Skip to content
2000
Volume 23, Issue 1
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

Bioorthogonal chemistry explores a set of technologies to incorporate non-native functional groups into biological systems to understand the mechanism of biological processes in living organisms. Among the conjugation strategies available on the bench, the use of biocatalysis as part of bioorthogonal conjugation has been found to be one smart tool to achieve chemoselective functional group installation. The process designing utilizes high substrate specificity of biocatalyst, resulting in a targeted addition of a reactive non-native functional group to a native biomolecule followed by tagging with a suitably detectable moiety and thereby monitoring the salient biological processes involving the conjugated assembly. The present study tries to briefly address the synthetic strategies with mechanistic elaboration involving various transferases with different suitable models and the underlying reactions involved in bioorthogonal processes.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298358967250117114300
2025-02-11
2026-01-07
Loading full text...

Full text loading...

References

  1. BestM.D. Click chemistry and bioorthogonal reactions: Unprecedented selectivity in the labeling of biological molecules.Biochemistry200948286571658410.1021/bi9007726 19485420
    [Google Scholar]
  2. LimR.K.V. LinQ. Bioorthogonal chemistry: Recent progress and future directions.Chem. Commun.201046101589160010.1039/b925931g 20177591
    [Google Scholar]
  3. ShihH.W. KamberD.N. PrescherJ.A. Building better bioorthogonal reactions.Curr. Opin. Chem. Biol.20142110311110.1016/j.cbpa.2014.07.002 25086220
    [Google Scholar]
  4. ZhengM. ZhengL. ZhangP. LiJ. ZhangY. Development of bioorthogonal reactions and their applications in bioconjugation.Molecules20152023190320510.3390/molecules20023190 25690284
    [Google Scholar]
  5. FanX. LiJ. ChenP.R. Bioorthogonal chemistry in living animals.Natl. Sci. Rev.20174330030210.1093/nsr/nwx010
    [Google Scholar]
  6. RowR.D. PrescherJ.A. Constructing new bioorthogonal reagents and reactions.Acc. Chem. Res.20185151073108110.1021/acs.accounts.7b00606 29727171
    [Google Scholar]
  7. DevarajN.K. The future of bioorthogonal chemistry.ACS Cent. Sci.20184895295910.1021/acscentsci.8b00251 30159392
    [Google Scholar]
  8. MadlC.M. HeilshornS.C. Bioorthogonal strategies for engineering extracellular matrices.Adv. Funct. Mater.20182811170604610.1002/adfm.201706046 31558890
    [Google Scholar]
  9. SchäferR.J.B. AronoffM.R. WennemersH. Recent advances in bioorthogonal reactions.Chimia201973430831210.2533/chimia.2019.308 30975262
    [Google Scholar]
  10. VerhelstS.H.L. BongerK.M. WillemsL.I. Bioorthogonal reactions in activity-based protein profiling.Molecules20202524599410.3390/molecules25245994 33352858
    [Google Scholar]
  11. (a BirdR.E. LemmelS.A. YuX. ZhouQ.A. Bioorthogonal chemistry and its applications.Bioconjug. Chem.202132122457247910.1021/acs.bioconjchem.1c00461 34846126
    [Google Scholar]
  12. (b SmeenkM.L.W.J. AgramuntJ. BongerK.M. Recent developments in bioorthogonal chemistry and the orthogonality within.Curr. Opin. Chem. Biol.202160798810.1016/j.cbpa.2020.09.002 33152604
    [Google Scholar]
  13. (c ScintoS.L. BilodeauD.A. HincapieR. LeeW. NguyenS.S. XuM. am EndeC.W. FinnM.G. LangK. LinQ. PezackiJ.P. PrescherJ.A. RobillardM.S. FoxJ.M. Bioorthogonal chemistry.Nat. Rev. Methods Primers2021113010.1038/s43586‑021‑00028‑z 34585143
    [Google Scholar]
  14. (a HartungK.M. SlettenE.M. Bioorthogonal chemistry: Bridging chemistry, biology, and medicine.Chem2023982095210910.1016/j.chempr.2023.05.016 39006002
    [Google Scholar]
  15. (b AlexanderA.K. ElshahawiS.I. Promiscuous enzymes for residue-specific peptide and protein late-stage functionalization.ChemBioChem20232417e20230037210.1002/cbic.202300372 37338668
    [Google Scholar]
  16. HangH.C. YuC. KatoD.L. BertozziC.R. A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation.Proc. Natl. Acad. Sci. USA200310025148461485110.1073/pnas.2335201100 14657396
