Skip to content
2000
image of Progress of the Chemical Composition and Pharmacological Activities of Podocarpus nagi

Abstract

is a type of macrophanerophyte in the genus Podocarpus, belonging to the family Podocarpaceae. Its roots, branches, leaves, and seeds are rich in various chemical components, including nagilactones, flavonoids, steroids, diterpenoids, lignans, fatty acids, and sugars, which contribute to a broad spectrum of pharmacological activities, such as antioxidant, antitumor, and anti-inflammatory effects, and protection of the blood and nervous systems. It has long been used as a medicinal herb in Yao folk medicine for the treatment of trauma, bleeding, fractures, fox odor, eye diseases, colds, and other conditions. In this work, we comprehensively summarize the progress in the chemical composition and pharmacological activities of Podocarpus nagi, providing a reference for its further development.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298406155251124074455
2026-01-12
2026-01-31
Loading full text...

Full text loading...

References

  1. Jin J. Qiu J. Zhu Y. Kodrul T.M. First fossil record of the genus Nageia (Podocarpaceae) in south China and its phytogeographic implications. Plant Syst. Evol. 2010 285 3-4 159 163 10.1007/s00606‑010‑0267‑4
    [Google Scholar]
  2. Lin Y.J. The stem is like a tree, while the leaves are like bamboo-Podocarpus nagi. Zhongguo Huahui Penjing 2010 2 10
    [Google Scholar]
  3. Xu H.C. Xie C.J. The application of Nageia. J. Wenshan Teach. College 2007 3 104 107
    [Google Scholar]
  4. Huang Y.P. Wang B.F. Fujian local oilseed tree species-Podocarpus nagi. Fujian Forestry 2020 6 25 26
    [Google Scholar]
  5. Zhou J.X. Discussion on Podocarpus nagi resource in Fujian and the prospect of its development and utilization. Jiangxi Forestry Sci. Technol. 2008 5 38 40 10.16259/j.cnki.36‑1342/s.2008.05.015
    [Google Scholar]
  6. Barrero A.F. Quilez Del Moral J.F. Mar Herrador M. Podolactones: A group of biologically active norditerpenoids. Stud Nat. Prod Chem. 2003 28 453 516 10.1016/S1572‑5995(03)80147‑3
    [Google Scholar]
  7. Hayashi Y. Matsumoto T. Uemura M. Koreeda M. Carbon‐13 NMR studies of the biologically active nor‐diterpenoid dilactones from Podocarpus plants. Org. Magn. Reson. 1980 14 2 86 91 10.1002/mrc.1270140203
    [Google Scholar]
  8. Hayashi Y. Matsumoto T. Tashiro T. Antitumor activity of norditerpenoid dilactones in Podocarpus plants: Structure-activity relationship on in vitro cytotoxicity against Yoshida sarcoma. Gann 1979 70 3 365 369 [PMID: 572795
    [Google Scholar]
  9. Xiao Y. Yong J. Lu C. A minireview on the structural characteristics and anticancer activity of Nagilactones. Curr. Tradit. Med. 2024 10 5 070623217729 10.2174/2215083810666230607093151
    [Google Scholar]
  10. Yang Y. Study on the isolation of chemical constituents from the leaves of Podocarpus nagi. 2020
    [Google Scholar]
  11. National administration of traditional chinese medicine. Chinese Materia Medica. 4th ed Shanghai Shanghai Science and Technology Publishing House 1999
    [Google Scholar]
  12. Xu Y.M. Fang S.D. Studies on the chemical constituents of Podocarpaceae. I. The cytotxic constituents from Podocarpus nagi. Acta Chimi. Sin. 1989 47 11 1080 1086
    [Google Scholar]
  13. Wang Q.X. Yang Z.F. Peng W. Zhang Y.K. Chen Y.G. Study on the constituents of Podocarpus nagi. Jf Hainan Norm Univ 2018 31 1 1 5 10.12051/j.issn.1674‑4942.2018.01.001
    [Google Scholar]
  14. Zheng Y.D. Bai G. Tang C. Ke C.Q. Yao S. Tong L.J. Feng F. Li Y. Ding J. Xie H. Ye Y. 7 α, 8 α -Epoxynagilactones and their glucosides from the twigs of Podocarpus nagi: Isolation, structures, and cytotoxic activities. Fitoterapia 2018 125 174 183 10.1016/j.fitote.2018.01.007 29355751
    [Google Scholar]
  15. Bailly C. Anticancer activities and mechanism of action of nagilactones, a group of terpenoid lactones isolated from Podocarpus species. Nat. Prod. Bioprospect. 2020 10 6 367 375 10.1007/s13659‑020‑00268‑8 33034879
    [Google Scholar]
  16. Hayashi Y. Yúiki Y. Matsumoto T. Sakan T. New congeners of cytotoxic nor-diterpenoid dilactones in: Two C19 lactones from seed extract. Tetrahedron Lett. 1977 18 41 3637 3640 10.1016/S0040‑4039(01)83313‑X
    [Google Scholar]
  17. Hayashi Y. Matsumoto T. Sakan T. New congeners of cytotoxic norditerpenoid dilactones in Podocarpus ngai: C19 lactones of an a pyrone type and a 7:8,9:11-dienolide type. Heterocycles 1978 10 1 123 131 10.3987/S‑1978‑01‑0123
    [Google Scholar]
  18. Feng Z.L. Zhang L.L. Zheng Y.D. Liu Q.Y. Liu J.X. Feng L. Huang L. Zhang Q.W. Lu J.J. Lin L.G. Norditerpenoids and dinorditerpenoids from the seeds of Podocarpus nagi as cytotoxic agents and autophagy inducers. J. Nat. Prod. 2017 80 7 2110 2117 10.1021/acs.jnatprod.7b00347 28719204
    [Google Scholar]
