Skip to content
2000
image of Synthetic Advancements in Diaryl/Diheteroaryl/Dialkyl Diselenides

Abstract

Organodiselenides bearing a Se-Se bond are the key synthons for the synthesis of a library of organoselenides with important applications in various fields of Chemistry, Biology, and Medicine. This class of molecules was found to be used as prime synthons for the synthesis of different classes of organoselenides performing cross-coupling, C-H activation, and nucleophilic substitution under both metal-catalyzed and metal-free conditions. Apart from their broad applications in the field of organic synthesis, organodiselenides have also been found to possess high biological importance, exhibiting anti-HIV, anti-cancer, anti-tumor, and antibacterial activities. They are also found to have a potential effect against SARS-COV-2. They were also found to be efficient catalysts in different organic reactions. Therefore, the synthesis of organodiselenides is a challenging task in synthetic organic chemistry. Mainly, Se(0) and KSeCN, as selenium sources, were allowed to react with aryl/heteroaryl/alkyl halides and boronic acids to synthesize the desired diaryl/diheteroaryl/dialkyl diselenides under transition metal catalysis (Cu, Fe, Ag), organocatalysis (TMSCN), and metal-free conditions. The reactions follow different mechanistic paths, such as cross-coupling, radical mechanisms, C-H activation, and nucleophilic substitution, depending on the reaction conditions. Apart from conventional heating, solvent-free mechanical ball-milling was also applied for their synthesis. Diaryl diselenides with both electron-donating and electron-withdrawing functional groups were synthesized in good to excellent yields using these protocols. This review summarizes all published protocols for the synthesis of organodiselenides, including detailed mechanisms, over the last 15 years, and outlines future scopes in this important field of organic synthesis.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298428385251113212433
2026-01-16
2026-01-31
Loading full text...

Full text loading...

/deliver/fulltext/mroc/10.2174/0118756298428385251113212433/BMS-MROC-2025-52.html?itemId=/content/journals/mroc/10.2174/0118756298428385251113212433&mimeType=html&fmt=ahah

References

  1. Reich H.J. Hondal R.J. Why nature chose selenium. ACS Chem. Biol. 2016 11 4 821 841 10.1021/acschembio.6b00031 26949981
    [Google Scholar]
  2. Hatfield D.L. Berry M.J. Gladyshev V.N. Selenium Its molecular biology and role in human health. New York, NY, USA Springer 2012 10.1007/978‑1‑4614‑1025‑6
    [Google Scholar]
  3. Marshall J.R. Ip C. Romano K. Fetterly G. Fakih M. Jovanovic B. Perloff M. Crowell J. Davis W. French-Christy R. Dew A. Coomes M. Bergan R. Methyl selenocysteine: Single-dose pharmacokinetics in men. Cancer Prev. Res. (Phila.) 2011 4 11 1938 1944 10.1158/1940‑6207.CAPR‑10‑0259 21846796
    [Google Scholar]
  4. Kieliszek M. Selenium–fascinating microelement, properties and sources in food. Molecules 2019 24 7 1298 10.3390/molecules24071298 30987088
    [Google Scholar]
  5. Rayman M.P. The importance of selenium to human health. Lancet 2000 356 9225 233 241 10.1016/S0140‑6736(00)02490‑9 10963212
    [Google Scholar]
  6. Dharmasivam M. Zhang S. Zhao X. Richardson V. Wijesinghe T.P. Suleymanoglu M. Gholam Azad M. Bernhardt P.V. Kaya B. Richardson D.R. Advantages of novel anti-cancer selenosemicarbazones: Preferential reactivity of their Fe(III), Cu(II), and Zn(II) complexes with key physiological reductants/ligands versus isosteric thiosemicarbazones. J. Med. Chem. 2025 68 9 9594 9622 10.1021/acs.jmedchem.5c00374 40265585
