Skip to content
2000
image of A Short Review on the Synthesis of 3,9-Disubstituted β-Carbolines: Unveiling Potent Anticancer and Antibacterial Properties

Abstract

The relentless rise in cancer incidence has sparked an urgent quest for a treatment. For centuries, natural product resources have been the bedrock of medicinal and pharmaceutical industries, capturing the interests of researchers to explore more on the potential of natural products to treat illnesses. Above all, β-carbolines derived from alkaloids are well-known for their various biological and pharmacological properties. In this work, we review the methodologies to synthesize 3,9-disubstituted β-carbolines framework through Pictet–Spengler, metal-catalysed cross-coupling, and multicomponent reactions. In addition, this study aims to investigate how the structural modifications affect their biological activities, with an emphasis on anticancer and antibacterial properties. Besides, the modifications at the C-3 and N-9 positions were evaluated for efficiency and selectivity towards 3,9-disubstituted β-carbolines. This article also highlighted the adaptability of 3,9-disubstituted β-carbolines scaffolds for further use in drug development.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298370235250512021828
2025-06-02
2025-09-14
Loading full text...

Full text loading...

References

  1. Singh D. Vignat J. Lorenzoni V. Eslahi M. Ginsburg O. Lauby-Secretan B. Arbyn M. Basu P. Bray F. Vaccarella S. Global estimates of incidence and mortality of cervical cancer in 2020: A baseline analysis of the WHO Global Cervical Cancer Elimination Initiative. Lancet Glob. Health 2023 11 2 e197 e206 10.1016/S2214‑109X(22)00501‑0 36528031
    [Google Scholar]
  2. Chhikara B.S. Parang K. Global Cancer Statistics 2022: The trends projection analysis. Chem. Biol. Lett. 2023 10 1 451
    [Google Scholar]
  3. Matthews H.K. Bertoli C. de Bruin R.A.M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol. 2022 23 1 74 88 10.1038/s41580‑021‑00404‑3 34508254
    [Google Scholar]
  4. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  5. Eala M.A.B. Robredo J.P.G. Dee E.C. Lin V. Lagmay A.M.F.A. Climate crisis and cancer: Perspectives from the hardest hit. Lancet Oncol. 2022 23 3 e92 10.1016/S1470‑2045(21)00595‑7 35240093
    [Google Scholar]
  6. Manzari-Tavakoli A. Babajani A. Tavakoli M.M. Safaeinejad F. Jafari A. Integrating natural compounds and nanoparticle‐based drug delivery systems: A novel strategy for enhanced efficacy and selectivity in cancer therapy. Cancer Med. 2024 13 5 e7010 10.1002/cam4.7010 38491817
    [Google Scholar]
  7. Muhammad N. Usmani D. Tarique M. Naz H. Ashraf M. Raliya R. Tabrez S. Zughaibi T.A. Alsaieedi A. Hakeem I.J. Suhail M. The role of natural products and their multitargeted approach to treat solid cancer. Cells 2022 11 14 2209 10.3390/cells11142209 35883653
    [Google Scholar]
  8. Cragg G.M. Pezzuto J.M. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med. Princ. Pract 2016 25(Suppl 2)(Suppl. 2) 41 51 10.1159/000443404 26679767
    [Google Scholar]
  9. Najmi A. Javed S.A. Al Bratty M. Alhazmi H.A. Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Molecules 2022 27 2 349 10.3390/molecules27020349 35056662