  19. Bloor S.J. Molloy B.P.J. Cytotoxic norditerpene lactones from Ileostylus micranthus. J. Nat. Prod. 1991 54 5 1326 1330 10.1021/np50077a015 1800635
    [Google Scholar]
  20. Addo E.M. Chai H.B. Hymete A. Yeshak M.Y. Slebodnick C. Kingston D.G.I. Rakotondraibe L.H. Antiproliferative constituents of the roots of ethiopian Podocarpus falcatus and structure revision of 2α-hydroxynagilactone F and nagilactone I. J. Nat. Prod. 2015 78 4 827 835 10.1021/np501062f 25807242
    [Google Scholar]
  21. Feng Z.L. Zhang T. Liu J.X. Chen X.P. Gan L.S. Ye Y. Lin L.G. New podolactones from the seeds of Podocarpus nagi and their anti-inflammatory effect. J. Nat. Med. 2018 72 4 882 889 10.1007/s11418‑018‑1219‑5 29752578
    [Google Scholar]
  22. Qi Y.Y. Su J. Zhang Z.J. Li L.W. Fan M. Zhu Y. Wu X.D. Zhao Q.S. Two new anti-proliferative C18-Norditerpenes from the roots of podocarpus macrophyllus. Chem. Biodivers. 2018 15 4 1800043 10.1002/cbdv.201800043 29573148
    [Google Scholar]
  23. Hayashi Y. Takahashi S. Ona H. Sakan T. Structures of nagilactone a, b, c, and d, novel nor- and bisnorditerpenoids. Tetrahedron Lett. 1968 9 17 2071 2076 10.1016/S0040‑4039(00)89746‑4
    [Google Scholar]
  24. Hayashi Y. Matsumoto T. Yuki Y. Sakan T. New congeners of cytotoxic nor-diterpenoid dilactones in: Three new components of 7,8-epoxy-enolide type. Tetrahedron Lett. 1977 18 48 4215 4218 10.1016/S0040‑4039(01)83468‑7
    [Google Scholar]
  25. Hayashi Y. Yuki Y. Matsumoto T. Sakan T. New congeners of cytotoxic nor-diterpenoid dilactones in: Three highly polar components with α-pyrone ring. Tetrahedron Lett. 1977 18 34 2953 2956 10.1016/S0040‑4039(01)83123‑3
    [Google Scholar]
  26. Hayashi Y. Sakan T. Hirotsu K. Shimada A. Stereochemistry of nagilactone A and B. Chem. Lett. 1972 1 5 349 352 10.1246/cl.1972.349
    [Google Scholar]
  27. Hayashi Y. Matsumoto T. Hyono T. Sakan T. Reactions of cytotoxic nor-diterpedoid dilactones in Podocarpus-Nagi-modifications of ring a functional-groups. Chem. Lett. 1977 6 12 1461 1464 10.1246/cl.1977.1461
    [Google Scholar]
  28. Hayashi Y. Yokoi J. Watanabe Y. Sakan T. Masuda Y. Yamamoto R. Structures of nagilactone E and F, and biological-activity of nagilactones as plant-growth regulator. Chem. Lett. 1972 1 9 759 762 10.1246/cl.1972.759
    [Google Scholar]
  29. Liu J. Studies on chemical constituents of podocarpus fleuryi hickel. Master Thesis, Yunnan Normal University: Kunming 2015
    [Google Scholar]
  30. Kubo I. Muroi H. Himejima M. Antibacterial activity of totarol and its potentiation. J. Nat. Prod. 1992 55 10 1436 1440 10.1021/np50088a008 1453180
    [Google Scholar]
  31. Zheng Y.D. Guan X.C. Li D. Wang A.Q. Ke C.Q. Tang C.P. Lin L.G. Ye Y. Wang Z.L. Yao S. Novel diterpenoids from the twigs of Podocarpus nagi. Molecules 2016 21 10 1282 10.3390/molecules21101282 27681713
    [Google Scholar]
  32. Di X.X. Isolation and bioactivity of natural products from three medicinal plants. Master Thesis, Shandong University: Jinan 2013
    [Google Scholar]
  33. Li H.L. Studies on chemical constituents of Pterospermum yunnanense Hsue, Diphasiastrum complanatum (L.) Holub and Podocarpus macrophyllus. Master Thesis, Yunnan Normal University: Kunming 2014
    [Google Scholar]
  34. Wang B. Isolation and bioactivity of natural products from Podocarpus macrophyllus and Tinospora capillipes. Master Thesis, Shandong University: Jinan 2016
    [Google Scholar]
  35. Yang C.Q. Studies on the chemical constituents of Kopsia oficinalis, Podocarpus macrophyllus and Polyalthia petelotii. Master Thesis, Yunnan Normal University: Kunming 2016
    [Google Scholar]
  36. Zhang L.C. Research on the chemical compositions and biological activities of two plants. Master Thesis, Kunming Medical University: Kunming 2013
    [Google Scholar]
  37. Zhao H.M. Studies on the chemical constituents of Podocarpusnagi, Aconitum chinense and Lotus corniculatus. Master Thesis,Yunnan Normal University: Kunming 2015
    [Google Scholar]
  38. Yang Y. Yong J.P. Olatunde O.Z. Lu C.Z. First isolation and confirmation of sterol based on β-sitosterol skeleton from the leaves of Podocarpus nagi planted in Fujian, preliminary in vitro anticancer activity and the crystal structure. Chin. J. Struct. Chem. 2021 40 5 653 658 10.15413/ajmp.2020.0143
    [Google Scholar]
  39. Gu Y.L. Xu Y.M. Fang S.D. He Q.M. The chemical constituents from Podocarpus brevifolius. Acta Bot. Sin. 1990 32 7 571 573
    [Google Scholar]
  40. Wang H. Studies on extraction, isolation, characterization and anti-oxidant activities of flavonoids from Podocarpus nagi. Master Thesis, Jishou University: Jishou 2017
    [Google Scholar]
  41. He D.H. Pang Y. Ren S.X. Li G.H. Song S.Y. Chemical constituents of volatile oil from Podocarpus fleuryi hickel. Linchan Huaxue Yu Gongye 2005 2 25 119 121
    [Google Scholar]