    [Google Scholar]
  7. Mamgain R. Mishra G. Kriti S. Singh F.V. Organoselenium compounds beyond antioxidants. Future Med. Chem. 2024 16 24 2663 2685 10.1080/17568919.2024.2435254 39711134
    [Google Scholar]
  8. He X. Nie Y. Zhong M. Li S. Li X. Guo Y. Liu Z. Gao Y. Ding F. Wen D. Zhang Y. New organoselenides (NSAIDs-Se derivatives) as potential anticancer agents: Synthesis, biological evaluation and in silico calculations. Eur. J. Med. Chem. 2021 218 113384 10.1016/j.ejmech.2021.113384 33799070
    [Google Scholar]
  9. Shaaban S. Ashmawy A.M. Negm A. Wessjohann L.A. Synthesis and biochemical studies of novel organic selenides with increased selectivity for hepatocellular carcinoma and breast adenocarcinoma. Eur. J. Med. Chem. 2019 179 515 526 10.1016/j.ejmech.2019.06.075 31276896
    [Google Scholar]
  10. Di Leo I. Messina F. Nascimento V. Nacca F.G. Pietrella D. Lenardão E.J. Perin G. Sancineto L. Synthetic approaches to organoselenium derivatives with antimicrobial and anti-biofilm activity. Mini Rev. Org. Chem. 2019 16 6 589 601 10.2174/1570193X16666181227111038
    [Google Scholar]
  11. Domingues M. Casaril A.M. Smaniotto T.A. Birmann T. Lourenço D.A. Bampi S.R. Vieira B. Lenardão E.J. Savegnago, L Selanylimidazopyridine abolishes inflammation- and stress-induced depressive-like behaviors by modulating the oxido-nitrosative system. Eur. J. Pharmacol. 2022 914 174570 10.1016/j.ejphar.2021.174570
    [Google Scholar]
  12. Refaay D.A. Ahmed D.M. Mowafy A.M. Shaaban S. Evaluation of novel multifunctional organoselenium compounds as potential cholinesterase inhibitors against Alzheimer’s disease. Med. Chem. Res. 2022 31 6 894 904 10.1007/s00044‑022‑02879‑x
    [Google Scholar]
  13. Tiekink E.R.T. Therapeutic potential of selenium and tellurium compounds: Opportunities yet unrealized. Dalton Trans. 2012 41 6390 6395 10.1039/C2DT12225A
    [Google Scholar]
  14. Banerjee B. Koketsu M. Recent developments in the synthesis of biologically relevant selenium-containing scaffolds. Coord. Chem. Rev. 2017 339 104 127 10.1016/j.ccr.2017.03.008
    [Google Scholar]
  15. Sarturi J.M. Dornelles L. Segatto N.V. Collares T. Seixas F.K. Piccoli B.C. da Silva F.D.A. Omage F.B. da Rocha J.B.T. Balaguez R.A. Alves D. Lenardão E.J. Lopes E.F. Kula-Pacurar A. Pyrc K. Sancineto L. Rodrigues O.E.D. Chalcogenium-AZT derivatives: A plausible strategy to tackle the rt-inhibitors-related oxidative stress while maintaining their anti- HIV properties. Curr. Med. Chem. 2023 30 21 2449 2462 10.2174/0929867329666220906095438 36065927
    [Google Scholar]
  16. Sancineto L. Mangiavacchi F. Dabrowska A. Pacuła-Miszewska A.J. Obieziurska-Fabisiak M. Scimmi C. Ceccucci V. Kong J. Zhao Y. Ciancaleoni G. Nascimento V. Rizzuti B. Bortoli M. Orian L. Kula-Pacurar A. Yang H. Ścianowski J. Lei Y. Pyrc K. Santi C. New insights in the mechanism of the SARS-CoV-2 Mpro inhibition by benzisoselenazolones and diselenides. Sci. Rep. 2024 14 1 24751 10.1038/s41598‑024‑75519‑6 39433805
    [Google Scholar]
  17. Kim C. Lee J. Park M.S. Synthesis of new diorganodiselenides from organic halides: Their antiproliferative effects against human breast cancer MCF-7 cells. Arch. Pharm. Res. 2015 38 659 665 10.1007/s12272‑014‑0407‑4
    [Google Scholar]
