Skip to content
2000
image of Indole-Based [3+2] Annulations: Strategies for Complexity Construction - A Literature Review

Abstract

Indole-based organic compounds have attracted widespread interest due to their phenomenal chemical characteristics. Among these, the [3+2] annulation is a highly valuable reaction for generating complexity and valuable synthons in organic synthesis. The [3+2] annulation of the indole ring opens new avenues for synthesizing a wide range of functionalised indole derivatives. Further, these derivatives are highly valued in synthetic and medicinal chemistry due to their unique structural features and broad chemical reactivity. The indole scaffold is commonly found in natural products and pharmaceuticals, making it a privileged structure in drug design. Among the various synthetic approaches, the [3+2] annulation reactions have emerged as a powerful method for building complex annulated indole derivatives. Notwithstanding these reactions, which typically involve a 1,3-dipolar species and the electron-rich indole core, enable rapid construction of five-membered fused ring systems and introduce diverse functional groups in a single step. This strategy not only enhances molecular complexity but also facilitates access to bioactive intermediates with desirable medicinal applications. Indole-based [3+2] annulated compounds exhibit a wide range of biological activities, including antibacterial, antifungal, antioxidant, anticancer, and anti-inflammatory effects. These properties can be fine-tuned by modifying the substituents on the indole ring, making them attractive candidates for therapeutic development. The broad spectrum of biological activities and its potential for further functionalization motivate scientists and researchers to explore, develop novel methodologies and identify new lead compounds to foster drug discovery developments. Ongoing research focuses on developing new annulation protocols, optimizing conditions, and designing novel catalysts to expand the diversity of indole-based libraries. These compounds show promise not only as pharmaceutical leads but also as valuable tools in biological research and agrochemicals.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298398029251110075039
2026-01-19
2026-01-31
Loading full text...

Full text loading...

References

  1. Dolle R.E. Comprehensive survey of combinatorial library synthesis: 1999. J. Comb. Chem. 2000 2 5 383 433 10.1021/cc000055x 11029163
    [Google Scholar]
  2. Franzén R.G. Recent advances in the preparation of heterocycles on solid support: A review of the literature. J. Comb. Chem. 2000 2 3 195 214 10.1021/cc000002f 10827923
    [Google Scholar]
  3. Dolle R.E. Nelson K.H. Comprehensive survey of combinatorial library synthesis: 1998. J. Comb. Chem. 1999 1 4 235 282 10.1021/cc9900192 10748736
    [Google Scholar]
  4. Hanessian S. McNaughton-Smith G. Lombart H.G. Lubell W.D. Design and synthesis of conformationally constrained amino acids as versatile scaffolds and peptide mimetics. Tetrahedron 1997 53 38 12789 12854 10.1016/S0040‑4020(97)00476‑6
    [Google Scholar]
  5. Fogla A.K. Ankodia V. Sharma P.K. Kumar M. N-bridged heterocycles: Regiospecific synthesis of 2-methyl-4H-pyrimido[2,1-b]benzothiazol-4-ones. Res. Chem. Intermed. 2009 35 1 35 41 10.1007/s11164‑008‑0006‑4
    [Google Scholar]