  42. Yang R.B. Yuan X.J. Du H.G. GC-MS analysis of volatile oil in the leaves of Podocarpus nagi. Asia-Pacific Trad. Med. 2008 4 5 51 52
    [Google Scholar]
  43. Liao Z.Y. Wei W. Studies on volatile constituents and their anti-tumor activities from the Peel and Shell of Podocarpus nagi Fruits. Herald of Medicine 2015 34 5 609 612
    [Google Scholar]
  44. Liang Z.H. Li H.J. Xu X. Wang Y.X. Wang S.F. Synthesis of camphoric anhydride from α-Pinene. Linchan Huaxue Yu Gongye 2013 33 5 61 66 10.3969/j.issn.0253‑2417.2013.05.012
    [Google Scholar]
  45. Cen B. Li L.S. Duan W.G. Lin G.S. Chen M. Lu S.Z. Synthesis and antifungal activities of novel α-pinene-based benzene sulfonamide compounds. Chin. J. Synth. Chem. 2020 28 3 174 180 10.15952/j.cnki.cjsc.1005‑1511.19418
    [Google Scholar]
  46. Ma J. Chen J. Zhao B.J. Jiang Z.Y. Feng L. Jia X.B. Advance in research on anticancer drug β-elemene and its derivatives. Chin. Tradit. Herbal Drugs 2018 49 5 1184 1191 10.7501/j.issn.0253‑2670.2018.05.030
    [Google Scholar]
  47. Zhang J.L. Wei H.Z. Zhang J. Research progress on the biological functions of β- caryophyllene. Shandong Yiyao 2018 58 38 110 112 10.3969/j.issn.1002‑266X.2018.38.034
    [Google Scholar]
  48. Yong J.P. Yang Y. Tian D.N. Lu C.Z. Ke Q. Study on the large-scale preparation, chemical constituents of Podocarpus Nagi kernel oil and in vitro antioxidant and anticancer activities. Acad. J. Med. Plants 2022 10 3 32 39 10.15413/ajmp.2022.0100
    [Google Scholar]
  49. Yang H. Wang X. Yu L. Zheng S. The antitumor activity of elemene is associated with apoptosis. Zhonghua Zhong Liu Za Zhi 1996 18 3 169 172 [PMID: 9387246
    [Google Scholar]
  50. Shi J.H. Research on the anti-tumor effect of β-elemene. Zhongguo Zhongyao Zazhi 1981 6 32 33
    [Google Scholar]
  51. Hao L.H. Lu B.F. Yu L.M. Yang P.M. Effect of β-elemene derivatve in combination with ADM on CEM/ADM cells growth. Dalian Yike Daxue Xuebao 2000 22 3 165 167
    [Google Scholar]
  52. Hua W.F. Li X.K. Tan Y. Gui F. Cai S.H. Experimental study on apoptosis of Murine melanoma B16 cells indced by elemene. Zhong Yao Cai 2006 29 12 1322 1326 10.13863/j.issn1001‑4454.2006.12.024
    [Google Scholar]
  53. Yuan J. Gu Z.L. Zhou W.X. Guo C.Y. Elemene induces apoptosis in human leukemia K562 cells. Zhongguo Yaolixue Tongbao 1998 14 5 410 412
    [Google Scholar]
  54. Chen L.B. Wang J.H. Zang J. Hu S.Y. Zhu X.Y. Study on β-elemene induced apoptosis of mouse melanoma B16 cells. Bulletin of Jinling Hospital 1999 12 1 48 49 10.16571/.j.cnki.1008‑8199.1999.01.018
    [Google Scholar]
  55. Yuan J. Gu Z.L. Cytometric analysis of elemene induced apoptosis of K562cells. Shiyong Zhongliu Zazhi 1998 13 6 343 345 10.13267/j.cnki.syzlzz.1998.06.011
    [Google Scholar]
  56. Qian J. Qin S.K. Yang A.Z. Le M.Z. Liu W.H. The experimential research of reverse to human lung cancer cells by elemene emulsion. Zhongliu Fangzhi Yanjiu 1996 23 5 299 301
    [Google Scholar]
  57. Wu W. Liu K. Tang X. Wu H.S. Qi Y.C. Hu X.M. Tang Z.Y. Preliminary study on the antitumor immuno-protective mechanism of β-elemene. Zhonghua Zhong Liu Za Zhi 1999 21 6 405 408 [PMID: 11776611
    [Google Scholar]
  58. Qin S.K. Wang L. He Z.M. Qian J. Chen Y.F. Ma Y.Q. Clinical study on the treatment of bone metastases with elemene emulsion. Chin. J. Clin. Oncol. 1996 23 5 360 361
    [Google Scholar]
  59. Ruan N. Shi Z. Observation of the therapeutic effect of intraperitoneal retention of elemene emulsion on the prevention and treatment of gastrointestinal tumor cavity metastasis. Fujian Med. J. 1997 19 2 34 35 10.20148/.j.fmj.1997.02.076
    [Google Scholar]
  60. Jin M. Shi G.X. Piao H. Xue B. Qian Z.C. The anti-tumor effect of active immunization with elemene composite tumor vaccine. Chin. J. Cancer Bioth 1999 6 1 50 51
    [Google Scholar]
  61. Kao J. Zhou W.L. Lou J.G. Wang C.H. Study on the effect of elemene emulsion on red blood cell immune function in patients with malignant tumors. J. Taish. Med. College 1996 17 3 185 186
    [Google Scholar]
  62. Chen J.Q. Wu K.J. Fei S.J. Jin Y. Liu T.L. The effect of elemene injection on peripheral blood T lymphocyte subsets in patients with malignant tumors. Chin. J. Clin. Oncol. 1996 23 4 299 301 10.1007/s11805‑006‑0060‑x
    [Google Scholar]
  63. Cai Z.X. Dang Z.X. Compound zedoary affected to immune of tumor-bearing rats. The effect of compound Curcuma aeruginosa Roxb. (C. zedoaria non Rosc.) on the immune function of tumor bearing mice. J. Logistics Univ 1996 5 2 19 22 10.16548/j.2095‑3720.1996.02.008
    [Google Scholar]
  64. Li Z.J. Zhou J.F. Chen Z.M. He Z.F. Xu Y. Study on the effect of elemene on blood SOD activity and LPO concentration in lung cancer patients. Chin. J. Clin. Oncol. 1998 25 11 825 853
    [Google Scholar]
