Skip to content
2000
Volume 23, Issue 1
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

This article provides a review of the paramount lipase-catalyzed strategies employed in the preparation of (2,3)-3-amino-2-hydroxy-3-phenylpropionic acid, several of its derivatives, and precursor 2-azetidinones through β-lactam ring opening, O hydrolysis, CO hydrolysis, -acylation, and sequential kinetic resolution through a two-step cascade reaction. It involves O hydrolysis followed by β-lactam ring opening and β-lactam ring opening followed by hydroxymethyl group degradation of the corresponding racemic compounds, reported over the last 15 years. A brief introduction describes the pharmaceutical and chemical importance of the Taxol molecule as well as various synthetic methods involving its side chain and it delineates the key objectives of this mini-review. The strategies are classified on the basis of reaction types and are presented in chronological order, discussing kinetic and sequential kinetic resolutions in the main text. These reactions yield the intended products, exhibiting excellent enantiomeric excess values.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298317278240913071521
2025-03-11
2026-01-07
Loading full text...

Full text loading...

References

  1. FülöpF. The chemistry of 2-aminocycloalkanecarboxylic acids.Chem. Rev.200110172181220410.1021/cr000456z 11710244
    [Google Scholar]
  2. KuhlA. HahnM.G. DumićM. MittendorfJ. Alicyclic β-amino acids in medicinal chemistry.Amino Acids20052928910010.1007/s00726‑005‑0212‑y 15986181
    [Google Scholar]
  3. LiljebladA. KanervaL.T. Biocatalysis as a profound tool in the preparation of highly enantiopure β-amino acids.Tetrahedron200662255831585410.1016/j.tet.2006.03.109
    [Google Scholar]
  4. StaufferC.S. DattaA. Synthetic studies on amipurimycin: Total synthesis of a thymine nucleoside analogue.J. Org. Chem.200873114166417410.1021/jo8004815 18465899
    [Google Scholar]
  5. FernándezD. TorresE. AvilésF.X. OrtuñoR.M. VendrellJ. Cyclobutane-containing peptides: Evaluation as novel metallocarboxypeptidase inhibitors and modelling of their mode of action.Bioorg. Med. Chem.200917113824382810.1016/j.bmc.2009.04.035 19414265
    [Google Scholar]
  6. MartinekT.A. FülöpF. Peptidic foldamers: Ramping up diversity.Chem. Soc. Rev.201241268770210.1039/C1CS15097A 21769415
    [Google Scholar]
  7. KissL. FülöpF. Synthesis of carbocyclic and heterocyclic β-aminocarboxylic acids.Chem. Rev.201411421116116910.1021/cr300454h 24299148
    [Google Scholar]
  8. ForróE. FülöpF. Recent lipase-catalyzed hydrolytic approaches to pharmacologically important β- and γ-amino acids.Curr. Med. Chem.2012193661786187 23061625
    [Google Scholar]
  9. KissL. ForróE. FülöpF. Amino Acids, Peptides and Proteins in Organic Chemistry.Origins and Synthesis of Amino Acids. HughesA.B. WeinheimWiley-VCH2009Vol. 1367409
    [Google Scholar]
  10. ZegaracM. MestrovicE. HulitaN.K. FilicD. DumicM. GrunenbergA. KeilB. CericH. Solid state forms of (-)-(1R,2S)-2-amino-4-methylenecyclopentanecarboxylic acid.PCT Int. Appl. WO2005
    [Google Scholar]
  11. HameršakZ. RojeM. AvdagićA. ŠunjićV. Quinine-mediated parallel kinetic resolution of racemic cyclic anhydride: Stereoselective synthesis, relative and absolute configuration of novel alicyclic β-amino acids.Tetrahedron Asymmetry200718563564410.1016/j.tetasy.2007.02.019
