghS.K. KumarB. GulatiM. PandeyN.K. GargV. YadavA.K. NarangR. Formulation of curcumin nanosuspension using Box–Behnken design and study of impact of drying techniques on its powder characteristics.Asian J. Pharm. Clin. Res.20171016435110.22159/ajpcr.2017.v10s4.21335
    [Google Scholar]
  24. DuongB.H. TruongH.N. NguyenP.Q.A. PhuN.T.N. NhanH.L.T. Preparation of curcumin nanosuspension with gum arabic as a natural stabilizer: Process optimization and product characterization.Processes20208897010.3390/pr8080970
    [Google Scholar]
  25. NaseryM.M. AbadiB. PoormoghadamD. ZarrabiA. KeyhanvarP. KhanbabaeiH. AshrafizadehM. MohammadinejadR. TavakolS. SethiG. Curcumin delivery mediated by bio-based nanoparticles: A review.Molecules202025368910.3390/molecules25030689 32041140
    [Google Scholar]
  26. BaliY.H. KasmanG.M. PirzadehM. Curcumin-loaded nanoparticles: A novel therapeutic strategy in treatment of central nervous system disorders.Int. J. Nanomedicine2019144449446010.2147/IJN.S208332 31417253
    [Google Scholar]
  27. AbbottN.J. PatabendigeA.A.K. DolmanD.E.M. YusofS.R. BegleyD.J. Structure and function of the blood–brain barrier.Neurobiol. Dis.2010371132510.1016/j.nbd.2009.07.030 19664713
    [Google Scholar]
  28. KreuterJ. Nanoparticles—A historical perspective.Int. J. Pharm.2007331111010.1016/j.ijpharm.2006.10.021 17110063
    [Google Scholar]
  29. LesonA. “There is plenty of room at the Bottom”.Vakuum Forsch. Prax.200517312310.1002/vipr.200590035
    [Google Scholar]
  30. MüllerR. MaabenS. WeyhersH. MehnertW. Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407.J. Drug Target.19964316117010.3109/10611869609015973 8959488
    [Google Scholar]
  31. PakaD.G. DogguiS. ZaghmiA. SafarR. DaoL. ReischA. KlymchenkoA. RoullinV.G. JoubertO. RamassamyC. Neuronal uptake and neuroprotective properties of curcumin-loaded nanoparticles on SK-N-SH cell line: Role of poly (lactide-co-glycolide) polymeric matrix composition.Mol. Pharm.201613239140310.1021/acs.molpharmaceut.5b00611 26618861
    [Google Scholar]
  32. NaseriN. ValizadehH. MilaniZ.P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application.Adv. Pharm. Bull.20155330531310.15171/apb.2015.043 26504751
    [Google Scholar]
  33. GastaldiL. BattagliaL. PeiraE. ChirioD. MuntoniE. SolazziI. GallarateM. DosioF. Solid lipid nanoparticles as vehicles of drugs to the brain: Current state of the art.Eur. J. Pharm. Biopharm.201487343344410.1016/j.ejpb.2014.05.004 24833004
    [Google Scholar]
  34. MishraV. BansalK.K. VermaA. YadavN. ThakurS. SudhakarK. RosenholmJ.M. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems.Pharmaceutics201810419110.3390/pharmaceutics10040191 30340327
    [Google Scholar]
  35. MalvajerdS.S. IzadiZ. AzadiA. KurdM. DerakhshankhahH. SharifzadehM. JavarA.H. HamidiM. Neuroprotective potential of curcumin-loaded nanostructured lipid carrier in an animal model of Alzheimer’s disease: Behavioral and biochemical evidence.J. Alzheimers Dis.201969367168610.3233/JAD‑190083 31156160
    [Google Scholar]
  36. ChenY. PanL. JiangM. LiD. JinL. Nanostructured lipid carriers enhance the bioavailability and brain cancer inhibitory efficacy of curcumin both in vitro and in vivo.Drug Deliv.20162341383139210.3109/10717544.2015.1049719 26066035
    [Google Scholar]
  37. BozzutoG. MolinariA. Liposomes as nanomedical devices.Int. J. Nanomedicine20151097599910.2147/IJN.S68861 25678787
    [Google Scholar]
  38. VieiraD. GamarraL. Getting into the brain: Liposome-based strategies for effective drug delivery across the blood–brain barrier.Int. J. Nanomedicine2016115381541410.2147/IJN.S117210 27799765
    [Google Scholar]
  39. CoisneC. TilloyS. MonflierE. WilsD. FenartL. GosseletF. Cyclodextrins as emerging therapeutic tools in the treatment of cholesterol-associated vascular and neurodegenerative diseases.Molecules20162112174810.3390/molecules21121748 27999408
    [Google Scholar]