  65. Silva G.L. Chai H. Gupta M.P. Farnsworth N.R. Cordell G.A. Pezzuto J.M. Beecher C.W.W. Douglas Kinghorn A. Cytotoxic biflavonoids from Selaginella willdenowii. Phytochemistry 1995 40 1 129 134 10.1016/0031‑9422(95)00212‑P 7546547
    [Google Scholar]
  66. Lee S. Kim H. Kang J.W. Kim J.H. Lee D.H. Kim M.S. Yang Y. Woo E.R. Kim Y.M. Hong J. Yoon D.Y. The biflavonoid amentoflavone induces apoptosis via suppressing E7 expression, cell cycle arrest at sub-G1 phase, and mitochondria-emanated intrinsic pathways in human cervical cancer cells. J. Med. Food 2011 14 7-8 808 816 10.1089/jmf.2010.1428 21663495
    [Google Scholar]
  67. Siveen K.S. Kuttan G. Effect of amentoflavone, a phenolic component from Biophytum sensitivum, on cell cycling and apoptosis of B16F-10 melanoma cells. J. Environ. Pathol. Toxicol. Oncol. 2011 30 4 301 309 10.1615/JEnvironPatholToxicolOncol.v30.i4.30 22181979
    [Google Scholar]
  68. Zhang Y.M. Tan N.H. Huang H.Q. Jia R.R. Zeng G.Z. Ji C.J. Three bioactive biflavones isolated from Taxodium mucronatum. Yunnan Zhi Wu Yan Jiu 2005 27 1 107 110
    [Google Scholar]
  69. Xu Y.M. Fang S.D. He Q.M. The chemical constituents from Podocarpus fleuryl Hickle. Acta Bot. Sin. 1990 32 4 302 306
    [Google Scholar]
  70. Shrestha K. Banskota A.H. Kodata S. Shrivastava S.P. Strobel G. Gewali M.B. An antiproliferative norditerpene dilactone, Nagilactone C. Phytomedicine 2001 8 6 489 491 10.1078/S0944‑7113(04)70071‑9 11824527
    [Google Scholar]
  71. Kuo Y.J. Hwang S.Y. Wu M.D. Liao C.C. Liang Y.H. Kuo Y.H. Ho H.O. Cytotoxic constituents from Podocarpus fasciculus. Chem. Pharm. Bull. 2008 56 4 585 588 10.1248/cpb.56.585 18379113
    [Google Scholar]
  72. Chen Y.C. Huang M.Y. Zhang L.L. Feng Z.L. Jiang X.M. Yuan L.W. Huang R.Y. Liu B. Yu H. Wang Y.T. Chen X.P. Lin L.G. Lu J.J. Nagilactone E increases PD-L1 expression through activation of c-Jun in lung cancer cells. Chin. J. Nat. Med. 2020 18 7 517 525 10.1016/S1875‑5364(20)30062‑5 32616192
    [Google Scholar]
  73. Zhang L.L. Jiang X.M. Huang M.Y. Feng Z.L. Chen X. Wang Y. Li H. Li A. Lin L.G. Lu J.J. Nagilactone E suppresses TGF-β1-induced epithelial–mesenchymal transition, migration and invasion in non-small cell lung cancer cells. Phytomedicine 2019 52 32 39 10.1016/j.phymed.2018.09.222 30599910
    [Google Scholar]
  74. Zhang L.L. Feng Z.L. Su M.X. Jiang X.M. Chen X. Wang Y. Li A. Lin L.G. Lu J.J. Downregulation of Cyclin B1 mediates nagilactone E-induced G2 phase cell cycle arrest in non-small cell lung cancer cells. Eur. J. Pharmacol. 2018 830 17 25 10.1016/j.ejphar.2018.04.020 29680228
    [Google Scholar]
  75. Zhang L. Guo J. Jiang X. Chen X. Wang Y. Li A. Lin L. Li H. Lu J. Identification of nagilactone E as a protein synthesis inhibitor with anticancer activity. Acta Pharmacol. Sin. 2020 41 5 698 705 10.1038/s41401‑019‑0332‑7 32047261
    [Google Scholar]
  76. Shan H. Yao S. Ye Y. Yu Q. 3-Deoxy-2β,16-dihydroxynagilactone E, a natural compound from Podocarpus nagi, preferentially inhibits JAK2/STAT3 signaling by allosterically interacting with the regulatory domain of JAK2 and induces apoptosis of cancer cells. Acta Pharmacol. Sin. 2019 40 12 1578 1586 10.1038/s41401‑019‑0254‑4 31201357
    [Google Scholar]
  77. Sánchez-Larios E. Giacometti R.D. Hanessian S. Application and scope of schreiber’s Gold(I)‐Catalyzed α‐pyrone synthesis to ring a aromatic podolactones. Eur. J. Org. Chem. 2014 2014 26 5664 5669 10.1002/ejoc.201402803
    [Google Scholar]
  78. Yong J.P. Lu C.Z. The use of Podocarpus nagi seed oil for preventing or treating cancer CH Patent 202011199881.6 2020
    [Google Scholar]
  79. Zeng Z. Shen W.P. Huang Z.G. Lu H. Xiang C.Y. Composition and antitumor activities of essential oil of leaves of Podocarpus nagi inYao medicine. Acta Acad. Med. Guangxi 2019 36 12 2014 2016 10.16190/j.cnki.45‑1211/r.2019.12.030
    [Google Scholar]
  80. Monzote L. Stamberg W. Staniek K. Gille L. Toxic effects of carvacrol, caryophyllene oxide, and ascaridole from essential oil of Chenopodium ambrosioides on mitochondria. Toxicol. Appl. Pharmacol. 2009 240 3 337 347 10.1016/j.taap.2009.08.001 19666043
    [Google Scholar]
  81. Wei L.N. Isolation of amentoflavone from Selaginella tamariscina(Beauv.) Spring. Master Thesis, Beijing University of ChemicalTechnology: Beijing 2010
    [Google Scholar]
  82. Zhao X.W. Liu P.Y. Liu D. Sun S.S. Li Z. Yu K.X. Zhang M.L. Shi Q.W. Research progress in structure-activity relationship of flavoniods. Chin. Tradit. Herbal Drugs 2015 46 21 3264 3271 10.7501/j.issn.0253‑2670.2015.21.025
    [Google Scholar]
  83. Pan S.H. Shen Y. Wang L.Z. Lu N.Z. Jia N.R. Effect of isoginkgetin on scavenge of oxygen free radical in anoxic rats. Zhongyao Xinyao Yu Linchuang Yaoli 1993 4 2 12 14, 59-60 10.19378/j.issn.1003‑783.1993.02.005
    [Google Scholar]
  84. Xu Z. Jia S.J. Tan G.S. Li Y.J. Study on pharmacological activity of biflavones from Selaginella pulvinate (Hook. Et Grev.) Maxim. China J. Mod Med. 2004 14 14 88 89