    [Google Scholar]
  17. AgardN.J. BaskinJ.M. PrescherJ.A. LoA. BertozziC.R. A comparative study of bioorthogonal reactions with azides.ACS Chem. Biol.200611064464810.1021/cb6003228 17175580
    [Google Scholar]
  18. SlettenE.M. BertozziC.R. Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality.Angew. Chem. Int. Ed.200948386974699810.1002/anie.200900942 19714693
    [Google Scholar]
  19. SlettenE.M. BertozziC.R. From mechanism to mouse: A tale of two bioorthogonal reactions.Acc. Chem. Res.201144966667610.1021/ar200148z 21838330
    [Google Scholar]
  20. BertozziC.R. A decade of bioorthogonal chemistry.Acc. Chem. Res.201144965165310.1021/ar200193f 21928847
    [Google Scholar]
  21. ŠlachtováV. ChovanecM. RahmM. VrabelM. Bioorthogonal chemistry in cellular organelles.Top. Curr. Chem.20243821210.1007/s41061‑023‑00446‑5 38103067
    [Google Scholar]
  22. LiangT. ChenZ. LiH. GuZ. Bioorthogonal catalysis for biomedical applications.Trends Chem.20224215716810.1016/j.trechm.2021.11.008
    [Google Scholar]
  23. MeldalM. TornøeC.W. Cu-catalyzed azide-alkyne cycloaddition.Chem. Rev.200810882952301510.1021/cr0783479 18698735
    [Google Scholar]
  24. TornøeC.W. ChristensenC. MeldalM. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides.J. Org. Chem.20026793057306410.1021/jo011148j 11975567
    [Google Scholar]
  25. RostovtsevV.V. GreenL.G. FokinV.V. SharplessK.B. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes.Angew. Chem. Int. Ed.200241142596259910.1002/1521‑3773(20020715)41:14<2596:AID‑ANIE2596>3.0.CO;2‑4 12203546
    [Google Scholar]
  26. BoyceM. MalakerS.A. RileyN.M. KohlerJ.J. The 2022 nobel prize in chemistry—sweet!Glycobiology202333317818110.1093/glycob/cwad016 36892406
    [Google Scholar]
  27. RodríguezD.F. MoglieY. Ramírez-SarmientoC.A. SinghS.K. DuaK. ZacconiF.C. Bio-click chemistry: A bridge between biocatalysis and click chemistry.RSC Advances20221241932194910.1039/D1RA08053A 35425264
    [Google Scholar]
  28. MitryM.M.A. GrecoF. OsbornH.M.I. In vivo applications of bioorthogonal reactions: Chemistry and targeting mechanisms.Chemistry20232920e20220394210.1002/chem.202203942 36656616
    [Google Scholar]
  29. (a ZSun. Bioorthogonal catalytic nanozyme-mediated lysosomal membrane leakage for targeted drug delivery.Theranostics202212311321147
    [Google Scholar]
  30. (b CKeum Biomimetic and bioorthogonal nanozymes for biomedical applications.Nano Converg.202310142
    [Google Scholar]
  31. (a SeoaneA. MascareñasJ.L. Exporting homogeneous transition metal catalysts to biological habitats.Eur. J. Org. Chem.2022202232e20220011810.1002/ejoc.202200118 36248016
    [Google Scholar]
  32. (b WangY. ZhaoH. Tandem reactions combining biocatalysts and chemical catalysts for asymmetric synthesis.Catalysts201661219410.3390/catal6120194
    [Google Scholar]
  33. ZhangY. ParkK.Y. SuazoK.F. DistefanoM.D. Recent progress in enzymatic protein labelling techniques and their applications.Chem. Soc. Rev.201847249106913610.1039/C8CS00537K 30259933
    [Google Scholar]
  34. CutoloG. ShankarS.N. PrattM.R. Your mother was right, washing matters: An alkyne-analog of ibuprofen reveals unwanted reactivity of aromatic compounds with proteins during copper-catalyzed click chemistry.Bioorg. Med. Chem. Lett.20214812826010.1016/j.bmcl.2021.128260 34265422
    [Google Scholar]
  35. SunJ. ZhangX. WangX. PengJ. SongG. DiY. FengF. WangS. Dithiol-activated bioorthogonal chemistry for endoplasmic reticulum-targeted synergistic chemophototherapy.Angew. Chem. Int. Ed.20226152e20221376510.1002/anie.202213765 36342403
    [Google Scholar]
  36. LangK. ChinJ.W. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins.Chem. Rev.201411494764480610.1021/cr400355w 24655057
    [Google Scholar]
  37. WilliamsonD.J. WebbM.E. TurnbullW.B. Depsipeptide substrates for sortase-mediated N-terminal protein ligation.Nat. Protoc.20149225326210.1038/nprot.2014.003 24407354
    [Google Scholar]
