Skip to content
2000
Volume 15, Issue 2
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

Introduction

This study investigates the mechanical characteristics of hybrid sisal fibre (SF)/glass fibre (GF) reinforced composites with various weight % of nSiC fillers (nano silicon carbide). SF/GF/nSiC reinforced hybrid composite materials were developed following ASTM specifications using the vacuum infusion technique.

Methods

The resulting composites were then evaluated for their tensile, impact, hardness, and flexural characteristics. The findings reveal that none of the composites can imitate the GF composite's mechanical advantages despite hybridization and the nanofiller addition. The hybrid composite laminates with 2 wt.% nSiC show better mechanical response than competing hybrid composites.

Results

The GF/SF/2%nSiC composite's impact strength and shore D hardness of the GF/SF/2%nSiC composite are 1.25 and 1.2 times greater than those of the GF/SF/3%nSiC composites. The GF/SF/2%nSiC composites exhibit 1.64, 1.5, and 1.8 times higher tensile strength, tensile modulus, and toughness modulus than the GF/SF/3%nSiC composites. The GF/SF/2%nSiC composite has a flexural modulus and strength of 1.22 and 1.41 times higher than the GF/SF/3%nSiC composites.

Conclusion

The improved mechanical properties of the GF/SF/2%nSiC composite can be attributed to the firm bond between the fibre and matrix, the uniform dispersion of nanofillers, and reduced porosity.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812315169240805071023
2024-08-06
2025-10-14
Loading full text...

Full text loading...

