Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

The synthesis of imidazolines has gained significant attention due to their wide range of applications in pharmaceuticals, agrochemicals, and materials science. Recent advancements in the use of transition metal catalysts have revolutionized the methodologies for synthesizing these heterocyclic compounds. This review highlights the latest developments in transition metal-catalyzed reactions, focusing on their efficiency, selectivity, and sustainability. Key breakthroughs include the utilization of palladium, nickel, and copper catalysts, which have demonstrated remarkable activity in various coupling and cyclization reactions. Additionally, the incorporation of green chemistry principles has led to more environmentally friendly processes. The mechanistic insights and practical applications discussed herein provide a comprehensive understanding of the current state and future prospects of transition metal-catalyzed imidazoline synthesis. This review highlights the literature from 2010 to 2024, focusing on various protocols involving transition metal catalysts for the synthesis of diverse imidazoline heterocyclic compounds.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298339198241015055314
2024-12-11
2025-10-26
Loading full text...

Full text loading...

References

  1. BaleA.T. FasinaT.M. ShaibuR.O. Synthesis and biological study of substituted 2”-Hydoxy, 2”, 4”-dichloro chalcones and their Co (II), Cu (II) and Ni (II) complexes for their antioxidant and antimicrobial.Adv. J. Chem.2022594
    [Google Scholar]
  2. ZhangS. XuG. YanH. WuQ. MengJ. DuanJ. GuoK. Electrooxidative [3 + 2] annulation of amidines with alkenes for the synthesis of spiroimidazolines.Chin. Chem. Lett.202233125128513110.1016/j.cclet.2022.04.006
    [Google Scholar]
  3. WangT. XuB. WangY. LeiJ. QinW. GuiK. OuyangC. ChenK.J. WangH. In-situ formed hierarchical transition metal oxide nanoarrays with rich antisite defects and oxygen vacancies for high-rate energy storage devices.Chin. Chem. Lett.20223352669267610.1016/j.cclet.2021.09.103
    [Google Scholar]
  4. ChuY. XiongS. Mixed transition-metal oxides@carbon core-shell nanostructures derived from heterometallic clusters for enhanced lithium storage.Chin. Chem. Lett.202233148649010.1016/j.cclet.2021.06.074
    [Google Scholar]
  5. KoleyM. HanJ. SoloshonokV.A. MojumderS. JavahershenasR. MakaremA. Latest developments in coumarin-based anticancer agents: Mechanism of action and structure-activity relationship studies.RSC Medicinal Chemistry2024151105410.1039/D3MD00511A 38283214
    [Google Scholar]
  6. GhoshS. MallikT. Nath RoyM. EkkaD. Different schiff base metal(II, III) complexes derived from benzil and its derivatives: ‎A short review.Asian J. Green Chem.20226355
    [Google Scholar]
  7. MohammadiR. Magnetic copper ferrite nanoparticles catalyzed synthesis of benzimidazole, benzoxazole and benzothiazole derivatives.J. Synth. Chem.2022122
    [Google Scholar]
  8. GhobadiM. Based on copper ferrite nanoparticles (CuFe2O4 NPs): Catalysis in synthesis of Heterocycles.J. Synth. Chem.2022184
    [Google Scholar]
  9. BhatA.R. GuptaS.S. InBr3 catalyzed the rapid and scale-up asymmetric biginelli synthesis of pyrido[2,3-d]pyrimidines under solvent-free conditions.J. Synth. Chem.2022127
    [Google Scholar]
  10. HakimiF. MousavianB. BanifatemehF. GolrasanE. ZrCl4@Arabic Gum: An effective and environmentally friendly catalyst for the preparation of 14-aryl-14H-dibenzo[a,j]xanthene derivatives at ambient temperature without solvent.Asian J. Green Chem.20215378