  18. Cui F. Chen J. Mo Z. Su S. Chen Y. Ma X. Tang H. Wang H. Pan Y. Xu Y. Copper-catalyzed decarboxylative/click cascade reaction: Regioselective assembly of 5-selenotriazole anticancer agents. Org. Lett. 2018 20 4 925 929 10.1021/acs.orglett.7b03734 29388780
    [Google Scholar]
  19. Savegnago L. Trevisan M. Alves D. Rocha J.B.T. Nogueira C.W. Zeni G. Zeni G. Antisecretory and antiulcer effects of diphenyl diselenide. Environ. Toxicol. Pharmacol. 2006 21 1 86 92 10.1016/j.etap.2005.07.017 21783643
    [Google Scholar]
  20. Ramos-Inza S. Encío I. Raza A. Sharma A.K. Sanmartín C. Plano D. Design, synthesis and anticancer evaluation of novel Se-NSAID hybrid molecules: Identification of a Se-indomethacin analog as a potential therapeutic for breast cancer. Eur. J. Med. Chem. 2022 244 114839 10.1016/j.ejmech.2022.114839 36257283
    [Google Scholar]
  21. Astrain-Redin N. Paoletti N. Plano D. Bonardi A. Gratteri P. Angeli A. Sanmartin C. Supuran C.T. Selenium-analogs based on natural sources as cancer-associated carbonic anhydrase isoforms IX and XII inhibitors. J. Enzyme Inhib. Med. Chem. 2023 38 1 2191165 10.1080/14756366.2023.2191165 36938694
    [Google Scholar]
  22. Radhakrishna P.M. Sharadamma K.C. Vagdevi H.M. Abhilekha P.M. Mubeen S.R. Nischal K. Synthesis and antibacterial activity of novel organoselenium compounds. Int. J. Chem. 2010 2 149 154 10.5539/ijc.v2n2p149
    [Google Scholar]
  23. Mamgain R. Kostic M. Singh F.V. Synthesis and antioxidant properties of organoselenium compounds. Curr. Med. Chem. 2023 30 21 2421 2448 10.2174/0929867329666220801165849 35927897
    [Google Scholar]
  24. Ma X. Lei Y. Lin X. Li S. Dai X. Yan W. Li L. Porous organic polymers catalyzed by selenides: Recognition of selenide-induced oxidative coupling and promoting synergistic hydrogenation of nitroarenes with Pd Loading. Chem. Mater. 2025 37 9 3455 3470 10.1021/acs.chemmater.5c00371
    [Google Scholar]
  25. Wang Z. Liu S. Duan W. Xing Y. Hu Y. Ma Y. Transition metal selenides as catalysts for electrochemical water splitting. Int. J. Hydrogen Energy 2024 60 22 1414 1432 10.1016/j.ijhydene.2024.02.201
    [Google Scholar]
  26. Xiang H. Dong Q. Yang M. Liu S. Rational design and application of electrocatalysts based on transition metal selenides for water splitting. Mater. Chem. Front. 2024 8 8 1888 1926 10.1039/D4QM00021H
    [Google Scholar]
  27. Freudendahl D.M. Santoro S. Shahzad S.A. Santi C. Wirth T. Green chemistry with selenium reagents: Development of efficient catalytic reactions. Angew. Chem. Int. Ed. 2009 48 45 8409 8411 10.1002/anie.200903893 19802863
    [Google Scholar]
  28. Liao L. Zhao X. Selenium-catalyzed functionalization of alkynes. Chem. Lett. 2021 50 5 1104 1113 10.1246/cl.210065
    [Google Scholar]
  29. Krätzschmar F. Ortgies S. Willing R.Y.N. Breder A. Rational design of chiral selenium-π-acid catalysts. Catalysts 2019 9 2 153 10.3390/catal9020153
    [Google Scholar]
  30. Santosh G. Shetgaonkar S.E. Singh F.V. Recent advances in organoselenium catalysis. Curr. Org. Synth. 2022 19 3 393 413 10.2174/1570179419666220211102602 35152866
    [Google Scholar]
  31. Xia X. Wang L. Sui N. Colvin V.L. Yu W.W. Recent progress in transition metal selenide electrocatalysts for water splitting. Nanoscale 2020 12 23 12249 12262 10.1039/D0NR02939D 32514508
    [Google Scholar]
  32. Arora A. Oswal P. Kumar Rao G. Kumar S. Kumar A. Organoselenium ligands for heterogeneous and nanocatalytic systems: Development and applications. Dalton Trans. 2021 50 25 8628 8656 10.1039/D1DT00082A 33954317
    [Google Scholar]