References

  1. QuanjinM. SalimM.S.A. RejabM.R.M. BernhardiO-E. NasutionA.Y. Quasi-static crushing response of square hybrid carbon/aramid tube for automotive crash box application.Mater. Today Proc.20202768369010.1016/j.matpr.2019.10.161
    [Google Scholar]
  2. QuanjinM. RejabM.R.M. HalimQ. MerzukiM.N.M. DarusM.A.H. Experimental investigation of the tensile test using digital image correlation (DIC) method.Mater. Today Proc.20202775776310.1016/j.matpr.2019.12.072
    [Google Scholar]
  3. ZinM.H. AbdanK. NorizanM.N. The effect of different fiber loading on flexural and thermal properties of banana/pineapple leaf (PALF)/glass hybrid composite.Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites.Elsevier201911710.1016/B978‑0‑08‑102291‑7.00001‑0
    [Google Scholar]
  4. ShahinurS. HasanM. Natural Fiber and Synthetic Fiber Composites: Comparison of Properties, Performance, Cost and Environmental Benefits.Encyclopedia of Renewable and Sustainable Materials.Elsevier202079480210.1016/B978‑0‑12‑803581‑8.10994‑4
    [Google Scholar]
  5. BatuT. LemuH.G. Investigation of mechanical properties of false banana/glass fiber reinforced hybrid composite materials.Results in Materials2020810015210.1016/j.rinma.2020.100152
    [Google Scholar]
  6. RanaR.S. kumre, A.; Rana, S.; Purohit, R. Characterization of properties of epoxy sisal/glass fiber reinforced hybrid composite.Mater. Today Proc.2017445445545110.1016/j.matpr.2017.05.056
    [Google Scholar]
  7. MuniappanA. SrinivasanR. Sai SandeepM.V.V. SenthilkumarN. SenthiilP.V. Mode-1 fracture toughness analysis of coffee bean powder reinforced polymer composite.Mater. Today Proc.20202153754210.1016/j.matpr.2019.06.694
    [Google Scholar]
  8. AnbukarasiK. MalaD. SenthilkumarN. HussainS.I. KalaiselvamS. Investigation of TiO2 nanoparticles influence on tensile properties and thermal stability of dry and wet luffa-epoxy nanocomposites.Recent Pat. Nanotechnol.2024182910.2174/0118722105295445240418064351 38685771
    [Google Scholar]
  9. ManimaranP. SanjayM.R. SenthamaraikannanP. JawaidM. SaravanakumarS.S. GeorgeR. Synthesis and characterization of cellulosic fiber from red banana peduncle as reinforcement for potential applications.J. Nat. Fibers201916576878010.1080/15440478.2018.1434851
    [Google Scholar]
  10. BharathK.N. MadhuP. GowdaT.G.Y. SanjayM.R. KushvahaV. SiengchinS. Alkaline effect on characterization of discarded waste of Moringa oleifera fiber as a potential eco-friendly reinforcement for biocomposites.J. Polym. Environ.202028112823283610.1007/s10924‑020‑01818‑4
    [Google Scholar]
  11. KandolaB.K. MistikS.I. PornwannachaiW. AnandS.C. Natural fibre-reinforced thermoplastic composites from woven-nonwoven textile preforms: Mechanical and fire performance study.Compos., Part B Eng.201815345646410.1016/j.compositesb.2018.09.013
    [Google Scholar]
  12. MohammedM. JawadA.J.M. MohammedA.M. OleiwiJ.K. AdamT. OsmanA.F. DahhamO.S. BetarB.O. GopinathS.C.B. JaafarM. Challenges and advancement in water absorption of natural fiber-reinforced polymer composites.Polym. Test.202312410808310.1016/j.polymertesting.2023.108083
    [Google Scholar]
  13. MaitiS. IslamM.R. UddinM.A. AfrojS. EichhornS.J. KarimN. Sustainable fiber‐reinforced composites: A review.Adv. Sustain. Syst.2022611220025810.1002/adsu.202200258
    [Google Scholar]
  14. PickeringK.L. EfendyM.G.A. LeT.M. A review of recent developments in natural fibre composites and their mechanical performance.Compos., Part A Appl. Sci. Manuf.2016839811210.1016/j.compositesa.2015.08.038
    [Google Scholar]
  15. SanjayM.R. MadhuP. JawaidM. SenthamaraikannanP. SenthilS. PradeepS. Characterization and properties of natural fiber polymer composites: A comprehensive review.J. Clean. Prod.201817256658110.1016/j.jclepro.2017.10.101
    [Google Scholar]
  16. PuttegowdaM. RangappaS.M. JawaidM. The potential of natural/synthetic hybrid composites for aerospace applications.Sustainable Composites for Aerospace Applications.Elsevier201831535110.1016/B978‑0‑08‑102131‑6.00021‑9