    [Google Scholar]
  11. ZhuG. DuanZ.C. ZhuH. YeD. WangD. Selective C-C bonds formation, N-alkylation and benzo[d]imidazoles synthesis by a recyclable zinc composite.Chin. Chem. Lett.202233126627010.1016/j.cclet.2021.06.060
    [Google Scholar]
  12. OuakkiM. GalaiM. CherkaouiM. Imidazole derivatives as efficient and potential class of corrosion inhibitors for metals and alloys in aqueous electrolytes: A review.J. Mol. Liq.202234511781510.1016/j.molliq.2021.117815
    [Google Scholar]
  13. ZadehM.M.A. RostamiE. FarhadiA. An extremely productive and sustainable procedure for the synthesis of 2,4,5-trisubstituted imidazoles using graphene oxide-substituted sulfoacetic acid amide.Russ. J. Org. Chem.202258101487149710.1134/S1070428022100153
    [Google Scholar]
  14. ZhuX.W. LuoD. ZhouX.P. LiD. Imidazole-based metal-organic cages: Synthesis, structures, and functions.Coord. Chem. Rev.202245521435410.1016/j.ccr.2021.214354
    [Google Scholar]
  15. HouY. ZhuL. HeK. YangZ. MaS. LeiJ. Synthesis of three imidazole derivatives and corrosion inhibition performance for copper.J. Mol. Liq.202234811843210.1016/j.molliq.2021.118432
    [Google Scholar]
  16. GuptaP.K. AzzamM.A. SaquibM. HussainM.K. A highly efficient and eco-friendly synthesis of disubstituted imidazoles in ionic liquid from gem -dibromo vinylarenes and amidines.Polycycl. Aromat. Compd.20234343089309810.1080/10406638.2022.2061532
    [Google Scholar]
  17. KabiA.K. GujjarappaR. SinghV. MalakarC.C. Biological impacts of imidazoline derivatives.Chem. Zvesti202478105743575210.1007/s11696‑024‑03496‑1
    [Google Scholar]
  18. DhingraA.K. ChopraB. JainA. ChaudharyJ. Imidazole: Multi-targeted therapeutic leads for the management of Alzheimer’s disease.Mini Rev. Med. Chem.202222101352137310.2174/1389557522666220104152141 34983347
    [Google Scholar]
  19. ChauhanS. VermaV. KumarD. GuptaR. GuptaS. BajajA. KumarA. ParshadM. N-Heterocycles hybrids: Synthesis, antifungal and antibiofilm evaluation.Synth. Commun.202252689891110.1080/00397911.2022.2056852
    [Google Scholar]
  20. YangX. SunH. MaddiliS.K. LiS. YangR.G. ZhouC.H. Dihydropyrimidinone imidazoles as unique structural antibacterial agents for drug-resistant gram-negative pathogens.Eur. J. Med. Chem.202223211418810.1016/j.ejmech.2022.114188 35168152
    [Google Scholar]
  21. Marco-ContellesJ. Pérez-MayoralE. BallesterosP. Bicyclic 5-5 systems with one bridgehead (ring junction) nitrogen atom: Three extra heteroatoms 2:1.Comprehensive Heterocyclic Chemistry III.Elsevier200819930510.1016/B978‑008044992‑0.01005‑1
    [Google Scholar]
  22. KarioK. Central sympathetic agents and direct vasodilators.Hypertension: A Companion to Braunwald’s Heart Disease.Elsevier201825426010.1016/B978‑0‑323‑42973‑3.00026‑3
    [Google Scholar]
  23. OrtínI. DixonD.J. Direct catalytic enantio- and diastereoselective Mannich reaction of isocyanoacetates and ketimines.Angew. Chem. Int. Ed.201453133462346510.1002/anie.201309719 24615896
    [Google Scholar]
  24. LiuY. FanB. XuB. YangB. Ambient-stable polyethyleneimine functionalized Ti3C2T nanohybrid corrosion inhibitor for copper in alkaline electrolyte.Mater. Lett.202333713397910.1016/j.matlet.2023.133979
    [Google Scholar]
  25. HuangZ. DingJ. YangX. LiuH. SongP. GuoY. GuoY. WangL. ZhanW. Highly efficient oxidation of propane at low temperature over a Pt-based catalyst by optimization support.Environ. Sci. Technol.20225623172781728710.1021/acs.est.2c05599 36335508