  6. Sharma P.K. Kumar M. Synthesis of bioactive substituted pyrazolylbenzothiazinones. Res. Chem. Intermed. 2015 41 9 6141 6148 10.1007/s11164‑014‑1727‑1
    [Google Scholar]
  7. Sharma P.K. Amin A. Kumar M. Synthetic methods of medicinally important heterocycles-thiazines: A review. Open Med. Chem. J. 2020 14 1 71 82 10.2174/1874104502014010071
    [Google Scholar]
  8. Sharma P.K. Amin A. Kumar M. A review: Medicinally important nitrogen sulphur containing heterocycles. Open Med. Chem. J. 2020 14 1 49 64 10.2174/1874104502014010049
    [Google Scholar]
  9. Ankodia V. Sharma P.K. Gupta V. Kumar M. Synthesis of 2,4-diaryl-2,3-dihydro-1,5-benzothiazepines. Heterocycl. Commun. 2008 14 3 10.1515/HC.2008.14.3.155
    [Google Scholar]
  10. Sharma S. Sharma K. Pathak S. Kumar M. Sharma P.K. Synthesis of medicinally important quinazolines and their derivatives: A review. Open Med. Chem. J. 2020 14 1 108 121 10.2174/1874104502014010108
    [Google Scholar]
  11. Taylor A.P. Robinson R.P. Fobian Y.M. Blakemore D.C. Jones L.H. Fadeyi O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem. 2016 14 28 6611 6637 10.1039/C6OB00936K 27282396
    [Google Scholar]
  12. Yu X. Park E.J. Kondratyuk T.P. Pezzuto J.M. Sun D. Synthesis of 2-arylindole derivatives and evaluation as nitric oxide synthase and NFκB inhibitors. Org. Biomol. Chem. 2012 10 44 8835 8847 10.1039/c2ob26456k 23044819
    [Google Scholar]
  13. Radwanski E.R. Last R.L. Tryptophan biosynthesis and metabolism: Biochemical and molecular genetics. Plant Cell 1995 7 7 921 934 10.1105/tpc.7.7.921 7640526
    [Google Scholar]
  14. Jones R.S.G. Tryptamine: A neuromodulator or neurotransmitter in mammalian brain? Prog. Neurobiol. 1982 19 1-2 117 139 10.1016/0301‑0082(82)90023‑5 6131482
    [Google Scholar]
  15. Berger M. Gray J.A. Roth B.L. The expanded biology of serotonin. Annu. Rev. Med. 2009 60 1 355 366 10.1146/annurev.med.60.042307.110802 19630576
    [Google Scholar]
  16. Chilton W.S. Bigwood J. Jensen R.E. Psilocin, bufotenine and serotonin: Historical and biosynthetic observations. J. Psychedelic Drugs 1979 11 1-2 61 69 10.1080/02791072.1979.10472093 392119
    [Google Scholar]
  17. Vicente R. Recent advances in indole syntheses: New routes for a classic target. Org. Biomol. Chem. 2011 9 19 6469 6480 10.1039/c1ob05750b 21779596
    [Google Scholar]
  18. Kaushik N. Kaushik N. Attri P. Kumar N. Kim C. Verma A. Choi E. Biomedical importance of indoles. Molecules 2013 18 6 6620 6662 10.3390/molecules18066620 23743888
    [Google Scholar]
  19. Rani P. Srivastava V.K. Kumar A. Synthesis and antiinflammatory activity of heterocyclic indole derivatives. Eur. J. Med. Chem. 2004 39 5 449 452 10.1016/j.ejmech.2003.11.002 15110970
    [Google Scholar]
  20. Sayed M. Kamal El-Dean A.M. Ahmed M. Hassanien R. Synthesis of some heterocyclic compounds derived from indole as antimicrobial agents. Synth. Commun. 2018 48 4 413 421 10.1080/00397911.2017.1403627
    [Google Scholar]
  21. Giampieri M. Balbi A. Mazzei M. La Colla P. Ibba C. Loddo R. Antiviral activity of indole derivatives. Antiviral Res. 2009 83 2 179 185 10.1016/j.antiviral.2009.05.001 19445965
    [Google Scholar]
  22. Zeng W. Han C. Mohammed S. Li S. Song Y. Sun F. Du Y. Indole-containing pharmaceuticals: Targets, pharmacological activities, and SAR studies. RSC Med. Chem. 2024 15 3 788 808 10.1039/D3MD00677H 38516587
    [Google Scholar]