  33. Hoover G.C. Seferos D.S. Photoactivity and optical applications of organic materials containing selenium and tellurium. Chem. Sci. 2019 10 40 9182 9188 10.1039/C9SC04279B 32055305
    [Google Scholar]
  34. Xia J. Li T. Lu C. Xu H. Selenium-containing polymers: Perspectives toward diverse applications in both adaptive and biomedical materials. Macromolecules 2018 51 19 7435 7455 10.1021/acs.macromol.8b01597
    [Google Scholar]
  35. Kassaee M. Motamedi E. Movassagh B. Poursadeghi S. Iron-catalyzed formation of C-Se and C-Te bonds through cross coupling of aryl halides with Se(0) and Te(0)/Nano-Fe3O4@GO. Synthesis 2013 45 16 2337 2342 10.1055/s‑0033‑1338488
    [Google Scholar]
  36. Reddy V.P. Kumar A.V. Swapna K. Rao K.R. Copper oxide nanoparticle-catalyzed coupling of diaryl diselenide with aryl halides under ligand-free conditions. Org. Lett. 2009 11 4 951 953 10.1021/ol802734f 19182886
    [Google Scholar]
  37. Singh D. Alberto E.E. Rodrigues O.E.D. Braga A.L. Eco-friendly cross-coupling of diaryl diselenides with aryl and alkyl bromides catalyzed by CuO nanopowder in ionic liquid. Green Chem. 2009 11 10 1521 1524 10.1039/b916266f
    [Google Scholar]
  38. Chatterjee T. Ranu B.C. Solvent-controlled halo-selective selenylation of aryl halides catalyzed by Cu(II) supported on Al2O3. A general protocol for the synthesis of unsymmetrical organo mono- and bis-selenides. J. Org. Chem. 2013 78 14 7145 7153 10.1021/jo401062k 23786642
    [Google Scholar]
  39. Kundu D. Roy A. Panja S. Singh R.K. Microwave-assisted cobalt-copper dual catalyzed ligand free C-Se cross-coupling. Curr. Microw. Chem. 2020 7 2 157 163 10.2174/2213335607666200212101502
    [Google Scholar]
  40. Kundu D. Roy A. Singha A. Panja S. Nickel-copper co-catalyzed sustainable synthesis of diaryl-chalcogenides. Curr. Green Chem. 2021 8 2 147 156 10.2174/2213346108999210111224631
    [Google Scholar]
  41. Swapna K. Murthy S.N. Nageswar Y.V.D. Magnetically separable and reusable copper ferrite nanoparticles for cross‐coupling of aryl halides with diphenyl diselenide. Eur. J. Org. Chem. 2011 2011 10 1940 1946 10.1002/ejoc.201001639
    [Google Scholar]
  42. Fernandes R.A. Bhowmik A. Yadav S.S. Advances in Cu and Ni-catalyzed Chan–Lam-type coupling: synthesis of diarylchalcogenides, Ar 2 –X (X = S, Se, Te). Org. Biomol. Chem. 2020 18 47 9583 9600 10.1039/D0OB02035D 33206103
    [Google Scholar]
  43. Sun N. Zheng K. Zhang M. Zheng G. Jin L. Hu B. Shen Z. Hu X. Cu-catalysed Chan–Lam synthesis of unsymmetrical aryl chalcogenides under aqueous micellar conditions. Green Chem. 2023 25 7 2782 2789 10.1039/D3GC00051F
    [Google Scholar]
  44. Barcellos A.M. Sacramento M. da Costa G.P. Perin G. João Lenardão E. Alves D. Organoboron compounds as versatile reagents in the transition metal-catalyzed C–S, C–Se and C–Te bond formation. Coord. Chem. Rev. 2021 442 214012 10.1016/j.ccr.2021.214012
    [Google Scholar]
  45. Kumar A. Kumar S. A convenient and efficient copper-catalyzed synthesis of unsymmetrical and symmetrical diaryl chalcogenides from arylboronic acids in ethanol at room temperature. Tetrahedron 2014 70 9 1763 1772 10.1016/j.tet.2014.01.030
    [Google Scholar]
  46. Goldani B. Ricordi V.G. Seus N. Lenardão E.J. Schumacher R.F. Alves D. Silver-catalyzed synthesis of diaryl selenides by reaction of diaryl diselenides with aryl boronic acids. J. Org. Chem. 2016 81 22 11472 11476 10.1021/acs.joc.6b02108 27731643
    [Google Scholar]