    [Google Scholar]
  26. LeiZ. HengliangW. ZhangL. YangJ. QiW. A study on the catalytic performance of the ZrO 2 @γ-Al2O3 hollow sphere catalyst for COS hydrolysis.New J. Chem.202347157070708310.1039/D2NJ04970H
    [Google Scholar]
  27. LiuW. ZhengJ. OuX. LiuX. SongY. TianC. RongW. ShiZ. DangZ. LinZ. Effective extraction of Cr(VI) from hazardous gypsum sludge via controlling the phase transformation and chromium species.Environ. Sci. Technol.20185222133361334210.1021/acs.est.8b02213 30353724
    [Google Scholar]
  28. HuoJ. WeiH. FuL. ZhaoC. HeC. Highly active Fe36Co44 bimetallic nanoclusters catalysts for hydrolysis of ammonia borane: The first-principles study.Chin. Chem. Lett.202334210726110.1016/j.cclet.2022.02.066
    [Google Scholar]
  29. LiY. XiaX. HouW. LvH. LiuJ. LiX. How effective are metal nanotherapeutic platforms against bacterial infections? A comprehensive review of literature.Int. J. Nanomedicine2023181109112810.2147/IJN.S397298 36883070
    [Google Scholar]
  30. WangJ. ZhaoL. ZhuC. MaB. XieX. LiuJ. HeS. RuepingM. ZhaoK. HuL. Transition-metal-catalyzed switchable divergent cycloaddition of para-quinone methides and vinylethylene carbonates: Access to different sized medium-sized heterocycles.Chin. Chem. Lett.202233104549455810.1016/j.cclet.2022.01.063
    [Google Scholar]
  31. LiX.P. HuangC. HanW.K. OuyangT. LiuZ.Q. Transition metal-based electrocatalysts for overall water splitting.Chin. Chem. Lett.20213292597261610.1016/j.cclet.2021.01.047
    [Google Scholar]
  32. WangH. ZhuS. DengJ. ZhangW. FengY. MaJ. Transition metal carbides in electrocatalytic oxygen evolution reaction.Chin. Chem. Lett.202132129129810.1016/j.cclet.2020.02.018
    [Google Scholar]
  33. HoseiniZ. DavoodniaA. PordelM. Another successful application of newly prepared GO-SiC3-NH3-H2PW as highly efficient nanocatalyst for fast synthesis of tetrahydrobenzo[b]pyrans.Adv. J. Chem. A2021468
    [Google Scholar]
  34. MowlazadehH.S. PurkhosrowA. Khalafi-NezhadA. OftadehganS. One pot synthesis of heterocyclic dihydroquinoline analogs incorporating quinoline and pyrimidine fused rings in condensation reaction using NCTDSS as a catalyst.Asian J. Green Chem.20226203
    [Google Scholar]
  35. SudhakaraK. KumarA.P. KumarB.P. RaghavenderA. RaviS. KeniecD.N. LeeY-I. Synthesis of γ-Fe2O3 nanoparticles and catalytic activity of azide-alkyne cycloaddition reactions.Asian J. Nanosci. Mater.20181172
    [Google Scholar]
  36. ShamayaA.N.S. Al-JeilawiO.H.R. KhudhairN.A. Novel synthesis of some N-hydroxy phthalimide derivatives with investigation of its corrosion inhibition for carbon steel in HCl solution.Chem. Methodol.20215433134010.22034/chemm.2021.131305
    [Google Scholar]
  37. Abd Al-MohsonZ.M. Synthesis of novel pyrazole derivatives containing tetrahydrocarbazole, antimicrobail evaluation and molecular properties.Eurasian Chem. Commun.20213425
    [Google Scholar]
  38. MerdasS.M. KadhimS.H. Investigation of thermal and electrical conductivity of chemically synthesized poly[(ortho-toldine-co-(2-hydroxy-4-methyl anline)] composite doped with HCl.J. Med. Chem. Sci.20225922
    [Google Scholar]
  39. NagreS.S. DhokaleN.T. DalviN.R. KaleS.B. Acetic acid catalyzed synthesis of benzo[h]quinazoline-2(3h)-thione derivatives using polyethylene glycol-400 as green reaction medium.J. Appl. Organomet. Chem.202221
    [Google Scholar]