  23. Sharma P.K. A review: Antimicrobial agents based on nitrogen and sulfur containing heterocycles. Asian J. Pharm. Clin. Res. 2017 10 2 47 10.22159/ajpcr.2017.v10i2.15673
    [Google Scholar]
  24. Sharma V. Kumar P. Pathak D. Biological importance of the indole nucleus in recent years: A comprehensive review. J. Heterocycl. Chem. 2010 47 3 491 502 10.1002/jhet.349
    [Google Scholar]
  25. Sharma P.K. Kumar M. Vats S. Synthesis and antimicrobial activity of morpholinyl/piperazinylbenzothiazines. Med. Chem. Res. 2012 21 8 2072 2078 10.1007/s00044‑011‑9732‑z
    [Google Scholar]
  26. Borgati T.F. Boaventura M.A.D. Effects of indole amides on lettuce and onion germination and growth. Z. Naturforsch. C J. Biosci. 2011 66 9-10 485 490 10.1515/znc‑2011‑9‑1008 22191214
    [Google Scholar]
  27. Ummadi N. Gundala S. Venkatapuram P. Adivireddy P. Synthesis and antioxidant activity of a new class of pyrazolyl indoles, thiazolyl pyrazolyl indoles. Med. Chem. Res. 2017 26 7 1574 1584 10.1007/s00044‑017‑1827‑8
    [Google Scholar]
  28. You S. Ruan M. Lu C. Liu L. Weng Y. Yang G. Wang S. Alhumade H. Lei A. Gao M. Paired electrolysis enabled annulation for the quinolyl-modification of bioactive molecules. Chem. Sci. 2022 13 8 2310 2316 10.1039/D1SC06757E 35310496
    [Google Scholar]
  29. Xu F. Li Y.J. Huang C. Xu H.C. Ruthenium-catalyzed electrochemical dehydrogenative alkyne annulation. ACS Catal. 2018 8 5 3820 3824 10.1021/acscatal.8b00373
    [Google Scholar]
  30. Brachet E. Belmont P. Palladium-catalyzed regioselective alkynylation of pyrroles and azoles under mild conditions: Application to the synthesis of a dopamine D-4 Receptor Agonist. J. Org. Chem. 2015 80 15 7519 7529 10.1021/acs.joc.5b01093 26176588
    [Google Scholar]
  31. He J. Liu A. Yu Y. Wang C. Mei H. Han J. Electrochemical annulation of indole-tethered alkynes enabling synthesis of exocyclic alkenyl tetrahydrocarbazoles. J. Org. Chem. 2023 88 11 6962 6972 10.1021/acs.joc.3c00267 37216919
    [Google Scholar]
  32. Zhu Y. He N. Li Y. Zhu Y. Qi G. Phosphine-mediated [2+3]/[2+3] domino annulation reaction: Access to cyclopentane[3,4]pyrrolo[1,2- a]indoles. Chem. Commun. 2025 61 32 5994 5997 10.1039/D5CC00618J 40136033
    [Google Scholar]
  33. Huang G. Yu J.T. Pan C. Rhodium‐catalyzed C−H activation/annulation of N ‐aryl‐pyrazolidinones with vinylene carbonate. Eur. J. Org. Chem. 2022 2022 19 e202200279 10.1002/ejoc.202200279
    [Google Scholar]
  34. Lian Y. Huber T. Hesp K.D. Bergman R.G. Ellman J.A. Rhodium(III)-catalyzed alkenyl C-H bond functionalization: Convergent synthesis of furans and pyrroles. Angew. Chem. Int. Ed. 2013 52 2 629 633 10.1002/anie.201207995 23172703
    [Google Scholar]
  35. Peng M. Doucet H. Soulé J.F. Rhodium‐catalyzed C−H bond annulation for the synthesis of 5‐ and 6‐membered N ‐heterocyclic building blocks. ChemCatChem 2024 16 24 e202400279 10.1002/cctc.202400279
    [Google Scholar]
  36. Hojo D. Tanaka K. Rhodium-catalyzed C-H bond activation/[4 + 2] annulation/aromatization cascade to produce phenol, naphthol, phenanthrenol, and triphenylenol derivatives. Org. Lett. 2012 14 6 1492 1495 10.1021/ol300234g 22360811
    [Google Scholar]
  37. Jia J. Shi J. Zhou J. Liu X. Song Y. Xu H.E. Yi W. Rhodium(iii)-catalyzed C-H activation and intermolecular annulation with terminal alkynes: From indoles to carbazoles. Chem. Commun. 2015 51 14 2925 2928 10.1039/C4CC09823D 25585938
    [Google Scholar]