    [Google Scholar]
  12. RenaultO. GuillonJ. DallemagneP. RaultS. Efficient synthesis of 2-aryl-6-methyl-2,3-dihydro-1H-pyridin-4-ones.Tetrahedron Lett.200041568168310.1016/S0040‑4039(99)02164‑4
    [Google Scholar]
  13. LeflemmeN. DallemagneP. RaultS. A convenient synthesis of dihydro- and tetrahydro-1,3-thiazine derivatives from β-aryl-β-amino acids.Tetrahedron Lett.20044571503150510.1016/j.tetlet.2003.12.027
    [Google Scholar]
  14. BaqueroE.E. JamesW.H.III ChoiS.H. GellmanS.H. ZwierT.S. Single-conformation ultraviolet and infrared spectroscopy of model synthetic foldamers: β-peptides Ac-β3-hPhe-β3-hAla-NHMe and Ac-β3-hAla-β3-hPhe-NHMe.J. Am. Chem. Soc.2008130144795480710.1021/ja078272q 18345673
    [Google Scholar]
  15. JuaristiE. SoloshonokV.A. Enantioselective Synthesis of β-Amino Acids.2nd edHobokenWiley200510.1002/0471698482
    [Google Scholar]
  16. MukaiT. SuganumaN. SoejimaK. SasakiJ. YamamotoF. MaedaM. Synthesis of a β-tetrapeptide analog as a mother compound for the development of matrix metalloproteinase-2-imaging agents.Chem. Pharm. Bull. (Tokyo)200856326026510.1248/cpb.56.260 18310933
    [Google Scholar]
  17. WisénS. AndrosavichJ. EvansC.G. ChangL. GestwickiJ.E. Chemical modulators of heat shock protein 70 (Hsp70) by sequential, microwave-accelerated reactions on solid phase.Bioorg. Med. Chem. Lett.2008181606510.1016/j.bmcl.2007.11.027 18060774
    [Google Scholar]
  18. ChandrasekharS. SudhakarA. KiranM.U. BabuB.N. JagadeeshB. β-Strand mimetics: formation of bend-strands in oligomers of enantiomeric β-amino acids.Tetrahedron Lett.200849527368737110.1016/j.tetlet.2008.10.031
    [Google Scholar]
  19. MartinekT.A. FülöpF. Side‐chain control of β‐peptide secondary structures.Eur. J. Biochem.2003270183657366610.1046/j.1432‑1033.2003.03756.x 12950249
    [Google Scholar]
  20. FülöpF. MartinekT.A. TóthG.K. Application of alicyclic β-amino acids in peptide chemistry.Chem. Soc. Rev.200635432333410.1039/b501173f 16565749
    [Google Scholar]
  21. SteerD. LewR. PerlmutterP. SmithA. AguilarM.I. β-amino acids: Versatile peptidomimetics.Curr. Med. Chem.20029881182210.2174/0929867024606759 11966446
    [Google Scholar]
  22. MartinekT.A. MándityI.M. FülöpL. TóthG.K. VassE. HollósiM. ForróE. FülöpF. Effects of the alternating backbone configuration on the secondary structure and self-assembly of β-peptides.J. Am. Chem. Soc.200612841135391354410.1021/ja063890c 17031967
    [Google Scholar]
  23. PriceJ.L. HorneW.S. GellmanS.H. Discrete heterogeneous quaternary structure formed by α/β-peptide foldamers and α-peptides.J. Am. Chem. Soc.2007129206376637710.1021/ja071203r 17465552
    [Google Scholar]
  24. MándityI.M. WéberE. MartinekT.A. OlajosG. TóthG.K. VassE. FülöpF. Design of peptidic foldamer helices: A stereochemical patterning approach.Angew. Chem. Int. Ed.200948122171217510.1002/anie.200805095 19212995
    [Google Scholar]
  25. FülöpF. MiklósF. ForróE. Diexo-3-Aminonorbornane-2-carboxylic acid as highly applicable chiral source for the enantioselective synthesis of heterocycles.Synlett20082008111687168910.1055/s‑2008‑1077793
    [Google Scholar]
  26. KaziB. KissL. ForróE. FülöpF. Synthesis of orthogonally protected azepane β-amino ester enantiomers.Tetrahedron Lett.2010511828510.1016/j.tetlet.2009.10.072
    [Google Scholar]