  47. Kundu D. Mukherjee N. Ranu B.C. A general and green procedure for the synthesis of organochalcogenides by CuFe 2 O 4 nanoparticle catalysed coupling of organoboronic acids and dichalcogenides in PEG-400. RSC Advances 2013 3 1 117 125 10.1039/C2RA22415A
    [Google Scholar]
  48. Rios E A M. Gomes C.M.B. Silvério G.L. Luz E.Q. Ali S. D’Oca C.R.M. Albach B. Campos R.B. Rampon D.S. Silver-catalysed direct selanylation of indoles: Synthesis and mechanistic insights. RSC Advances 2023 13 914 925 10.1039/D2RA06813C
    [Google Scholar]
  49. Menezes J.R. Gularte M.M. dos Santos F.C. Roehrs J.A. Azeredo J.B. Synthesis of 3-chalcogenyl-indoles mediated by the safer reagent urea-hydrogen peroxide (UHP). Tetrahedron Lett. 2023 120 154446 10.1016/j.tetlet.2023.154446
    [Google Scholar]
  50. Benchawan T. Saeeng R. Recent advances in sulfenylation or selenylation of indoles. Asian J. Org. Chem. 2025 14 6 e202500148 10.1002/ajoc.202500148
    [Google Scholar]
  51. Matsumur M. Umeda A. Sumi Y. Aiba N. Murata Y. Yasuike S. Bismuth(III)-catalysed regioselective selenation of indoles with diaryl diselenides: Synthesis of 3-selanylindoles. Molecules 2024 29 13 3227 10.3390/molecules29133227
    [Google Scholar]
  52. Benchawan T. Maneewong J. Saeeng R. Selective synthesis of 3‐chalcogenylindoles via silver‐catalyzed direct chalcogenation of indoles with dichalcogenides. ChemistrySelect 2023 8 29 e202301988 10.1002/slct.202301988
    [Google Scholar]
  53. Zheng D.S. Xie P.P. Zhao F. Zheng C. Gu Q. You S.L. Rh(III)-catalyzed atroposelective C–H selenylation of 1-aryl isoquinolines. ACS Catal. 2024 14 8 6009 6015 10.1021/acscatal.4c01082
    [Google Scholar]
  54. Qiao H. Sun B. Yu Q. Huang Y.Y. Zhou Y. Zhang F.L. Palladium-catalyzed direct ortho-C–H selenylation of benzaldehydes using benzidine as a transient directing group. Org. Lett. 2019 21 17 6914 6918 10.1021/acs.orglett.9b02530 31448617
    [Google Scholar]
  55. Weng Z. Fang X. He M. Gu L. Lin J. Li Z. Ma W. Ruthenium catalyzed C–H selenylations of aryl acetic amides and esters via weak coordination. Org. Lett. 2019 21 16 6310 6314 10.1021/acs.orglett.9b02196 31380652
    [Google Scholar]
  56. Zhou Y. Zheng T. Xu Y. Li B. Wang Y. Mei R. Gu L. Ma W. Palladium-catalyzed distal selective C–H chalcogenation of biphenyl amines. Chem. Commun. 2023 59 53 8262 8265 10.1039/D3CC02209A 37314402
    [Google Scholar]
  57. Wang Y. Yu S. Li X. Axially chiral biaryls via rhodium-catalyzed atroposelective C–H sulfenylation and selenylation. Org. Chem. Front. 2025 12 3 816 823 10.1039/D4QO01905A
    [Google Scholar]
  58. Deb M. Singh J. Mallik S. Hazra S. Elias A.J. Borylation, silylation and selenation of C–H bonds in metal sandwich compounds by applying a directing group strategy. New J. Chem. 2017 41 23 14528 14538 10.1039/C7NJ02388J
    [Google Scholar]
  59. Guo L. Liu A. Qi H. Gu L. Yuan X. Chi D. Chen S. Divergent synthesis of selenide-containing spirocarbocycles and phenanthrenes through Cu(OTf)2-promoted selenylation of alkyne-containing phenol-based biaryls. New J. Chem. 2025 49 14 5989 5994 10.1039/D5NJ00253B
    [Google Scholar]
  60. Bartz R.H. Santos R.R.S.A. Hellwig P.S. Silva M.S. Lenardão E.J. Jacob R.G. Perin G. Synthesis of 5‐seleno‐substituted spirocyclopenta[ b]pyridine‐2,5‐dien‐4‐ones and Benzo[ h]quinolines via radical cyclization of arylethynylpyridines. Chem. Asian J. 2024 19 24 e202400974 10.1002/asia.202400974 39297661
    [Google Scholar]