  40. FernandesP.R. PatilP. SheteR.C. An outline to preparation of biological active benzimidazoles using microwave approach.J. Chem. Rev.2022425
    [Google Scholar]
  41. MehediM.S.A. TepeJ.J. Recent advances in the synthesis of imidazolines (2009-2020).Adv. Synth. Catal.2020362204189422510.1002/adsc.202000709
    [Google Scholar]
  42. LiJ. YuB. LuZ. Chiral imidazoline ligands and their applications in metal-catalyzed asymmetric synthesis.Chin. J. Chem.202038488514
    [Google Scholar]
  43. SączewskiF. KornickaA. BalewskiŁ. Imidazoline scaffold in medicinal chemistry: A patent review (2012-2015).Expert Opin. Ther. Pat.20162691031104810.1080/13543776.2016.1210128
    [Google Scholar]
  44. TyagiR. TyagiV.K. PandeyS.K. Imidazoline and its derivatives: An overview.J. Oleo Sci.200756521122210.5650/jos.56.211 17898484
    [Google Scholar]
  45. BajpaiD. TyagiV.K. Fatty imidazolines: Chemistry, synthesis, properties and their industrial applications.J. Oleo Sci.200655731932910.5650/jos.55.319
    [Google Scholar]
  46. BousquetP. HudsonA. García-SevillaJ.A. LiJ.X. Imidazoline receptor system: The past, the present, and the future.Pharmacol. Rev.2020721507910.1124/pr.118.016311 31819014
    [Google Scholar]
  47. DardonvilleC. RozasI. Imidazoline binding sites and their ligands: An overview of the different chemical structures.Med. Res. Rev.200424563966110.1002/med.20007 15224384
    [Google Scholar]
  48. LiuH. DuD.M. Recent advances in the synthesis of 2‐imidazolines and their applications in homogeneous catalysis.Adv. Synth. Catal.2009351448951910.1002/adsc.200800797
    [Google Scholar]
  49. MoritaT. FuseS. NakamuraH. Photochemical conversion of isoxazoles to 5-hydroxyimidazolines.Org. Lett.20202293460346310.1021/acs.orglett.0c00910 32286839
    [Google Scholar]
  50. AksenovA.V. AksenovN.A. ArutiunovN.A. MalyugaV.V. OvcharovS.N. RubinM. Electrophilically activated nitroalkanes in reaction with aliphatic diamines en route to imidazolines.RSC Advances2019967394583946510.1039/C9RA08630G 35540681
    [Google Scholar]
  51. ClarazA. DjianA. MassonG. Electrochemical tandem trifluoromethylation of allylamines/formal (3+2)-cycloaddition for the rapid access to CF 3 -containing imidazolines and oxazolidines.Org. Chem. Front.20218228829610.1039/D0QO01307B
    [Google Scholar]
  52. HammoudaM.M. ElattarK.M. Recent progress in the chemistry of β-aminoketones.RSC Advances20221238246812471210.1039/D2RA03864A 36128366
    [Google Scholar]
  53. ShaoP.L. LiaoJ.Y. HoY.A. ZhaoY. Highly diastereo- and enantioselective silver-catalyzed double [3+2] cyclization of α-imino esters with isocyanoacetate.Angew. Chem. Int. Ed.201453215435543910.1002/anie.201402788 24756902
    [Google Scholar]
  54. JavahershenasR. MakaremA. KlikaK.D. Recent advances in microwave-assisted multicomponent synthesis of spiro heterocycles.RSC Advances20241485547556510.1039/D4RA00056K 38357035
    [Google Scholar]
  55. AbásS. EstarellasC. JavierL.F. EscolanoC. Easy access to (2-imidazolin-4-yl)phosphonates by a microwave assisted multicomponent reaction.Tetrahedron201571192872288110.1016/j.tet.2015.03.065
    [Google Scholar]
  56. de la CampaR. GammackY.A.D. OrtínI. FranchinoA. ThompsonA.L. OdellB. DixonD.J. Catalytic enantio- and diastereoselective Mannich reaction of α-substituted isocyanoacetates and ketimines.Chem. Commun. (Camb.)20165270106321063510.1039/C6CC04132A 27500289
    [Google Scholar]