  38. Tao P. Jia Y. Rhodium-catalyzed intramolecular annulation via C-H activation leading to fused tricyclic indole scaffolds. Chem. Commun. 2014 50 55 7367 7370 10.1039/C4CC02947J 24871379
    [Google Scholar]
  39. Konus M. Çetin D. Kızılkan N.D. Yılmaz C. Fidan C. Algso M. Kavak E. Kivrak A. Kurt-Kızıldoğan A. Otur Ç. Mutlu D. Abdelsalam A.H. Arslan S. Synthesis and biological activity of new indole based derivatives as potent anticancer, antioxidant and antimicrobial agents. J. Mol. Struct. 2022 1263 133168 10.1016/j.molstruc.2022.133168
    [Google Scholar]
  40. Guan D. Rahman M.T. Gay E.A. Vasukuttan V. Mathews K.M. Decker A.M. Williams A.H. Zhan C.G. Jin C. Indole-containing amidinohydrazones as nonpeptide, dual RXFP3/4 agonists: Synthesis, structure-activity relationship, and molecular modeling studies. J. Med. Chem. 2021 64 24 17866 17886 10.1021/acs.jmedchem.1c01081 34855388
    [Google Scholar]
  41. Tomakinian T. Guillot R. Kouklovsky C. Vincent G. Synthesis of benzofuro[3,2-b]indoline amines via deamination-interrupted Fischer indolization and their unexpected reactivity towards nucleophiles. Chem. Commun. 2016 52 31 5443 5446 10.1039/C6CC00365F 27010945
    [Google Scholar]
  42. Dorababu A. Indole - A promising pharmacophore in recent antiviral drug discovery. RSC Med. Chem. 2020 11 12 1335 1353 10.1039/D0MD00288G 34095843
    [Google Scholar]
  43. Chopade P. Chopade N. Zhao Z. Mitragotri S. Liao R. Chandran Suja V. Alzheimer’s and Parkinson’s disease therapies in the clinic. Bioeng. Transl. Med. 2023 8 1 e10367 10.1002/btm2.10367 36684083
    [Google Scholar]
  44. Van Bulck M. Sierra-Magro A. Alarcon-Gil J. Perez-Castillo A. Morales-Garcia J.A. Novel approaches for the treatment of Alzheimer’s and Parkinson’s disease. Int. J. Mol. Sci. 2019 20 3 719 10.3390/ijms20030719 30743990
    [Google Scholar]
  45. Ji W. Yao L. Liao X. Access to the pyrroloindoline core via [3 + 2] annulation as well as the application in the synthetic approach to (±)-minfiensine. Org. Lett. 2016 18 3 628 630 10.1021/acs.orglett.5b03421 26744924
    [Google Scholar]
  46. Puri S. Oxygen as a heteroatom in propargylic alcohols: Reactivity, selectivity, and applications. ChemistrySelect 2020 5 31 9866 9877 10.1002/slct.202002141
    [Google Scholar]
  47. Puri S. Negi D.S. Simple to complex amide derivatives as potent anti‐tuberculosis agents: A literature survey of the past decade. ChemistrySelect 2022 7 43 e202202584 10.1002/slct.202202584
    [Google Scholar]
  48. Puri S. Mahar R. Goswami G. Current Status of Fresh Water. Microbiology; Soni, R.; Suyal, D.C.; Morales-Oyervides, L.; Sungh Chauhan, J. Eds Springer Nature Singapore Singapore 2023 387 407 10.1007/978‑981‑99‑5018‑8_18
    [Google Scholar]
  49. Rita; Kandari, A.; Benjwal, S.; Negi, D.S.; Puri, S. Sulfonamide derivatives as potent antituberculosis agents: A literature survey of the past decade. ChemistrySelect 2024 9 38 e202403396 10.1002/slct.202403396
    [Google Scholar]
  50. Badoni G. Singh C.B. Benjwal S. Puri S. Recent advances in the synthesis of 3‐cyanoindoles: A literature review. ChemistrySelect 2025 10 16 e202405473 10.1002/slct.202405473
    [Google Scholar]
  51. Chadha N. Silakari O. Indoles as therapeutics of interest in medicinal chemistry: Bird’s eye view. Eur. J. Med. Chem. 2017 134 159 184 10.1016/j.ejmech.2017.04.003 28412530
    [Google Scholar]
  52. Lian Y. Davies H.M.L. Rhodium-catalyzed [3 + 2] annulation of indoles. J. Am. Chem. Soc. 2010 132 2 440 441 10.1021/ja9078094 20025218