    [Google Scholar]
  10. Markman M. Mekhail T.M. Paclitaxel in cancer therapy. Expert Opin. Pharmacother. 2002 3 6 755 766 10.1517/14656566.3.6.755 12036415
    [Google Scholar]
  11. Tshikhudo P.P. Mabhaudhi T. Koorbanally N.A. Mudau F.N. Avendaño Caceres E.O. Popa D. Calina D. Sharifi-Rad J. Anticancer potential of B‐Carboline alkaloids: An updated mechanistic overview. Chem. Biodivers. 2024 21 2 e202301263 10.1002/cbdv.202301263 38108650
    [Google Scholar]
  12. Cao R. Peng W. Wang Z. Xu A. β-Carboline alkaloids: Biochemical and pharmacological functions. Curr. Med. Chem. 2007 14 4 479 500 10.2174/092986707779940998 17305548
    [Google Scholar]
  13. Zhao C. Tao M. Xu L. Fan N. Shu Y. Xiao Z. Wang Z. Silica-based nanodelivery systems loaded with matrine for the brown planthopper green control and rice growth promotion. ACS Sustain. Chem.& Eng. 2023 11 49 17299 17309 10.1021/acssuschemeng.3c04570
    [Google Scholar]
  14. Arora P. Arora V. Lamba H.S. Wadhwa D. Importance of heterocyclic chemistry: A review. Int. J. Pharm. Sci. Res. 2012 3 9 2947 2954
    [Google Scholar]
  15. Dzobo K. The role of natural products as sources of therapeutic agents for innovative drug discovery. Comprehensive Pharmacology 2022 408 422 10.1016/B978‑0‑12‑820472‑6.00041‑4
    [Google Scholar]
  16. Dai J. Dan W. Schneider U. Wang J. β-Carboline alkaloid monomers and dimers: Occurrence, structural diversity, and biological activities. Eur. J. Med. Chem. 2018 157 622 656 10.1016/j.ejmech.2018.08.027 30125723
    [Google Scholar]
  17. Zulkifli S.Z. Pungot N.H. Saaidin A.S. Jani N.A. Mohammat M.F. Synthesis and diverse biological activities of substituted indole β-carbolines: A review. Nat. Prod. Res. 2024 38 21 3793 3806 10.1080/14786419.2023.2261141 37770197
    [Google Scholar]
  18. Sharifi-Rad J. Ozleyen A. Boyunegmez Tumer T. Oluwaseun Adetunji C. El Omari N. Balahbib A. Taheri Y. Bouyahya A. Martorell M. Martins N. Cho W.C. Natural products and synthetic analogs as a source of antitumor drugs. Biomolecules 2019 9 11 679 10.3390/biom9110679 31683894
    [Google Scholar]
  19. Serdaroğlu G. Elik M. A computational study predicting the chemical reactivity behavior of 1-substituted 9-ethyl-βCCM derivatives: DFT-based quantum chemical descriptors. TCTC 2018 2 1 1 1
    [Google Scholar]
  20. Li Y. Liu Y. Zhu Z. Yan W. Zhang C. Yang Z. Bai P. Tang M. Shi M. He W. Fu S. Liu J. Han K. Li J. Xie L. Ye H. Yang J. Chen L. Structure-based design and synthesis of N-substituted 3-Amino-β-Carboline derivatives as potent αβ-tubulin degradation agents. J. Med. Chem. 2022 65 3 2675 2693 10.1021/acs.jmedchem.1c02159 35084853
    [Google Scholar]
  21. Eftekhari-Sis B. Zirak M. Chemistry of α-oxoesters: A powerful tool for the synthesis of heterocycles. Chem. Rev. 2015 115 1 151 264 10.1021/cr5004216 25423283
    [Google Scholar]
  22. Kokel A. Schäfer C. Török B. Application of microwave-assisted heterogeneous catalysis in sustainable synthesis design. Green Chem. 2017 19 16 3729 3751 10.1039/C7GC01393K
    [Google Scholar]
  23. Beato A. Gori A. Boucherle B. Peuchmaur M. Haudecoeur R. β-Carboline as a privileged scaffold for multitarget strategies in Alzheimer’s disease therapy. J. Med. Chem. 2021 64 3 1392 1422 10.1021/acs.jmedchem.0c01887 33528252