  57. QiaoS. WilcoxC.B. UnruhD.K. JiangB. LiG. Asymmetric [3+2] cycloaddition of chiral N -phosphonyl imines with methyl isocyanoacetate for accessing 2-imidazolines with switchable stereoselectivity.J. Org. Chem.20178262992299910.1021/acs.joc.6b03068 28249385
    [Google Scholar]
  58. FangG. WangH. LiuQ. CongX. BiX. Silver‐promoted [3+1+1] annulation of isocyanoacetates with nitrosoarenes.Asian J. Org. Chem.2018761066107010.1002/ajoc.201800172
    [Google Scholar]
  59. ZhangX. WangX. GaoY. XuX. Silver-catalyzed formal [3+2]-cycloaddition of α-trifluoromethylated methyl isocyanides: A facile stereoselective synthesis of CF 3 -substituted heterocycles.Chem. Commun. (Camb.)201753162427243010.1039/C6CC10124K 28133650
    [Google Scholar]
  60. KokG.P.Y. ShaoP.L. LiaoJ.Y. IsmailS.N.F.B.S. YaoW. LuY. ZhaoY. Divergent, enantioselective synthesis of pyrroles, 3 H ‐pyrroles and bicyclic imidazolines by Ag‐ or p‐catalyzed [3+2] cycloaddition of allenoates with activated isocyanides.Chemistry20182441105131052010.1002/chem.201801768 29774613
    [Google Scholar]
  61. HeC.L. LiuR. LiD.D. ZhuS.E. WangG.W. Synthesis and functionalization of [60] fullerene-fused imidazolines.Org. Lett.20131571532153510.1021/ol400319w 23496090
    [Google Scholar]
  62. YangM. HuangD. WangK. HanT. ZhaoP. WangF. WangJ. SuY. HuY. Silver-catalyzed synthesis of CF 3 -substituted 2-imidazolines.Youji Huaxue2022425150910.6023/cjoc202111009
    [Google Scholar]
  63. ZhangJ. WangX. YangM. WanK. YinB. WangY. LiJ. ShiZ. Copper-catalyzed synthesis of 2-imidazolines and their N-hydroxyethyl derivatives under various conditions.Tetrahedron Lett.201152141578158210.1016/j.tetlet.2011.01.082
    [Google Scholar]
  64. MorrisonR.T. BoydR.N. Organic Chemistry.6th edLondonPrentice Hall International, Inc.2002ISBN 978-0136436690
    [Google Scholar]
  65. MakaremA. SarvestaniM.K. KlikaK.D. KopkaK. A multifunctional HBED-type chelator with dual conjugation capabilities for radiopharmaceutical development.Synlett201930151795179810.1055/s‑0039‑1690194
    [Google Scholar]
  66. AkhlaghiniaB. MakaremA. Dithioacetalization of carbonyl compounds under catalyst-free condition.J. Sulfur Chem.201132657558110.1080/17415993.2011.622394
    [Google Scholar]
  67. HayashiM. IwanagaM. ShiomiN. NakaneD. MasudaH. NakamuraS. Direct asymmetric Mannich-type reaction of α-isocyanoacetates with ketimines using cinchona alkaloid/copper(II) catalysts.Angew. Chem. Int. Ed.201453328411841510.1002/anie.201404629 24985050
    [Google Scholar]
  68. TamuraK. KumagaiN. ShibasakiM. Direct catalytic asymmetric mannich‐type reaction of benzyl isocyanide: Stereoselective synthesis of 1,2‐diarylethylenediamines.Eur. J. Org. Chem.20152015143026303110.1002/ejoc.201500336
    [Google Scholar]
  69. BuX.B. YuY. LiB. ZhangL. ChenJ.J. ZhaoY.L. Copper‐catalyzed cascade cyclization reactions of isocyanides with α‐diazocarbonyls as N‐terminal electrophiles: Efficient synthesis of 2‐imidazolines and 1,1′‐biimidazoles.Adv. Synth. Catal.2017359235135610.1002/adsc.201600574
    [Google Scholar]
  70. DuY. MeiH. MakaremA. JavahershenasR. SoloshonokV.A. HanJ. Copper-catalyzed multicomponent reaction of β-trifluoromethyl β-diazo esters enabling the synthesis of β-trifluoromethyl N, N -diacyl-β-amino esters.Beilstein J. Org. Chem.20242021221910.3762/bjoc.20.21 38318462
    [Google Scholar]
  71. WangY.F. ZhuX. ChibaS. Copper-catalyzed aerobic [3+2]-annulation of N-alkenyl amidines.J. Am. Chem. Soc.201213483679368210.1021/ja2120629 22296256
    [Google Scholar]