  40. R, B.R.L.; Bourboulou, R.; Belkouch, M.; Jebors, S.; Tauran, Y.; Parizot, C.; Suwinska, K.; Coleman, A.W.; Duyckaerts, C.; Lazar, A.N. Multifunctional curcumin-nanocarriers based on host-guest interactions for Alzheimer disease diagnostic.J. Nanomed. Nanotechnol.201562110.4172/2157‑7439.1000270
    [Google Scholar]
  41. QuitschkeW.W. SteinhauffN. RooneyJ. The effect of cyclodextrin-solubilized curcuminoids on amyloid plaques in Alzheimer transgenic mice: Brain uptake and metabolism after intravenous and subcutaneous injection.Alzheimers Res. Ther.2013521610.1186/alzrt170 23537472
    [Google Scholar]
  42. ChengK.K. YeungC.F. HoS.W. ChowS.F. ChowA.H.L. BaumL. Highly stabilized curcumin nanoparticles tested in an in vitro blood-brain barrier model and in Alzheimer’s disease Tg2576 mice.AAPS J.201315232433610.1208/s12248‑012‑9444‑4 23229335
    [Google Scholar]
  43. KataokaK. HaradaA. NagasakiY. Block copolymer micelles for drug delivery: Design, characterization and biological significance.Adv. Drug Deliv. Rev.201264374810.1016/j.addr.2012.09.013 11251249
    [Google Scholar]
  44. TanX. KimG. LeeD. OhJ. KimM. PiaoC. LeeJ. LeeM.S. JeongJ.H. LeeM. A curcumin-loaded polymeric micelle as a carrier of a microRNA-21 antisense-oligonucleotide for enhanced anti-tumor effects in a glioblastoma animal model.Biomater. Sci.20186240741710.1039/C7BM01088E 29340361
    [Google Scholar]
  45. FanS. ZhengY. LiuX. FangW. ChenX. LiaoW. JingX. LeiM. TaoE. MaQ. ZhangX. GuoR. LiuJ. Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer’s disease.Drug Deliv.20182511091110210.1080/10717544.2018.1461955 30107760
    [Google Scholar]
  46. BollimpelliV.S. KumarP. KumariS. KondapiA.K. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity.Neurochem. Int.201695374510.1016/j.neuint.2016.01.006 26826319
    [Google Scholar]
  47. YanM.H. WangX. ZhuX. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease.Free Radic. Biol. Med.2013629010110.1016/j.freeradbiomed.2012.11.014 23200807
    [Google Scholar]
  48. CitronM. Alzheimer’s disease: Strategies for disease modification.Nat. Rev. Drug Discov.20109538739810.1038/nrd2896 20431570
    [Google Scholar]
  49. BallatoreC. LeeV.M.Y. TrojanowskiJ.Q. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders.Nat. Rev. Neurosci.20078966367210.1038/nrn2194 17684513
    [Google Scholar]
  50. MalvajerdS.S. AzadiA. IzadiZ. KurdM. DaraT. DibaeiM. ZadehS.M. JavarA.H. HamidiM. Brain delivery of curcumin using solid lipid nanoparticles and nanostructured lipid carriers: Preparation, optimization, and pharmacokinetic evaluation.ACS Chem. Neurosci.201910172873910.1021/acschemneuro.8b00510 30335941
    [Google Scholar]
  51. BarbaraR. BellettiD. PederzoliF. MasoniM. KellerJ. BallestrazziA. VandelliM.A. TosiG. GrabruckerA.M. Novel curcumin loaded nanoparticles engineered for blood-brain barrier crossing and able to disrupt abeta aggregates.Int. J. Pharm.20175261-241342410.1016/j.ijpharm.2017.05.015 28495580
    [Google Scholar]
  52. HuangN. LuS. LiuX.G. ZhuJ. WangY.J. LiuR.T. PLGA nanoparticles modified with a BBB-penetrating peptide co-delivering Aβ generation inhibitor and curcumin attenuate memory deficits and neuropathology in Alzheimer’s disease mice.Oncotarget2017846810018101310.18632/oncotarget.20944 29113362
    [Google Scholar]
  53. SiddiqueY.H. KhanW. SinghB.R. NaqviA.H. Synthesis of alginate-curcumin nanocomposite and its protective role in transgenic Drosophila model of Parkinson’s disease.ISRN Pharmacol.201320131810.1155/2013/794582 24171120
    [Google Scholar]
  54. ZhangN. YanF. LiangX. WuM. ShenY. ChenM. XuY. ZouG. JiangP. TangC. ZhengH. DaiZ. Localized delivery of curcumin into brain with polysorbate 80-modified cerasomes by ultrasound-targeted microbubble destruction for improved Parkinson’s disease therapy.Theranostics2018882264227710.7150/thno.23734 29721078
    [Google Scholar]
  55. SandhirR. YadavA. MehrotraA. SunkariaA. SinghA. SharmaS. Curcumin nanoparticles attenuate neurochemical and neurobehavioral deficits in experimental model of Huntington’s disease.Neuromolecular Med.201416110611810.1007/s12017‑013‑8261‑y 24008671