  61. Bartz R.H. Hellwig P.S. Rosa K.M. Silva M.S. Lenardão E.J. Jacob R.G. Perin G. Recent advances in the synthesis of chalcogenylated heterocycles obtained by chalcogenocyclization. Org. Biomol. Chem. 2025 23 13 2997 3028 10.1039/D4OB01691B 39930985
    [Google Scholar]
  62. Zhou Y. Xu Y. Zheng T. Huang D. Chen J. Wu Y. Mei R. Ma W. Copper‐Mediated C−H chalcogenation of heterocycles: Application to the synthesis of chalcogenoxanthones. Adv. Synth. Catal. 2023 365 19 3353 3359 10.1002/adsc.202300620
    [Google Scholar]
  63. Sun L. Wang L. Alhumade H. Yi H. Cai H. Lei A. Electrochemical radical selenylation of alkenes and arenes via Se–Se Bond activation. Org. Lett. 2021 23 20 7724 7729 10.1021/acs.orglett.1c02661 34581590
    [Google Scholar]
  64. Belladona A.L. Cervo R. Alves D. Barcellos T. Cargnelutti R. Schumacher R.F. C H functionalization of (hetero)arenes: Direct selanylation mediated by selectfluor. Tetrahedron Lett. 2020 61 26 152035 10.1016/j.tetlet.2020.152035
    [Google Scholar]
  65. Badshah G. Gomes C.M.B. Ali S. Luz E.Q. Silvério G.L. Santana F.S. Seckler D. Paixão D.B. Schneider P.H. Rampon D.S. Palladium-catalyzed direct selanylation of chalcogenophenes and arenes assisted by 2-(Methylthio)amide. J. Org. Chem. 2023 88 19 14033 14047 10.1021/acs.joc.3c01577 37712931
    [Google Scholar]
  66. Liou J.C. Badsara S.S. Huang Y-T. Lee C.F. Syntheses of selenoesters through C–H selenation of aldehydes with diselenides under metal-free and solvent-free conditions. RSC Advances 2014 4 78 41237 41244 10.1039/C4RA07983C
    [Google Scholar]
  67. de Oliveira A.J. de Oliveira S.A. Vasconcelos L.G. Dall’Oglio E.L. Vieira L.C.C. Stein A.L. Synthesis of selenol esters via the reaction of acyl chlorides with diselenides in the presence of Zn dust catalyzed by CoCl2·6H2O. Tetrahedron Lett. 2021 80 14 153317 10.1016/j.tetlet.2021.153317
    [Google Scholar]
  68. Kundu D. Ahammed S. Ranu B.C. Microwave-assisted reaction of aryl diazonium fluoroborate and diaryl dichalcogenides in dimethyl carbonate: A general procedure for the synthesis of unsymmetrical diaryl chalcogenides. Green Chem. 2012 14 7 2024 2030 10.1039/c2gc35328h
    [Google Scholar]
  69. Kundu D. Ahammed S. Ranu B.C. Visible light photocatalyzed direct conversion of aryl-/heteroarylamines to selenides at room temperature. Org. Lett. 2014 16 6 1814 1817 10.1021/ol500567t 24621272
    [Google Scholar]
  70. Álvarez-Pérez M. Ali W. Marć M. Handzlik J. Domínguez-Álvarez E. Selenides and diselenides: A review of their anticancer and chemopreventive activity. Molecules 2018 23 3 628 10.3390/molecules23030628 29534447
    [Google Scholar]
  71. Nedel F. Campos V.F. Alves D. McBride A.J.A. Dellagostin O.A. Collares T. Savegnago L. Seixas F.K. Substituted diaryl diselenides: Cytotoxic and apoptotic effect in human colon adenocarcinoma cells. Life Sci. 2012 91 9-10 345 352 10.1016/j.lfs.2012.07.023 22884807
    [Google Scholar]
  72. Pang Y. An B. Lou L. Zhang J. Yan J. Huang L. Li X. Yin S. Design, synthesis, and biological evaluation of novel selenium-containing Iso combretastatins and phenstatins as antitumor agents. J. Med. Chem. 2017 60 17 7300 7314 10.1021/acs.jmedchem.7b00480 28792756
    [Google Scholar]
  73. Singh D. Deobald A.M. Camargo L.R.S. Tabarelli G. Rodrigues O.E.D. Braga A.L. An efficient one-pot synthesis of symmetrical diselenides or ditellurides from halides with CuO nanopowder/Se0 or Te0/base. Org. Lett. 2010 12 15 3288 3291 10.1021/ol100558b 20586442
    [Google Scholar]