  72. SanjayaS. ChibaS. Copper-catalyzed aminooxygenation of N-allylamidines with PhI(OAc)2.Org. Lett.201214205342534510.1021/ol302525m 23030596
    [Google Scholar]
  73. ChenH. SanjayaS. WangY.F. ChibaS. Copper-catalyzed aliphatic C-H amination with an amidine moiety.Org. Lett.201315121221510.1021/ol303302r 23252919
    [Google Scholar]
  74. ChenH. ChibaS. Copper-catalyzed redox-neutral C-H amination with amidoximes.Org. Biomol. Chem.2014121424610.1039/C3OB41871E 24247715
    [Google Scholar]
  75. NakamuraS. KibeM. TakeharaT. SuzukiT. Direct catalytic enantioselective reaction of α-isocyanoacetonitriles with ketimines using cinchona alkaloid amide-Cu(II) catalysts.Org. Lett.20232561040104410.1021/acs.orglett.3c00259 36749377
    [Google Scholar]
  76. JavahershenasR. NikzatS. Recent developments using malononitrile in ultrasound-assisted multicomponent synthesis of heterocycles.Ultrason. Sonochem.202410210674110.1016/j.ultsonch.2023.106741 38176128
    [Google Scholar]
  77. ImeniS. MakaremA. JavahershenasR. Recent advances in multicomponent electro‐organic (electrochemical) synthesis of heterocycles.Asian J. Org. Chem.2023128e20230030310.1002/ajoc.202300303
    [Google Scholar]
  78. JavahershenasR. NikzatS. Recent advances in the multicomponent synthesis of heterocycles using tetronic acid.RSC Advances20231324166191662910.1039/D3RA02505E 37274406
    [Google Scholar]
  79. JavahershenasR. Recent advances in the application of deep eutectic solvents for the synthesis of Spiro heterocyclic scaffolds via multicomponent reactions.J. Mol. Liq.202338512239810.1016/j.molliq.2023.122398
    [Google Scholar]
  80. JavahershenasR. MakaremA. MeiH. KoleyM. SoloshonokV.A. Recent advances in the multicomponent synthesis of heterocycles using 5-aminotetrazole.Synthesis202456162445246110.1055/s‑0042‑1751526
    [Google Scholar]
  81. GedenJ.V. PancholiA.K. ShipmanM. Palladium-catalyzed multicomponent synthesis of 2-aryl-2-imidazolines from aryl halides and diamines.J. Org. Chem.20137884158416410.1021/jo400252n 23472583
    [Google Scholar]
  82. WangX. XiongW. HuangY. ZhuJ. HuQ. WuW. JiangH. Palladium-catalyzed synthesis of 1H-indenes and phthalimides via isocyanide insertion.Org. Lett.201719215818582110.1021/acs.orglett.7b02771 29064722
    [Google Scholar]
  83. LiuY. ZhangC. LiangX. ZengX. LuR. FangZ. WangS. LiuY. HuJ. Synthesis of 2-imidazolines via palladium-catalyzed cyclization reaction of 2,3-allenyl amines and aryl iodides.Synthesis202052690190810.1055/s‑0037‑1610742
    [Google Scholar]
  84. BontempsS. QuesnelJ.S. WorrallK. ArndtsenB.A. Palladium-catalyzed aryl iodide carbonylation as a route to imidazoline synthesis: Design of a five-component coupling reaction.Angew. Chem. Int. Ed.201150388948895110.1002/anie.201103885 21905183
    [Google Scholar]
  85. XuB. WorrallK. ArndtsenB.A. Palladium-catalyzed multicomponent synthesis of 2-imidazolines from imines and acid chlorides.Molecules20121712137591376810.3390/molecules171213759 23174894
    [Google Scholar]
  86. NakamuraS. YamajiR. IwanagaM. Enantioselective construction of imidazolines having vicinal tetra-substituted stereocenters by direct Mannich reaction of α-substituted α-isocyanoacetates with ketimines.Chem. Commun. (Camb.)201652477462746510.1039/C6CC02911F 27159156
    [Google Scholar]
  87. Tlahuext-AcaA. Hernández-FajardoO. ArévaloA. GarcíaJ.J. Synthesis of tetra-substituted imidazoles and 2-imidazolines by Ni(0)-catalyzed dehydrogenation of benzylic-type imines.Dalton Trans.20144342159971600510.1039/C4DT02313G 25232889