    [Google Scholar]
  56. YanJ. GreerJ. TargetsN.D-D.N.F. NF-κ B, a potential therapeutic target for the treatment of multiple sclerosis.CNS Neurol. Disord. Drug Targets20087653655710.2174/187152708787122941 19128210
    [Google Scholar]
  57. XieL. LiX.K. TakaharaS. Curcumin has bright prospects for the treatment of multiple sclerosis.Int. Immunopharmacol.201111332333010.1016/j.intimp.2010.08.013 20828641
    [Google Scholar]
  58. AudeloD.P.M.L. FloránC.I.H. ToledoM.J.A. MuñozM.N. TorresG.M. FloránB. CortésH. GómezL.G. Formulations of curcumin nanoparticles for brain diseases.Biomolecules2019925610.3390/biom9020056 30743984
    [Google Scholar]
  59. AskarizadehA. BarretoG.E. HenneyN.C. MajeedM. SahebkarA. Neuroprotection by curcumin: A review on brain delivery strategies.Int. J. Pharm.202058511947610.1016/j.ijpharm.2020.119476 32473377
    [Google Scholar]
  60. SalehiB. CalinaD. DoceaA. KoiralaN. AryalS. LombardoD. PasquaL. TaheriY. CastilloM.S.C. MartorellM. MartinsN. IritiM. SuleriaH. RadS.J. Curcumin’s nanomedicine formulations for therapeutic application in neurological diseases.J. Clin. Med.20209243010.3390/jcm9020430 32033365
    [Google Scholar]
  61. LaurindoL.F. Carvalhod.G.M. ZanusoO.B. FigueiraM.E. DireitoR. GoulartA.R. BuglioD.S. BarbalhoS.M. Curcumin-based nanomedicines in the treatment of inflammatory and immunomodulated diseases: An evidence-based comprehensive review.Pharmaceutics202315122910.3390/pharmaceutics15010229 36678859
    [Google Scholar]
  62. ShabbirU. RubabM. TyagiA. OhD.H. Curcumin and its derivatives as theranostic agents in Alzheimer’s disease: The implication of nanotechnology.Int. J. Mol. Sci.202022119610.3390/ijms22010196 33375513
    [Google Scholar]
  63. BenameurT. GiacomucciG. PanaroM.A. RuggieroM. TrottaT. MondaV. PizzolorussoI. LofrumentoD.D. PorroC. MessinaG. New promising therapeutic avenues of curcumin in brain diseases.Molecules202127123610.3390/molecules27010236 35011468
    [Google Scholar]
  64. PanzariniE. MarianoS. TacconiS. CarataE. TataA.M. DiniL. Novel therapeutic delivery of nanocurcumin in central nervous system related disorders.Nanomaterials2020111210.3390/nano11010002 33374979
    [Google Scholar]
  65. ChenM.H. ChiangB.H. Modification of curcumin-loaded liposome with edible compounds to enhance ability of crossing blood brain barrier.Col. Surf. A: Phys. Eng. Aspects202059912486210.1016/j.colsurfa.2020.124862
    [Google Scholar]
  66. NaeimiR. SafarpourF. HashemianM. TashakorianH. AhmadianS.R. AshrafpourM. KasmanG.M. Curcumin-loaded nanoparticles ameliorate glial activation and improve myelin repair in lyolecithin-induced focal demyelination model of rat corpus callosum.Neurosci. Lett.201867411010.1016/j.neulet.2018.03.018
    [Google Scholar]
  67. BachmannH. VandemoorteleB. VermeirssenV. CarretteE. VonckK. BoonP. RaedtR. LaureysG. Proteomics dataset of lysolecithin-induced demyelinated lesions in corpus callosum of Lewis rats, treated with Vagus nerve stimulation or sham treatment.Data Brief20245711104810.1016/j.dib.2024.111048
    [Google Scholar]
  68. DehghanS. ArefE. RaoufyM.R. JavanM. An optimized animal model of lysolecithin induced demyelination in optic nerve; more feasible, more reproducible, promising for studying the progressive forms of multiple sclerosis.J. Neurosci. Methods202135210908810.1016/j.jneumeth.2021.109088
    [Google Scholar]
  69. WeberM.S. DerfussT. MetzI. BrückW. Defining distinct features of anti-MOG antibody associated central nervous system demyelination.Ther. Adv. Neurol. Disord.201811175628641876208310.1177/1756286418762083 29623106
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812340671250108064331
Loading
/content/journals/nanoasi/10.2174/0122106812340671250108064331
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): BBB; biofunctionalized; Curcumin; drug delivery; nanocarriers; neurotherapeutics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test