  27. OuchakourL. ÁbrahámiR.A. ForróE. HaukkaM. FülöpF. KissL. Stereocontrolled synthesis of fluorine‐containing piperidine γ‐amino acid derivatives.Eur. J. Org. Chem.20192019122202221110.1002/ejoc.201801540
    [Google Scholar]
  28. CarterP.H. Process of preparing N-ureidoalkyl-piperidines.U.S. Patent 2005,277,6662005
  29. KissL. NonnM. ForróE. SillanpääR. FülöpF. Synthesis of novel isoxazoline-fused cispentacin stereoisomers.Tetrahedron Lett.200950212605260810.1016/j.tetlet.2009.03.119
    [Google Scholar]
  30. KanizsaiI. GyónfalviS. SzakonyiZ. SillanpääR. FülöpF. Synthesis of bi- and tricyclic β-lactam libraries in aqueous medium.Green Chem.20079435736010.1039/B613117D
    [Google Scholar]
  31. CaroenJ. ClemmenA. KámánJ. BackaertF. GoemanJ.L. FülöpF. Van der EyckenJ. Solid-phase synthesis of 6,7-cycloalkane-fused 1,4-diazepane-2,5-diones via a cyclization/release strategy.Tetrahedron201672114816010.1016/j.tet.2015.11.023
    [Google Scholar]
  32. KissL. ForróE. SillanpääR. FülöpF. Diastereo- and enantioselective synthesis of orthogonally protected 2,4-diaminocyclopentanecarboxylates: A flip from β-amino- to β,γ-diaminocarboxylates.J. Org. Chem.200772238786879010.1021/jo701332v 17935349
    [Google Scholar]
  33. AnandN. KapoorM. AhmadK. KoulS. ParshadR. ManhasK.S. SharmaR.L. QaziG.N. TanejaS.C. Arthrobacter sp.: a lipase of choice for the kinetic resolution of racemic arylazetidinone precursors of taxanoid side chains.Tetrahedron Asymmetry20071891059106910.1016/j.tetasy.2007.04.031
    [Google Scholar]
  34. KingstonD.G. NewmanD.J. Taxoids: cancer-fighting compounds from nature.Curr. Opin. Drug Discov. Devel.2007102130144 17436548
    [Google Scholar]
  35. MillerR.W. A brief survey of taxus alkaloids and other taxane derivatives.J. Nat. Prod.198043442543710.1021/np50010a001
    [Google Scholar]
  36. SavilleM.W. LietzauJ. PludaJ.M. WilsonW.H. HumphreyR.W. FeigelE. SteinbergS.M. BroderS. YarchoanR. OdomJ. FeuersteinI. Treatment of HIV-associated Kaposi’s sarcoma with paclitaxel.Lancet19953468966262810.1016/S0140‑6736(95)92654‑2 7603142
    [Google Scholar]
  37. HoltonR.A. BiedigerR.J. BoatmanP.D. Taxol: Science and Application.Semisynthesis of Taxol and Taxotere. SuffnessM. LondonCRC Press199597121
    [Google Scholar]
  38. GeorgeG.I. ChenT.T. VyasD.M. Taxane anticancer agents: basic science and current status.Washington, DCAmerican Chemical Society199410.1021/bk‑1995‑0583
    [Google Scholar]
  39. WallM.E. WaniM.C. Camptothecin and taxol: discovery to clinic-thirteenth Bruce F. Cain Memorial Award Lecture.Cancer Res.1995554753760 7850785
    [Google Scholar]
  40. WaniM.C. TaylorH.L. WallM.E. CoggonP. McPhailA.T. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia.J. Am. Chem. Soc.19719392325232710.1021/ja00738a045 5553076
    [Google Scholar]
  41. CrownJ. O’LearyM. The taxanes: an update.Lancet200035592101176117810.1016/S0140‑6736(00)02074‑2 10791395
    [Google Scholar]
  42. OettleH. Progress in the knowledge and treatment of advanced pancreatic cancer: From benchside to bedside.Cancer Treat. Rev.20144091039104710.1016/j.ctrv.2014.07.003 25087471
    [Google Scholar]
  43. OjimaI. KudukS.D. ChakravartyS. Recent advances in the medicinal chemistry of taxoid anticancer agents.Adv. Med. Chem.199946912410.1016/S1067‑5698(99)80004‑2
    [Google Scholar]