  74. Taniguchi N. Copper-catalyzed chalcogenation of aryl iodides via reduction of chalcogen elements by aluminum or magnesium. Tetrahedron 2012 68 51 10510 10515 10.1016/j.tet.2012.09.019
    [Google Scholar]
  75. Li Z. Ke F. Deng H. Xu H. Xiang H. Zhou X. Synthesis of disulfides and diselenides by copper-catalyzed coupling reactions in water. Org. Biomol. Chem. 2013 11 18 2943 2946 10.1039/c3ob40464a 23538860
    [Google Scholar]
  76. Soleiman-Beigi M. Yavari I. Sadeghizadeh F. The direct synthesis of symmetrical disulfides and diselenides by metal–organic framework MOF-199 as an efficient heterogenous catalyst. RSC Advances 2015 5 106 87564 87570 10.1039/C5RA16879A
    [Google Scholar]
  77. Deng Y. Zeng X. Xu H. Liu J. Zhang J. Hu D. Xie J. Highly efficient synthesis of diselenides and ditellurides catalyzed by polyoxomolybdate-based copper. New J. Chem. 2022 46 42 20078 20081 10.1039/D2NJ04560E
    [Google Scholar]
  78. Sun B.X. Wang X.N. Fan T.G. Hou Y.J. Shen Y.T. Li Y.M. Copper-catalyzed cascade multicomponent reaction of azides, alkynes, and selenium: Synthesis of ditriazolyl diselenides. J. Org. Chem. 2023 88 7 4528 4535 10.1021/acs.joc.2c03102 36913662
    [Google Scholar]
  79. Yue Y. Qu C. Zheng N. Zheng Y. Song W. Copper-catalyzed multicomponent polymerization of elemental selenium for regioselective synthesis of poly(5-diselenide-triazole)s. Chem. Commun. 2025 61 41 7502 7505 10.1039/D5CC02089A 40298196
    [Google Scholar]
  80. Matsumura M. Takahashi T. Yamauchi H. Sakuma S. Hayashi Y. Hyodo T. Obata T. Yamaguchi K. Fujiwara Y. Yasuike S. Synthesis and anticancer activity of bis(2-arylimidazo[1,2- a]pyridin-3-yl) selenides and diselenides: The copper-catalyzed tandem C–H selenation of 2-arylimidazo[1,2- a]pyridine with selenium. Beilstein J. Org. Chem. 2020 16 1075 1083 10.3762/bjoc.16.94 32550922
    [Google Scholar]
  81. Liu M-C. Yang Y-F. Zhao S-B. Leng T. Huang X-B. Gao W-X. Wu H-Y. Preparation method of diphenyl diselenide compounds. CN Patent 108047107A, 2018
  82. Chen C.L. Li J.C. Liu M.C. Zhou Y.B. Wu H.Y. Metal-free synthesis of diselenides and ditellurides by using TMSCN. Tetrahedron Lett. 2022 113 154255 10.1016/j.tetlet.2022.154255
    [Google Scholar]
  83. Cai J. Shen W. Cen K. Zeng Z. Synthesis of diaryl diselenides and ditellurides via bromide-catalyzed C–Se/C–Te bond formation using Se/Te powder and boronic acid. Synlett 2025 36 7 835 840 10.1055/a‑2420‑2617
    [Google Scholar]
  84. Chen F. Li F. Zeng Q. Synthesis of dibenzylic diselenides from elemental selenium and benzylic quaternary ammonium salts. Eur. J. Org. Chem. 2021 2021 41 5605 5608 10.1002/ejoc.202101086
    [Google Scholar]
  85. Kamińska K. Wojaczyńska E. Synthesis of new chiral N-heterocyclic diselenides and their application in the alkoxyselenylation reaction. New J. Chem. 2022 46 27 12918 12923 10.1039/D2NJ01434C
    [Google Scholar]
  86. Kundu D. Roy A. Panja S. Transition metal catalyst, solvent, base free synthesis of diaryl diselenides under mechanical ball milling. Curr. Org. Synth. 2022 19 4 477 483 10.2174/1570179419666211224144932 34951576
    [Google Scholar]
  87. Chen S. Fan C. Xu Z. Pei M. Wang J. Zhang J. Zhang Y. Li J. Lu J. Peng C. Wei X. Mechanochemical synthesis of organoselenium compounds. Nat. Commun. 2024 15 1 769 10.1038/s41467‑024‑44891‑2 38278789
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298428385251113212433
Loading
/content/journals/mroc/10.2174/0118756298428385251113212433
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test