    [Google Scholar]
  85. Lee C.W. Na Y. Park N. Kim H.S. Ahn S.M. Kim J.W. Kim H.K. Jang Y.P. Amentoflavone inhibits UVB-induced matrix metalloproteinase-1 expression through the modulation of AP-1 components in normal human fibroblasts. Appl. Biochem. Biotechnol. 2012 166 5 1137 1147 10.1007/s12010‑011‑9500‑z 22205321
    [Google Scholar]
  86. Zhang Y. Shi S. Wang Y. Huang K. Target-guided isolation and purification of antioxidants from Selaginella sinensis by offline coupling of DPPH-HPLC and HSCCC experiments. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011 879 2 191 196 10.1016/j.jchromb.2010.12.004 21183411
    [Google Scholar]
  87. Li X. Wang L. Han W. Mai W. Han L. Chen D. Amentoflavone protects against hydroxyl radical-induced DNA damage via antioxidant mechanism. Turkish. Turkish J. Biochem. 2014 39 1 30 36 10.5505/tjb.2014.65882
    [Google Scholar]
  88. Pan S.H. Liu P.P. Liu Y.F. Gao Q. Protective effect of compound Ginkgo biloba on alcohol-induced liver injury and its mechanism. Zhongguo Yaolixue Yu Dulixue Zazhi 2012 26 1 41 46 10.3867/j.issn.1000‑3002.2012.01.009
    [Google Scholar]
  89. Wang H. Guo J. Wang Q.Z. Liu L.L. Study on extraction and antioxidant activity of flavonoids from Podocarpus nagi leaves. Yingyong Huagong 2016 45 S2 20 27 10.16581/j.cnki.issn1671‑3206.2016.s2.006
    [Google Scholar]
  90. Yamaguchi L.F. Vassão D.G. Kato M.J. Di Mascio P. Biflavonoids from Brazilian pine Araucaria angustifolia as potentials protective agents against DNA damage and lipoperoxidation. Phytochemistry 2005 66 18 2238 2247 10.1016/j.phytochem.2004.11.014 16153416
    [Google Scholar]
  91. Xu H. Yang D.M. Lou Q.M. Zhang J.J. Yang W.G. Xu D.L. Components and antioxidant activities of Podocarpus nagi kernel oils. J. Chin. Cereals Oils Assoc 2019 34 2 87 92
    [Google Scholar]
  92. Haraguchi H. Ishikawa H. Sakai S. Ying B.P. Kubo I. Inhibition of lipid peroxidation by diterpenoid from Podocarpus nagi. Experientia 1996 52 6 573 576 10.1007/BF01969731 8698092
    [Google Scholar]
  93. Feng Z.L. Li D. Liu Q.Y. Liu J.X. Huang L. Zhang Q.W. Wang Y.T. Lin L.G. Anti-inflammatory abietane diterpenoids from the seeds of Podocarpus nagi. Phytochem. Lett. 2017 21 260 263 10.1016/j.phytol.2017.07.011
    [Google Scholar]
  94. Hou B.L. Shi Y. Zhao J.F. Wu S.L. Chen X.L. Fan D.F. Research progress of chemical compounds and pharmacological effects of Sangbaipi (Cortex Mori). Liaoning J. Tradit. Chin. Med. 2020 47 8 212 214 10.13192/j.issn.1000‑1719.2020.08.061
    [Google Scholar]
  95. Ishola I.O. Chaturvedi J.P. Rai S. Rajasekar N. Adeyemi O.O. Shukla R. Narender T. Evaluation of amentoflavone isolated from Cnestis ferruginea Vahl ex DC (Connaraceae) on production of inflammatory mediators in LPS stimulated rat astrocytoma cell line (C6) and THP-1 cells. J. Ethnopharmacol. 2013 146 2 440 448 10.1016/j.jep.2012.12.015 23376104
    [Google Scholar]
  96. An J. Li Z. Dong Y. Ren J. Huo J. Amentoflavone protects against psoriasis-like skin lesion through suppression of NF-κB-mediated inflammation and keratinocyte proliferation. Mol. Cell. Biochem. 2016 413 1-2 87 95 10.1007/s11010‑015‑2641‑6 26724949
    [Google Scholar]
  97. Huang N. Rizshsky L. Hauck C.C. Nikolau B.J. Murphy P.A. Birt D.F. The inhibition of lipopolysaccharide-induced macrophage inflammation by 4 compounds in Hypericum perforatum extract is partially dependent on the activation of SOCS3. Phytochemistry 2012 76 106 116 10.1016/j.phytochem.2011.12.001 22245632
    [Google Scholar]
  98. Woo E.R. Lee J.Y. Cho I.J. Kim S.G. Kang K.W. Amentoflavone inhibits the induction of nitric oxide synthase by inhibiting NF-κB activation in macrophages. Pharmacol. Res. 2005 51 6 539 546 10.1016/j.phrs.2005.02.002 15829434
    [Google Scholar]
  99. Li P. Zhang F. Li Y. Zhang C. Yang Z. Zhang Y. Song C. Isoginkgetin treatment attenuated lipopolysaccharide-induced monoamine neurotransmitter deficiency and depression-like behaviors through downregulating p38/NF-κB signaling pathway and suppressing microglia-induced apoptosis. J. Psychopharmacol. 2021 35 10 1285 1299 10.1177/02698811211032473 34281416
    [Google Scholar]
  100. Yang Y.C. Chen J. Ma L.T. Zheng J. Research progress on analgesic effect of elemene, a traditional Chinese medicine extract. World Chin. Med. 2023 18 23 3449 3456 10.3969/j.issn.1673‑7202.2023.23.023
    [Google Scholar]
  101. Gong M.C. Chen M. Xu J.J. Radix Curcuma extracts on NF- κB expression in hippocampus and eripheral Serum IL-1β level of mice with formalin induced pain. Zhonghua Zhongyiyao Xuekan 2016 34 6 1356 1358 10.13193/j.issn.1673‑7717.2016.06.021
    [Google Scholar]
  102. Chen M. Gong M.C. Xu J.J. Exploration of the analgesic effect and mechanism of Curcuma rcenyujin Y extract. 2011 Zhejiang Provincial Neurology Academic Annual Conference Beijing, China 2011 Aug 10–13 111 112