    [Google Scholar]
  17. BalachandarM. Vijaya RamnathB. JagadeeshwarP. YokeshR. Mechanical behaviour of natural and glass fiber reinforced with polymer matrix composite.Mater. Today Proc.2019161297130310.1016/j.matpr.2019.05.227
    [Google Scholar]
  18. CavalcantiD.K.K. BaneaM.D. NetoJ.S.S. LimaR.A.A. da SilvaL.F.M. CarbasR.J.C. Mechanical characterization of intralaminar natural fibre-reinforced hybrid composites.Compos., Part B Eng.201917510714910.1016/j.compositesb.2019.107149
    [Google Scholar]
  19. ZhaferS.F. RozyantyA.R. ShahnazS.B.S. Kenaf-glass fiber reinforced unsaturated polyester hybrid composites: Tensile properties.AIP Conf. Proc.20161756104000910.1063/1.4958770
    [Google Scholar]
  20. VermaD. JainS. Effect of natural fibers surface treatment and their reinforcement in thermo- plastic polymer composites: A review.Curr. Org. Synth.201714218619910.2174/1570179413666160921114114
    [Google Scholar]
  21. SalamH. DongY. Bioepoxy/Clay Nanocomposites: Fabrication Optimisation, Properties and Modelling.2022Available from: https://books.google.co.in/books?id=_o95zwEACAAJ
    [Google Scholar]
  22. DalfiH.K. JanK. YousafZ. PeerzadaM. Improving the impact resistance and damage tolerance of fibre reinforced composites: A review.J. Compos. Mater.202357284479450010.1177/00219983231209718
    [Google Scholar]
  23. MohantyA. SrivastavaV.K. Effect of alumina nanoparticles on the enhancement of impact and flexural properties of the short glass/carbon fiber reinforced epoxy based composites.Fibers Polym.201516118819510.1007/s12221‑015‑0188‑5
    [Google Scholar]
  24. LuoC. KELL: A kernel-embedded local learning for data-intensive modeling.Artif. Intell. Appl.202323844
    [Google Scholar]
  25. BaekK. HwangT. LeeW. ChungH. ChoM. Deep learning aided evaluation for electromechanical properties of complexly structured polymer nanocomposites.Compos. Sci. Technol.202222810966110.1016/j.compscitech.2022.109661
    [Google Scholar]
  26. DuH. DuS. LiW. Probabilistic time series forecasting with deep non‐linear state space models.CAAI Trans. Intell. Technol.20238131310.1049/cit2.12085
    [Google Scholar]
  27. KosariS. GheisariM. MirmohseniS.M. ZaviehH. RiskhanB. KhanM.F. LiuY. A survey on weak pseudoorders in ordered hyperstructures.Artif. Intell. Appl.202310.47852/bonviewAIA3202535
    [Google Scholar]
  28. LiH. ZengB. QiuT. HuangW. WangY. ShengG-P. WangY. Deep learning models for assisted decision-making in performance optimization of thin film nanocomposite membranes.J. Membr. Sci.202368712209310.1016/j.memsci.2023.122093
    [Google Scholar]
  29. WangW. SunY. LiK. WangJ. HeC. SunD. Fully Bayesian analysis of the relevance vector machine classification for imbalanced data problem.CAAI Trans. Intell. Technol.20238119220510.1049/cit2.12111
    [Google Scholar]
  30. KakkarP. MishraS. SharmaA. BabarM. VermaR. VermaG. Using deep learning for the prediction of mixing patterns in two component-colored solutions as a proxy to dispersion in nanocomposite coatings.J. Dispers. Sci. Technol.20234511610.1080/01932691.2023.2178453
    [Google Scholar]
  31. AbubakarA.B. KumamP. MalikM. IbrahimA.H. A hybrid conjugate gradient based approach for solving unconstrained optimization and motion control problems.Math. Comput. Simul.202220164065710.1016/j.matcom.2021.05.038
    [Google Scholar]
  32. GheisariM. EbrahimzadehF. RahimiM. MoazzamigodarziM. LiuY. Dutta PramanikP.K. HeraviM.A. MehbodniyaA. GhaderzadehM. FeylizadehM.R. KosariS. Deep learning: Applications, architectures, models, tools, and frameworks: A comprehensive survey.CAAI Trans. Intell. Technol.20238358160610.1049/cit2.12180
    [Google Scholar]
  33. SenthilkumarN. KalaichelvanK. ElangovanK. Mechanical behaviour of aluminum particulate epoxy composite experimental study and numerical simulation.Int. J. Mech. Mat. Eng.20127214221
    [Google Scholar]