  38. GerlachM. StoschekT. LeonhardtH. HackenbergerC.P.R. SchumacherD. HelmaJ. Tubulin tyrosine ligase-mediated modification of proteins.Methods Mol. Biol.2019201232735510.1007/978‑1‑4939‑9546‑2_17 31161516
    [Google Scholar]
  39. HeM. HanZ. QiaoJ. NgoL. XiongM.P. ZhengY.G. A bioorthogonal turn-on fluorescent strategy for the detection of lysine acetyltransferase activity.Chem. Commun.201854445594559710.1039/C8CC02987C 29766153
    [Google Scholar]
  40. HightowerK.E. CaseyP.J. FierkeC.A. Farnesylation of nonpeptidic thiol compounds by protein farnesyltransferase.Biochemistry20014041002101010.1021/bi002237d 11170422
    [Google Scholar]
  41. WeeksA.M. WellsJ.A. Engineering peptide ligase specificity by proteomic identification of ligation sites.Nat. Chem. Biol.2018141505710.1038/nchembio.2521 29155430
    [Google Scholar]
  42. BestM. DegenA. BaalmannM. SchmidtT.T. WombacherR. Two-step protein labeling by using lipoic acid ligase with norbornene substrates and subsequent inverse-electron demand diels-alder reaction.ChemBioChem20151681158116210.1002/cbic.201500042 25900689
    [Google Scholar]
  43. RachelN.M. ToulouseJ.L. PelletierJ.N. Transglutaminase-catalyzed bioconjugation using one-pot metal-free bioorthogonal chemistry.Bioconjug. Chem.201728102518252310.1021/acs.bioconjchem.7b00509 28898047
    [Google Scholar]
  44. ReilyC. StewartT.J. RenfrowM.B. NovakJ. Glycosylation in health and disease.Nat. Rev. Nephrol.201915634636610.1038/s41581‑019‑0129‑4 30858582
    [Google Scholar]
  45. ChenX. VarkiA. User-friendly bioorthogonal reactions click to explore glycan functions in complex biological systems.J. Clin. Invest.20231336e16940810.1172/JCI169408 36919701
    [Google Scholar]
  46. LaughlinS.T. BertozziC.R. Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via Staudinger ligation.Nat. Protoc.20072112930294410.1038/nprot.2007.422 18007630
    [Google Scholar]
  47. BumpusT.W. BaskinJ.M. Greasing the wheels of lipid biology with chemical tools.Trends Biochem. Sci.2018431297098310.1016/j.tibs.2018.09.011 30472989
    [Google Scholar]
  48. AncajasC.F. RicksT.J. BestM.D. Metabolic labeling of glycerophospholipids via clickable analogs derivatized at the lipid headgroup.Chem. Phys. Lipids202023210497110.1016/j.chemphyslip.2020.104971 32898510
    [Google Scholar]
  49. JalaliE. ThorsonJ.S. Enzyme-mediated bioorthogonal technologies: Catalysts, chemoselective reactions and recent methyltransferase applications.Curr. Opin. Biotechnol.20216929029810.1016/j.copbio.2021.02.010 33901763
    [Google Scholar]
  50. StruckA.W. BennettM.R. ShepherdS.A. LawB.J.C. ZhuoY. WongL.S. MicklefieldJ. An enzyme cascade for selective modification of tyrosine residues in structurally diverse peptides and proteins.J. Am. Chem. Soc.201613893038304510.1021/jacs.5b10928 26867114
    [Google Scholar]
  51. DalhoffC. LukinavičiusG. Klimas̆auskasS. WeinholdE. Direct transfer of extended groups from synthetic cofactors by DNA methyltransferases.Nat. Chem. Biol.200621313210.1038/nchembio754 16408089
    [Google Scholar]
  52. BlancR.S. RichardS. Arginine methylation: The coming of age.Mol. Cell201765182410.1016/j.molcel.2016.11.003 28061334
    [Google Scholar]
  53. TomkuvienėM. MickutėM. VilkaitisG. KlimašauskasS. Repurposing enzymatic transferase reactions for targeted labeling and analysis of DNA and RNA.Curr. Opin. Biotechnol.20195511412310.1016/j.copbio.2018.09.008 30296696
    [Google Scholar]
  54. NeumannS. BiewendM. RanaS. BinderW.H. The CuAAC: Principles, homogeneous and heterogeneous catalysts, and novel developments and applications.Macromol. Rapid Commun.2020411190035910.1002/marc.201900359 31631449
    [Google Scholar]
  55. YimingL. BaoqiW. RongzhiT. FengL. YuT. Strain-promoted azide-alkyne cycloaddition.Huaxue Jinzhan202234102134214510.7536/PC220103
    [Google Scholar]
  56. KumarG.S. LinQ. Light-triggered click chemistry.Chem. Rev.2021121126991703110.1021/acs.chemrev.0c00799 33104332
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298358967250117114300
Loading
/content/journals/mroc/10.2174/0118756298358967250117114300
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test