    [Google Scholar]
  53. Liao L. Shu C. Zhang M. Liao Y. Hu X. Zhang Y. Wu Z. Yuan W. Zhang X. Highly enantioselective [3+2] coupling of indoles with quinone monoimines promoted by a chiral phosphoric acid. Angew. Chem. Int. Ed. 2014 53 39 10471 10475 10.1002/anie.201405689 25088553
    [Google Scholar]
  54. Jiang B. Shi M. Rhodium(ii)-catalyzed intermolecular [3 + 2] annulation of N-vinyl indoles with N-tosyl-1,2,3-triazoles via an aza-vinyl Rh carbene. Org. Chem. Front. 2017 4 12 2459 2464 10.1039/C7QO00703E
    [Google Scholar]
  55. Kahar N. Jadhav P. Reddy R.V.R. Dawande S. A rhodium(ii) catalysed domino synthesis of azepino fused diindoles from isatin tethered N -sulfonyl-1,2,3-triazoles and indoles. Chem. Commun. 2020 56 8 1207 1210 10.1039/C9CC08377D 31895362
    [Google Scholar]
  56. Liang T. Gong L. Zhao H. Jiang H. Zhang M. Straightforward access to novel indolo[2,3- b]indoles via aerobic copper-catalyzed [3+2] annulation of diarylamines and indoles. Chem. Commun. 2020 56 18 2807 2810 10.1039/D0CC00178C 32031188
    [Google Scholar]
  57. Denizot N. Pouilhès A. Cucca M. Beaud R. Guillot R. Kouklovsky C. Vincent G. Bioinspired direct access to benzofuroindolines by oxidative [3 + 2] annulation of phenols and indoles. Org. Lett. 2014 16 21 5752 5755 10.1021/ol502820p 25347388
    [Google Scholar]
  58. Chai Z. Chen J.N. Liu Z. Li X.F. Yang P.J. Hu J.P. Yang G. [3 + 2]-Annulations of N-alkyl-3-substituted indoles with quinone monoketals catalysed by Brønsted acids. Org. Biomol. Chem. 2016 14 3 1024 1030 10.1039/C5OB01876E 26633006
    [Google Scholar]
  59. Yu Q. Fu Y. Huang J. Qin J. Zuo H. Wu Y. Zhong F. Enantioselective oxidative phenol-indole [3 + 2] coupling enabled by biomimetic Mn(III)/Brønsted acid relay catalysis. ACS Catal. 2019 9 8 7285 7291 10.1021/acscatal.9b01734
    [Google Scholar]
  60. DiPoto M.C. Hughes R.P. Wu J. Dearomative indole (3 + 2) reactions with azaoxyallyl cations - New method for the synthesis of pyrroloindolines. J. Am. Chem. Soc. 2015 137 47 14861 14864 10.1021/jacs.5b10221 26562355
    [Google Scholar]
  61. Bhandari S. Sana S. Lahoti V. Tokala R. Shankaraiah N. Ring-opening cyclization of activated spiro-aziridine oxindoles with heteroarenes: A facile synthetic approach to spiro-oxindole-fused pyrroloindolines. RSC Advances 2020 10 27 16101 16109 10.1039/D0RA00684J 35493670
    [Google Scholar]
  62. Mei M.S. Wang Y.H. Hu Q. Li Q.H. Shi D.Y. Gao D. Ge G. Lin G.Q. Tian P. Enantioselective [3+2] annulation of isatin-derived MBH-carbonates and 3-nitroindoles enabled by a bifunctional DMAP-thiourea. Chem. Commun. 2020 56 73 10718 10721 10.1039/D0CC04462H 32789367
    [Google Scholar]
  63. Pirenne V. Robert E.G.L. Waser J. Catalytic (3 + 2) annulation of donor-acceptor aminocyclopropane monoesters and indoles. Chem. Sci. 2021 12 25 8706 8712 10.1039/D1SC01127H 34257869
    [Google Scholar]
  64. Protich Z. Lowder L.L. Hughes R.P. Wu J. Regiodivergent (3 + 2) annulation reactions of oxyallyl cations. Chem. Sci. 2023 14 19 5196 5203 10.1039/D2SC06999G 37206390
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298398029251110075039
Loading
/content/journals/mroc/10.2174/0118756298398029251110075039
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: cycloaddition ; Indole ; pyrrolidines ; annulation ; antioxidant ; agrochemicals
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test