  34. DilonardoE. NacucchiM. De PascalisF. ZarrelliM. GianniniC. Inspection of carbon fibre reinforced polymers: 3D identification and quantification of components by X-ray CT.Appl. Compos. Mater.202229249751310.1007/s10443‑021‑09976‑x
    [Google Scholar]
  35. IsmailM. RejabM.R.M. SiregarJ.P. Tensile properties of hybrid woven glass fibre/PALF reinforced.Polym. Compos.2020448454
    [Google Scholar]
  36. JeyapragashR. SrinivasanV. SathiyamurthyS. Mechanical properties of natural fiber/particulate reinforced epoxy composites A review of the literature.Mater. Today Proc.2020221223122710.1016/j.matpr.2019.12.146
    [Google Scholar]
  37. SouzaA.T. NeubaL.M. JunioR.F.P. CarvalhoM.T. CandidoV.S. FigueiredoA.B.H.S. MonteiroS.N. NascimentoL.F.C. da SilvaA.C.R. Ballistic properties and izod impact resistance of novel epoxy composites reinforced with caranan fiber (Mauritiella armata).Polymers20221416334810.3390/polym14163348 36015605
    [Google Scholar]
  38. BaigN. KammakakamI. FalathW. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges.Materials Advances2021261821187110.1039/D0MA00807A
    [Google Scholar]
  39. KamatchiT. SaravananR. RangappaS.M. SiengchinS. Effect of filler content and size on the mechanical properties of graphene-filled natural fiber-based nanocomposites.Biomass Convers. Biorefin.20231312113111132010.1007/s13399‑023‑03911‑9
    [Google Scholar]
  40. AmjadA. AnjangA. AbidinM.S.Z. Effect of nanofiller concentration on the density and void content of natural fiber-reinforced epoxy composites.Biomass Convers. Biorefin.20241478661867010.1007/s13399‑022‑02839‑w
    [Google Scholar]
  41. KashyapV.S. SanchetiG. YadavJ.S. AgrawalU. Smart sustainable concrete: Enhancing the strength and durability with nano silica.Smart Construction and Sustainable Cities2023112010.1007/s44268‑023‑00023‑1
    [Google Scholar]
  42. ShahabazS.M. MehrotraP. KalitaH. SharmaS. NaikN. NoronhaD.J. ShettyN. Effect of Al2O3 and SiC Nano-Fillers on the mechanical properties of carbon fiber-reinforced epoxy hybrid composites.J. Compos. Sci.20237413310.3390/jcs7040133
    [Google Scholar]
  43. RudreshB.M. Ravi KumarB.N. MadhuD. Combined effect of micro- and nano-fillers on mechanical, thermal, and morphological behavior of glass–carbon PA66/PTFE hybrid nano-composites.Adv. Compos. Hybrid Mater.20192117618810.1007/s42114‑019‑00089‑5
    [Google Scholar]
  44. Manzano-RamírezA. VillalonM. Reyes Araiza, JL Interaction between natural fibres and synthetic polymers.Bio-Inspired Materials201919422410.2174/9789811406898119060012
    [Google Scholar]
  45. KumarK. DasS. GargR. GoyatM.S. A comprehensive review on enhancing the strength of CFRPs through nano-reinforcements: Applications, characterization, and challenges.J. Fail. Anal. Prev.20242910.1007/s11668‑024‑01946‑2
    [Google Scholar]
  46. VenkateshR DillikannanD IlavarasanN An approach of nano-SiC-Filled epoxy nanocomposite tensile and flexural strength enriched by the addition of sisal fiber. : Series D. Epub ahead of print.J. Inst. Eng. (India)202410.1007/s40033‑024‑00680‑1
    [Google Scholar]
  47. RafiqA. MerahN. BoukhiliR. Al-QadhiM. Impact resistance of hybrid glass fiber reinforced epoxy/nanoclay composite.Polym. Test.20175711110.1016/j.polymertesting.2016.11.005
    [Google Scholar]
  48. IqbalK. KhanS.U. MunirA. KimJ-K. Impact damage resistance of CFRP with nanoclay-filled epoxy matrix.Compos. Sci. Technol.20096911-121949195710.1016/j.compscitech.2009.04.016
    [Google Scholar]
  49. SahariJ. SapuanS. ZainudinE. IshakM. MalequeM. ZuhriM. AkhtarR. Nanoindentation and the low velocity impact response of biofibre, biopolymer and its biocomposite derived from sugar palm tree.Curr. Org. Synth.201714222723210.2174/1570179413666160831122841
    [Google Scholar]
  50. OkolieO. LattoJ. FaisalN. JamiesonH. MukherjiA. NjugunaJ. Manufacturing defects in thermoplastic composite pipes and their effect on the in-situ performance of thermoplastic composite pipes in oil and gas applications.Appl. Compos. Mater.202330123130610.1007/s10443‑022‑10066‑9