    [Google Scholar]
  103. Zhang R.W. Tian A.Y. Shi X.G. Yu H.M. Chen L. Downregulation of IL-17 and IFN-gamma in the optic nerve by beta-elemene in experimental autoimmune encephalomyelitis. Int. Immunopharmacol. 2010 10 7 738 743 10.1016/j.intimp.2010.04.003
    [Google Scholar]
  104. Xia Y.Z. Shi S.R. Hu W. Liu X. Fu J. Protection of β-elemene on acute pneumonia induced by Klebsiella pneumoniae in rats. Guangdong Pharm. Univ 2021 37 6 19 25 10.16809/j.cnki.2096‑3653.2021071204
    [Google Scholar]
  105. Ma L.T. Bai Y. Cao P. Ren K.X. Chen J. Zhang T. Fan B.Y. Qiao Y. Yan H.Y. Wang J.J. Li Y.Q. Zheng J. The analgesic effects of β-elemene in rats with neuropathic pain by inhibition of spinal astrocytic ERK activation. Mol. Pain 2022 18 17448069221121562 10.1177/17448069221121562 35976914
    [Google Scholar]
  106. Zhang W.J. Chen M. Zhang L.J. Xu L. Effect of β-elemene increased ERK, CREB and BDNF expression in rat model of neuropathic pain associated with nerve function protection. J. Emerg. Trad. Chin. Med. 2013 22 12 2001 2002
    [Google Scholar]
  107. Hayashi K. Yamaguchi Y. Ogita A. Tanaka T. Kubo I. Fujita K. Effect of nagilactone E on cell morphology and glucan biosynthesis in budding yeast Saccharomyces cerevisiae. Fitoterapia 2018 128 112 117 10.1016/j.fitote.2018.05.003 29772300
    [Google Scholar]
  108. Kubo I. Muroi H. Himejima M. Combination effects of antifungal nagilactones against Candida albicans and two other fungi with phenylpropanoids. J. Nat. Prod. 1993 56 2 220 226 10.1021/np50092a006 8463795
    [Google Scholar]
  109. Fujita K.I. Tatsumi M. Ogita A. Kubo I. Tanaka T. Anethole induces apoptotic cell death accompanied by reactive oxygen species production and DNA fragmentation inA spergillus fumigatus and Saccharomyces cerevisiae. FEBS J. 2014 281 4 1304 1313 10.1111/febs.12706 24393541
    [Google Scholar]
  110. Ueda Y. Tahara Y.O. Miyata M. Ogita A. Yamaguchi Y. Tanaka T. Fujita K. Involvement of a multidrug efflux pump and alterations in cell surface structure in the synergistic antifungal activity of nagilactone E and anethole against budding yeast Saccharomyces cerevisiae. Antibiotics 2021 10 5 537 10.3390/antibiotics10050537 34066540
    [Google Scholar]
  111. Wang T.T. Amentoflavone suppresses S. aureus infection as aninhibitor targeting Hla pore formation and TLR2 signaling. PhD Thesis, Jilin University: Changchun 2022
    [Google Scholar]
  112. Bagla V.P. McGaw L.J. Elgorashi E.E. Eloff J.N. Antimicrobial activity, toxicity and selectivity index of two biflavonoids and a flavone isolated from Podocarpus henkelii (Podocarpaceae) leaves. BMC Complement. Altern. Med. 2014 14 1 383 388 10.1186/1472‑6882‑14‑383 25293523
    [Google Scholar]
  113. Jung H.J. Sung W.S. Yeo S.H. Kim H.S. Lee I.S. Woo E.R. Lee D.G. Antifungal effect of amentoflavone derived fromSelaginella tamariscina. Arch. Pharm. Res. 2006 29 9 746 751 10.1007/BF02974074 17024847
    [Google Scholar]
  114. Jung H.J. Park K. Lee I.S. Kim H.S. Yeo S.H. Woo E.R. Lee D.G. S-phase accumulation of Candida albicans by anticandidal effect of amentoflavone isolated from Selaginella tamariscina. Biol. Pharm. Bull. 2007 30 10 1969 1971 10.1248/bpb.30.1969 17917274
    [Google Scholar]
  115. Hwang I. Lee J. Jin H.G. Woo E.R. Lee D.G. Amentoflavone stimulates mitochondrial dysfunction and induces apoptotic cell death in Candida albicans. Mycopathologia 2012 173 4 207 218 10.1007/s11046‑011‑9503‑x 22210020
    [Google Scholar]
  116. Lee J. Kim M. Jeong S.E. Park H.Y. Jeon C.O. Park W. Amentoflavone, a novel cyanobacterial killing agent from Selaginella tamariscina. J. Hazard. Mater. 2020 384 121312 10.1016/j.jhazmat.2019.121312 31699478
    [Google Scholar]
  117. Lee W.P. Lan K.L. Liao S.X. Huang Y.H. Hou M.C. Lan K.H. Inhibitory Effects of amentoflavone and orobolon daclatasvir-induced resistance-associated variants of hepatitis C virus. Am. J. Chin. Med. 2018 46 4 835 852 10.1142/S0192415X18500441 29737209
    [Google Scholar]
  118. Li F. Song X. Su G. Wang Y. Wang Z. Jia J. Qing S. Huang L. Wang Y. Zheng K. Wang Y. Amentoflavone inhibits HSV-1 and ACV-resistant strain infection by suppressing viral early infection. Viruses 2019 11 5 466 10.3390/v11050466 31121928
    [Google Scholar]
  119. Ryu Y.B. Jeong H.J. Kim J.H. Kim Y.M. Park J.Y. Kim D. Naguyen T.T.H. Park S.J. Chang J.S. Park K.H. Rho M.C. Lee W.S. Biflavonoids from torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorg. Med. Chem. 2010 18 22 7940 7947 10.1016/j.bmc.2010.09.035 20934345
    [Google Scholar]
  120. Lin Y.M. Anderson H. Flavin M.T. Pai Y.H.S. Mata-Greenwood E. Pengsuparp T. Pezzuto J.M. Schinazi R.F. Hughes S.H. Chen F.C. In vitro anti-HIV activity of biflavonoids isolated from Rhus succedanea and Garcinia multiflora. J. Nat. Prod. 1997 60 9 884 888 10.1021/np9700275 9322359