    [Google Scholar]
  24. Aaghaz S. Sharma K. Jain R. Kamal A. β-Carbolines as potential anticancer agents. Eur. J. Med. Chem. 2021 216 113321 10.1016/j.ejmech.2021.113321 33684825
    [Google Scholar]
  25. Kumar S. Singh A. Kumar K. Kumar V. Recent insights into synthetic β -carbolines with anti-cancer activities. Eur. J. Med. Chem. 2017 142 48 73 10.1016/j.ejmech.2017.05.059 28583770
    [Google Scholar]
  26. Girigoswami K. Pallavi P. Girigoswami A. Intricate subcellular journey of nanoparticles to the enigmatic domains of endoplasmic reticulum. Drug Deliv. 2023 30 1 2284684 10.1080/10717544.2023.2284684 37990530
    [Google Scholar]
  27. Cao R. Chen Q. Hou X. Chen H. Guan H. Ma Y. Peng W. Xu A. Synthesis, acute toxicities, and antitumor effects of novel 9-substituted β-carboline derivatives. Bioorg. Med. Chem. 2004 12 17 4613 4623 10.1016/j.bmc.2004.06.038 15358288
    [Google Scholar]
  28. Pu J. Chen B. Wu W. Yang C. Zhang G. Chruma J.J. Design and synthesis of fluorescent 1,3-Diaryl-β-carbolines and 1,3-Diaryl-3,4-dihydro-β-carbolines. ACS Omega 2021 6 18 12238 12249 10.1021/acsomega.1c01116 34250327
    [Google Scholar]
  29. Foley D.W. Bermudez I. Bailey P.D. Meredith D. A cyclosporine derivative is a substrate of the oligopeptide transporter PepT1. MedChemComm 2016 7 5 999 1002 10.1039/C5MD00575B
    [Google Scholar]
  30. Cao R. Chen H. Peng W. Ma Y. Hou X. Guan H. Liu X. Xu A. Design, synthesis and in vitro and in vivo antitumor activities of novel β-carboline derivatives. Eur. J. Med. Chem. 2005 40 10 991 1001 10.1016/j.ejmech.2005.04.008 15950325
    [Google Scholar]
  31. Cain M. Weber R.W. Guzman F. Cook J.M. Barker S.A. Rice K.C. Crawley J.N. Paul S.M. Skolnick P. beta.-Carbolines: Synthesis and neurochemical and pharmacological actions on brain benzodiazepine receptors. J. Med. Chem. 1982 25 9 1081 1091 10.1021/jm00351a015 6127411
    [Google Scholar]
  32. Zhang J. Li L. Dan W. Li J. Zhang Q. Bai H. Wang J. Synthesis and antimicrobial activities of 3-Methyl-β-Carboline derivatives. Nat. Prod. Commun. 2015 10 6 899 902 26197512
    [Google Scholar]
  33. Chen Y.F. Lin Y.C. Chen J.P. Chan H.C. Hsu M.H. Lin H.Y. Kuo S.C. Huang L.J. Synthesis and biological evaluation of novel 3,9-substituted β-carboline derivatives as anticancer agents. Bioorg. Med. Chem. Lett. 2015 25 18 3873 3877 10.1016/j.bmcl.2015.07.058 26235951
    [Google Scholar]
  34. Yin W. Majumder S. Clayton T. Petrou S. VanLinn M.L. Namjoshi O.A. Ma C. Cromer B.A. Roth B.L. Platt D.M. Cook J.M. Design, synthesis, and subtype selectivity of 3,6-disubstituted β-carbolines at Bz/GABA(A)ergic receptors. SAR and studies directed toward agents for treatment of alcohol abuse. Bioorg. Med. Chem. 2010 18 21 7548 7564 10.1016/j.bmc.2010.08.049 20888240
    [Google Scholar]
  35. Sahoo C.R. Paidesetty S.K. Padhy R.N. Norharmane as a potential chemical entity for development of anticancer drugs. Eur. J. Med. Chem. 2019 162 752 764 10.1016/j.ejmech.2018.11.024 30496990
    [Google Scholar]
  36. Gu H. Li N. Dai J. Xi Y. Wang S. Wang J. Synthesis and in vitro antitumor activity of novel bivalent β-carboline-3-carboxylic acid derivatives with DNA as a potential target. Int. J. Mol. Sci. 2018 19 10 3179 10.3390/ijms19103179 30326662