    [Google Scholar]
  88. HuJ. LiZ. ZhangX. HanY. LiuY. ZhaoY. LiuY. GongP. Palladium-catalyzed cyclization reaction of oxime acetates and aryl iodides: Syntheses of 2-imidazolines.Org. Lett.20182072116211910.1021/acs.orglett.8b00696 29553756
    [Google Scholar]
  89. ZuritaD.A. Flores-AlamoM. GarcíaJ.J. Catalytic transfer hydrogenation of azobenzene by low-valent nickel complexes: A route to 1,2-disubstituted benzimidazoles and 2,4,5-trisubstituted imidazolines.Dalton Trans.20164525103891040110.1039/C6DT01674J 27254530
    [Google Scholar]
  90. MehediM.S.A. TepeJ.J. Diastereoselective one-pot synthesis of oxazolines using sulfur ylides and acyl imines.J. Org. Chem.201984117219722610.1021/acs.joc.9b00883 31117573
    [Google Scholar]
  91. HanamotoT. IshikawaT. YoshikiM. TanakaT. OgataK. YamadaY. Regioselective synthesis of difluoromethylated oxazolidines and 2-imidazolines.Synthesis20164891322133010.1055/s‑0035‑1560414
    [Google Scholar]
  92. JiangR. SunH.B. LiS. ZhanK. ZhouJ. LiuL. ZhangK. LiangQ. ChenZ. Synthesis of tetrazoles, triazoles, and imidazolines catalyzed by magnetic silica spheres grafted acid.Synth. Commun.201848202652266210.1080/00397911.2018.1510007
    [Google Scholar]
  93. ChenJ.Q. YuW.L. WeiY.L. LiT.H. XuP.F. Photoredox-induced functionalization of alkenes for the synthesis of substituted imidazolines and oxazolidines.J. Org. Chem.201782124324910.1021/acs.joc.6b02377 27959530
    [Google Scholar]
  94. HuangS. ShaoY. ZhangL. ZhouX. Cycloamidination of aminoalkenes with nitriles: Synthesis of substituted 2‐imidazolines and tetrahydropyrimidines.Angew. Chem. Int. Ed.20155448144521445610.1002/anie.201508442 26490258
    [Google Scholar]
  95. JeonH.J. JungD.J. KimJ.H. KimY. BouffardJ. LeeS. From triazoles to imidazolines through the sequential N-H insertion of α-imino rhodium-carbenes into β-enamino esters/enamine-imine tautomerization/conjugate addition cascade.J. Org. Chem.201479209865987110.1021/jo501785d 25259803
    [Google Scholar]
  96. ManikandanR. AnithaP. PrakashG. VijayanP. ViswanathamurthiP. ButcherR.J. MaleckiJ.G. Ruthenium(II) carbonyl complexes containing pyridoxal thiosemicarbazone and trans-bis(triphenylphosphine/arsine): Synthesis, structure and their recyclable catalysis of nitriles to amides and synthesis of imidazolines.J. Mol. Catal. Chem.201539831232410.1016/j.molcata.2014.12.017
    [Google Scholar]
  97. ZhuC. ZhouY. ZhangJ. LiJ. ZhangY. WangF. FengX. DongS. Rare-earth metal-catalyzed asymmetric addition/hydroamidination of nitriles and allylamines for the concise synthesis of chiral imidazolines.CCS Chem.2025714815910.31635/ccschem.024.202403937
    [Google Scholar]
  98. SahooS.K. HarfmannB. AiL. WangQ. MohapatraS. ChoudhuryA. StavropoulosP. Cationic divalent metal sites (M = Mn, Fe, Co) Operating as both nitrene-transfer agents and lewis acids toward mediating the synthesis of three- and five-membered N -heterocycles.Inorg. Chem.20236227107431076110.1021/acs.inorgchem.3c01209 37352838
    [Google Scholar]
  99. CoinG. DubourdeauxP. BayleP.A. LebrunC. MaldiviP. LatourJ.M. Imidazoline synthesis: Mechanistic investigations show that Fe catalysts promote a new multicomponent redox reaction.Dalton Trans.202150196512651910.1039/D1DT00919B 33908990
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298339198241015055314
Loading
/content/journals/mroc/10.2174/0118756298339198241015055314
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test