    [Google Scholar]
  121. Wilsky S. Sobotta K. Wiesener N. Pilas J. Althof N. Munder T. Wutzler P. Henke A. Inhibition of fatty acid synthase by amentoflavone reduces coxsackievirus B3 replication. Arch. Virol. 2012 157 2 259 269 10.1007/s00705‑011‑1164‑z 22075919
    [Google Scholar]
  122. Svenningsen A.B. Madsen K.D. Liljefors T. Stafford G.I. Staden J. Jäger A.K. Biflavones from Rhus species with affinity for the GABAA/benzodiazepine receptor. J. Ethnopharmacol. 2006 103 2 276 280 10.1016/j.jep.2005.08.012 16168585
    [Google Scholar]
  123. Wang F. Zhang Z. Sun T. Niu J. He Z. Liu Y. Amentoflavone protects hippocampal neurons: Anti-inflammatory, antioxidative, and antiapoptotic effects. Neural Regen. Res. 2015 10 7 1125 1133 10.4103/1673‑5374.160109 26330838
    [Google Scholar]
  124. Kang S.S. Lee J.Y. Choi Y.K. Song S.S. Kim J.S. Jeon S.J. Han Y.N. Son K.H. Han B.H. Neuroprotective effects of naturally occurring biflavonoids. Bioorg. Med. Chem. Lett. 2005 15 15 3588 3591 10.1016/j.bmcl.2005.05.078 15978805
    [Google Scholar]
  125. Ishola I.O. Chatterjee M. Tota S. Tadigopulla N. Adeyemi O.O. Palit G. Shukla R. Antidepressant and anxiolytic effects of amentoflavone isolated from Cnestis ferruginea in mice. Pharmacol. Biochem. Behav. 2012 103 2 322 331 10.1016/j.pbb.2012.08.017 22944105
    [Google Scholar]
  126. Jeong E.J. Hwang L. Lee M. Lee K.Y. Ahn M.J. Sung S.H. Neuroprotective biflavonoids of Chamaecyparis obtusa leaves against glutamate-induced oxidative stress in HT22 hippocampal cells. Food Chem. Toxicol. 2014 64 397 402 10.1016/j.fct.2013.12.003 24315869
    [Google Scholar]
  127. Wang Y.Q. Wang M.Y. Fu X.R. Peng-Yu; Gao, G.F.; Fan, Y.M.; Duan, X.L.; Zhao, B.L.; Chang, Y.Z.; Shi, Z.H. Neuroprotective effects of ginkgetin against neuroinjury in Parkinson’s disease model induced by MPTP via chelating iron. Free Radic. Res. 2015 49 9 1069 1080 10.3109/10715762.2015.1032958 25968939
    [Google Scholar]
  128. Chen C. Cheng G.Q. Li C.S. Wang A.S. Wang A.R. Yang X.N. Effects of ginkgetin on local microvascular and nerve function defects during cerebral ischemia/reperfusion injury in rats. Chin J. Pathophy 2024 40 7 1261 1267 10.3969/j.issn.1000‑4718.2024.07.014
    [Google Scholar]
  129. Pan S.H. Dai Z.L. Shuai J.P. The effect of isoginkgetin on platelet function. Zhongyao Xinyao Yu Linchuang Yaoli 1992 3 2 42 44 10.19378/j.issn.1003‑9783.1992.02.015
    [Google Scholar]
  130. Pan S.H. Lin D.P. The effect of isoginkgetin on platelet aggregation and fibrinogen content in rabbits. J. Anhui Trad. Chin. Med. College 1994 13 4 59 60
    [Google Scholar]
  131. Zhou G. Yao X. Tang Y. Yang N. Pang H. Mo X. Zhu S. Su S. Qian D. Jin C. Qin Y. Duan J. Two new nonacosanetriols from Ginkgo biloba sarcotesta. Chem. Phys. Lipids 2012 165 7 731 736 10.1016/j.chemphyslip.2012.08.003 22981471
    [Google Scholar]
  132. Kang D.G. Yin M.H. Oh H. Lee D.H. Lee H.S. Vasorelaxation by amentoflavone isolated from Selaginella tamariscina. Planta Med. 2004 70 8 718 722 10.1055/s‑2004‑827201 15326548
    [Google Scholar]
  133. Tarallo V. Lepore L. Marcellini M. Dal Piaz F. Tudisco L. Ponticelli S. Lund F.W. Roepstorff P. Orlandi A. Pisano C. De Tommasi N. De Falco S. The biflavonoid amentoflavone inhibits neovascularization preventing the activity of proangiogenic vascular endothelial growth factors. J. Biol. Chem. 2011 286 22 19641 19651 10.1074/jbc.M110.186239 21471210
    [Google Scholar]
  134. Zheng X.K. Ning T.L. Wang X.L. Liu C.X. Liu Y.Y. Feng W.S. Effects of total flavonoids and amntoflavone isolated from Selaginella tamariscina on human Umbilical Vein endothelial cells proliferation and VEGF expression. Chung Kuo Yao Hsueh Tsa Chih 2011 46 13 998 1002
    [Google Scholar]
  135. Zheng X.K. Liu C.X. Zhai Y.Y. Li L.L. Wang X.L. Feng W.S. Protection effect of amentoflavone in Selaginella tamariscina against TNF-α-induced vascular injury of endothelial cells. Yao Xue Xue Bao 2013 48 9 1503 1509 10.16438/j.0513‑4870.2013.09.014 24358788
    [Google Scholar]
  136. Na M. Kim K.A. Oh H. Kim B.Y. Oh W.K. Ahn J.S. Protein tyrosine phosphatase 1B inhibitory activity of amentoflavone and its cellular effect on tyrosine phosphorylation of insulin receptors. Biol. Pharm. Bull. 2007 30 2 379 381 10.1248/bpb.30.379 17268085
    [Google Scholar]
  137. Su C. Yang C. Gong M. Ke Y. Yuan P. Wang X. Li M. Zheng X. Feng W. Antidiabetic activity and potential mechanism of amentoflavone in diabetic mice. Molecules 2019 24 11 2184 10.3390/molecules24112184 31212585
    [Google Scholar]
  138. Zhang J. Zhou J. Zhang T. Niu Z. Wang J. Guo J. Li Z. Zhang Z. Facile fabrication of an amentoflavone-loaded micelle system for oral delivery to improve bioavailability and hypoglycemic effects in KKAy mice. ACS Appl. Mater. Interfaces 2019 11 13 12904 12913 10.1021/acsami.9b03275 30860811