    [Google Scholar]
  37. Chandraprasad M.S. Dey A. Swamy M.K. Introduction to cancer and treatment approaches. In: Paclitaxel. Cambridge, Massachusetts Academic Press 2022 1 27
    [Google Scholar]
  38. Khan S. Imran M. Butt T.T. Ali Shah S.W. Sohail M. Malik A. Das S. Thu H.E. Adam A. Hussain Z. Curcumin based nanomedicines as efficient nanoplatform for treatment of cancer: New developments in reversing cancer drug resistance, rapid internalization, and improved anticancer efficacy. Trends Food Sci. Technol. 2018 80 8 22 10.1016/j.tifs.2018.07.026
    [Google Scholar]
  39. Ahmed S.A. Mendonca P. Elhag R. Soliman K.F.A. Anticancer effects of fucoxanthin through cell cycle arrest, apoptosis induction, angiogenesis inhibition, and autophagy modulation. Int. J. Mol. Sci. 2022 23 24 16091 10.3390/ijms232416091 36555740
    [Google Scholar]
  40. Cooper G.S. Yuan Z. Stange K.C. Dennis L.K. Amini S.B. Rimm A.A. Agreement of Medicare claims and tumor registry data for assessment of cancer-related treatment. Med. Care 2000 38 4 411 421 10.1097/00005650‑200004000‑00008 10752973
    [Google Scholar]
  41. Mota-Rojas D. Villanueva-García D. Mota-Reyes A. Orihuela A. Hernández-Ávalos I. Domínguez-Oliva A. Casas-Alvarado A. Flores-Padilla K. Jacome-Romero J. Martínez-Burnes J. Meconium aspiration syndrome in animal models: Inflammatory process, apoptosis, and surfactant inactivation. Animals 2022 12 23 3310 10.3390/ani12233310 36496831
    [Google Scholar]
  42. Koehn F.E. Carter G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov. 2005 4 3 206 220 10.1038/nrd1657 15729362
    [Google Scholar]
  43. Mishra B.B. Tiwari V.K. Natural products: An evolving role in future drug discovery. Eur. J. Med. Chem. 2011 46 10 4769 4807 10.1016/j.ejmech.2011.07.057 21889825
    [Google Scholar]
  44. Newman D.J. Cragg G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016 79 3 629 661 10.1021/acs.jnatprod.5b01055 26852623
    [Google Scholar]
  45. Zani C.P. Zani A.P. Thomazini C.M. Retamiro K.M. de Oliveira A.R. Gonçalves D.L. Sarragiotto M.H. Garcia F.P. de Oliveira Silva S. Nakamura C.V. Ueda-Nakamura T. β-Carboline-α-aminophosphonate derivative: A promising antitumor agent for breast cancer treatment. Molecules 2023 28 9 3949 10.3390/molecules28093949 37175359
    [Google Scholar]
  46. Richter M.F. Hergenrother P.J. The challenge of converting Gram‐positive‐only compounds into broad‐spectrum antibiotics. Ann. N. Y. Acad. Sci. 2019 1435 1 18 38 10.1111/nyas.13598 29446459
    [Google Scholar]
  47. R, K.; Anil, A.; Thomas, P.; Samuel Raju, N.; Reji, S.M.; Mathew, A.A. Antibiotic susceptibility profiling of gram-positive and gram-negative bacterial isolates in a tertiary care hospital: Establishment of an antibiogram. Cureus 2024 16 5 e60542 10.7759/cureus.60542 38887355
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298370235250512021828
Loading
/content/journals/mroc/10.2174/0118756298370235250512021828
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: anticancer ; β-carboline ; drug development ; antibacterial ; Pictet-spengler reaction ; synthesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test