    [Google Scholar]
  51. DongX. ChenK. XueP. ZhangR. JiaM. Effect of infusion strategy on vacuum bagging process and properties of polyamide 6 composites.J. Polym. Res.202330413710.1007/s10965‑023‑03507‑x
    [Google Scholar]
  52. KhosraviH. Eslami-FarsaniR. Enhanced mechanical properties of unidirectional basalt fiber/epoxy composites using silane-modified Na+-montmorillonite nanoclay.Polym. Test.20165513514210.1016/j.polymertesting.2016.08.011
    [Google Scholar]
  53. AlshahraniR.F. MerahN. KhanS.M.A. Al-NassarY. On the impact-induced damage in glass fiber reinforced epoxy pipes.Int. J. Impact Eng.201697576510.1016/j.ijimpeng.2016.06.002
    [Google Scholar]
  54. AltaeeM.A. MostafaN.H. Mechanical properties of interply and intraply hybrid laminates based on jute-glass/epoxy composites.J. Eng. Appl. Sci. (Asian Res. Publ. Netw.)202370121
    [Google Scholar]
  55. AdefemiO. Development and characterization of tigernut fibres mixed with nanoclay/epoxy polymer composites.Adv. Manufac. Technol. Produc. Eng.202223224410.2174/9789815039771122010008
    [Google Scholar]
  56. KarthickL. RathinamR. KalamS.A. LoganathanG.B. SabeenianR.S. JoshiS.K. RameshL. AliH.M. MammoW.D. Influence of nano-/microfiller addition on mechanical and morphological performance of kenaf/glass fibre-reinforced hybrid composites.J. Nanomater.2022202211010.1155/2022/9778224
    [Google Scholar]
  57. HemnathA. AnbuchezhiyanG. NanthaKumar, P.; Senthilkumar, N. Tensile and flexural behaviour of rice husk and sugarcane bagasse reinforced polyester composites.Mater. Today Proc.2021463451345410.1016/j.matpr.2020.11.786
    [Google Scholar]
  58. SathishkumarT.P. NaveenJ. SatheeshkumarS. Hybrid fiber reinforced polymer composites a review.J. Reinf. Plast. Compos.201433545447110.1177/0731684413516393
    [Google Scholar]
  59. Mohd BakhoriS.N. HassanM.Z. Mohd BakhoriN. JamaludinK.R. RamlieF. Md DaudM.Y. Abdul AzizS. Physical, mechanical and perforation resistance of natural-synthetic fiber interply laminate hybrid composites.Polymers2022147132210.3390/polym14071322 35406196
    [Google Scholar]
  60. MehdikhaniM. GorbatikhL. VerpoestI. LomovS.V. Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance.J. Compos. Mater.201953121579166910.1177/0021998318772152
    [Google Scholar]
  61. RameshM. DeepaC. Processing and properties of jute (Corchorus olitorius L.) fibres and their sustainable composite materials: A review.J. Mater. Chem. A Mater. Energy Sustain.20241241923199710.1039/D3TA05481K
    [Google Scholar]
  62. PapanicolaouG.C. PortanD.V. KontaxisL.C. Interrelation between fiber–matrix interphasial phenomena and flexural stress relaxation behavior of a glass fiber–polymer composite.Polymers202113697810.3390/polym13060978 33806764
    [Google Scholar]
  63. AchourB. MokaddemA. DoumiB. ZiadiA. BelarbiL. BoutaousA. A Numerical study for determining the effect of raffia, alfa and sisal fibers on the fiber-matrix interface damage of biocomposite materials.Current Materials Science202215111512410.2174/2666145414666210811154840
    [Google Scholar]
  64. BiswasS. PatnaikA. KaundalR. Effect of red mud and copper slag particles on physical and mechanical properties of bamboo-fiber-reinforced epoxy composites.Adv. Mech. Eng.2012414124810.1155/2012/141248
    [Google Scholar]
  65. JenM. TsengY. WuC. Manufacturing and mechanical response of nanocomposite laminates.Compos. Sci. Technol.200565577577910.1016/j.compscitech.2004.10.010
    [Google Scholar]
  66. ChisholmN. MahfuzH. RangariV.K. AshfaqA. JeelaniS. Fabrication and mechanical characterization of carbon/SiC-epoxy nanocomposites.Compos. Struct.200567111512410.1016/j.compstruct.2004.01.010
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812315169240805071023
Loading
/content/journals/nanoasi/10.2174/0122106812315169240805071023
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test