    [Google Scholar]
  139. Laishram S. Sheikh Y. Moirangthem D.S. Deb L. Pal B.C. Talukdar N.C. Borah J.C. Anti-diabetic molecules from Cycas pectinata Griff. traditionally used by the Maiba-Maibi. Phytomedicine 2015 22 1 23 26 10.1016/j.phymed.2014.10.007 25636866
    [Google Scholar]
  140. Qin L. Zhao Y. Zhang B. Li Y. Amentoflavone improves cardiovascular dysfunction and metabolic abnormalities in high fructose and fat diet-fed rats. Food Funct. 2018 9 1 243 252 10.1039/C7FO01095H 29168869
    [Google Scholar]
  141. Gui Y. Yao S. Yan H. Hu L. Yu C. Gao F. Xi C. Li H. Ye Y. Wang Y. A novel small molecule liver X receptor transcriptional regulator, nagilactone B, suppresses atherosclerosis in apoE-deficient mice. Cardiovasc. Res. 2016 112 1 502 514 10.1093/cvr/cvw183 27460841
    [Google Scholar]
  142. Li A. Xiao X. Feng Z.L. Chen X. Liu L.J. Lin L.G. Lu J.J. Zhang L.L. Nagilactone D ameliorates experimental pulmonary fibrosis in vitro and in vivo via modulating TGF-β/Smad signaling pathway. Toxicol. Appl. Pharmacol. 2020 389 114882 10.1016/j.taap.2020.114882 31953203
    [Google Scholar]
  143. Kubo I. Matsumoto T. Klocke J.A. Multichemical resistance of the conifer Podocarpus gracilior (Podocarpaceae) to insect attack. J. Chem. Ecol. 1984 10 4 547 559 10.1007/BF00994220 24318596
    [Google Scholar]
  144. Russell G.B. Fenemore P.G. Singh P. Insect-control chemicals from plants. Nagilactone C, a toxic substance from the leaves of Podocarpus nivalis and P. hallii. Aust. J. Biol. Sci. 1972 25 5 1025 1029 10.1071/BI9721025 4663341
    [Google Scholar]
  145. singh, P.; Fenemore, P.G.; Russell, G.B. Insect-control chemicals from plants. II. Effects of five natural norditerpene dilactones on the development of the housefly. Aust. J. Biol. Sci. 1973 26 4 911 915 10.1071/BI9730911 4748331
    [Google Scholar]
  146. Singh P. Russell G.B. Hayashi Y. Gallagher R.T. Fredericksen S. The insecticidal activity of some norditerpene dilactones. Entomol. Entomol. Exp. Appl. 1979 25 2 121 127 10.1111/j.1570‑7458.1979.tb02861.x
    [Google Scholar]
  147. Park N.H. Lee C.W. Bae J. Na Y.J. Protective effects of amentoflavone on Lamin A-dependent UVB-induced nuclear aberration in normal human fibroblasts. Bioorg. Med. Chem. Lett. 2011 21 21 6482 6484 10.1016/j.bmcl.2011.08.067 21917453
    [Google Scholar]
  148. von Moltke L.L. Weemhoff J.L. Bedir E. Khan I.A. Harmatz J.S. Goldman P. Greenblatt D.J. Inhibition of human cytochromes P450 by components of Ginkgo biloba. J. Pharm. Pharmacol. 2004 56 8 1039 1044 10.1211/0022357044021 15285849
    [Google Scholar]
  149. Lee J.Y. Kim J.K. Lee S.J. Lee E.J. Shin S.Y. Jin Q. Yoon D.Y. Woo E.R. Kim Y.M. Binding model of amentoflavone to peroxisome proliferator-activated receptor gamma. Bull. Korean Chem. Soc. 2012 33 5 1475 1479 10.5012/bkcs.2012.33.5.1475
    [Google Scholar]
  150. Lee M.K. Lim S.W. Yang H. Sung S.H. Lee H.S. Park M.J. Kim Y.C. Osteoblast differentiation stimulating activity of biflavonoids from Cephalotaxus koreana. Bioorg. Med. Chem. Lett. 2006 16 11 2850 2854 10.1016/j.bmcl.2006.03.018 16574412
    [Google Scholar]
  151. Zha X. Xu Z. Liu Y. Xu L. Huang H. Zhang J. Cui L. Zhou C. Xu D. Amentoflavone enhances osteogenesis of human mesenchymal stem cells through JNK and p38 MAPK pathways. J. Nat. Med. 2016 70 3 634 644 10.1007/s11418‑016‑0993‑1 27106512
    [Google Scholar]
  152. Bais S. Abrol N. Prashar Y. kumari, R. Modulatory effect of standardised amentoflavone isolated from Juniperus communis L. agianst Freund’s adjuvant induced arthritis in rats (histopathological and X Ray anaysis). Biomed. Pharmacother. 2017 86 381 392 10.1016/j.biopha.2016.12.027 28012393
    [Google Scholar]
  153. Prasad J. Shrivastava A. Khanna A.K. Bhatia G. Awasthi S.K. Narender T. Antidyslipidemic and antioxidant activity of the constituents isolated from the leaves of Calophyllum inophyllum. Phytomedicine 2012 19 14 1245 1249 10.1016/j.phymed.2012.09.001 23083817
    [Google Scholar]
  154. Cheng K.T. Hsu F.L. Chen S.H. Hsieh P.K. Huang H.S. Lee C.K. Lee M.H. New constituent from Podocarpus macrophyllus var. macrophyllus shows anti-tyrosinase effect and regulates tyrosinase-related proteins and mRNA in human epidermal melanocytes. Chem. Pharm. Bull (Tokyo) 2007 55 5 757 761 10.1248/cpb.55.757 17473463
    [Google Scholar]
  155. Weniger B. Vonthron-Sénécheau C. Kaiser M. Brun R. Anton R. Comparative antiplasmodial, leishmanicidal and antitrypanosomal activities of several biflavonoids. Phytomedicine 2006 13 3 176 180 10.1016/j.phymed.2004.10.008 16428025
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298406155251124074455
Loading
/content/journals/mroc/10.2174/0118756298406155251124074455
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test