  44. MurrayS. BriasoulisE. LinardouH. BafaloukosD. PapadimitriouC. Taxane resistance in breast cancer: Mechanisms, predictive biomarkers and circumvention strategies.Cancer Treat. Rev.201238789090310.1016/j.ctrv.2012.02.011 22465195
    [Google Scholar]
  45. HoltonR.A. SomozaC. KimH.B. LiangF. BiedigerR.J. BoatmanP.D. ShindoM. SmithC.C. KimS. NadizadehH. SuzukiY. TaoC. VuP. TangS. ZhangP. MurthiK.K. GentileL.N. LiuJ.H. First total synthesis of taxol. 1. Functionalization of the B ring.J. Am. Chem. Soc.199411641597159810.1021/ja00083a066
    [Google Scholar]
  46. HoltonR.A. KimH.B. SomozaC. LiangF. BiedigerR.J. BoatmanP.D. ShindoM. SmithC.C. KimS. NadizadehH. SuzukiY. TaoC. VuP. TangS. ZhangP. MurthiK.K. GentileL.N. LiuJ.H. First total synthesis of taxol. 2. Completion of the C and D rings.J. Am. Chem. Soc.199411641599160010.1021/ja00083a067
    [Google Scholar]
  47. BorahJ. BoruwaJ. BaruaN. Synthesis of the C-13 side-chain of taxol.Curr. Org. Synth.20074217519910.2174/157017907780598899
    [Google Scholar]
  48. MorinR.B. GormanM. Eds. Chemistry and Biology of β-Lactam Antibiotics.New YorkAcademic Press1982Vol. 1-3
    [Google Scholar]
  49. SouthGateR. Recent Progress in the Chemical Synthesis of Antibiotics and Related Microbial Products. LukacsG. BerlinSpringer-Verlag1993Vol. 2
    [Google Scholar]
  50. SongC.E. LeeS.W. RohE.J. LeeS. LeeW-K. A new synthetic route to (3R,4S)-3-hydroxy-4-phenylazetidin-2-one as a taxol side chain precursor.Tetrahedron Asymmetry19989698399210.1016/S0957‑4166(98)00049‑4
    [Google Scholar]
  51. KimS-C. Synthesis of new taxol side chain precursor from L-tartaric ester.Bull. Korean Chem. Soc.20002110471048
    [Google Scholar]
  52. JoshiS.N. DeshmukhA.R.A.S. BhawalB.M. An efficient synthesis of enantiomerically pure 3-hydroxy-β-lactams via zinc induced removal of a chiral auxiliary.Tetrahedron Asymmetry20001171477148510.1016/S0957‑4166(00)00098‑7
    [Google Scholar]
  53. PatelR.N. BanerjeeA. SzarkaL.J. Biocatalytic synthesis of some chiral pharmaceutical intermediates by lipases.J. Am. Oil Chem. Soc.199673111363137510.1007/BF02523498
    [Google Scholar]
  54. KayserM.M. MihovilovicM.D. KearnsJ. FeichtA. StewartJ.D. Baker’s yeast-mediated reductions of α-keto esters and an α-keto-β-lactam. Two routes to the paclitaxel side chain.J. Org. Chem.199964186603660810.1021/jo9900681 11674662
    [Google Scholar]
  55. YangY. DroletM. KayserM.M. The dynamic kinetic resolution of 3-oxo-4-phenyl-β-lactam by recombinant E. coli overexpressing yeast reductase Ara1p.Tetrahedron Asymmetry200516162748275310.1016/j.tetasy.2005.07.029
    [Google Scholar]
  56. VaidyanathanR. HesmondhalghL. HuS. A chemoenzymatic synthesis of an androgen receptor antagonist.Org. Process Res. Dev.200711590390610.1021/op700146c
    [Google Scholar]
  57. AllweinS.P. RoemmeleR.C. HaleyJ.J.Jr MowreyD.R. PetrilloD.E. ReifJ.J. GingrichD.E. BakaleR.P. Development and scale-up of an optimized route to the ALK Inhibitor CEP-28122.Org. Process Res. Dev.201216114815510.1021/op200313v
    [Google Scholar]
  58. AhmedM. KellyT. GhanemA. Applications of enzymatic and non-enzymatic methods to access enantiomerically pure compounds using kinetic resolution and racemisation.Tetrahedron201268346781680210.1016/j.tet.2012.05.049
    [Google Scholar]
  59. BrievaR. CrichJ.Z. SihC.J. Chemoenzymic synthesis of the C-13 side chain of taxol: Optically active 3-hydroxy-4-phenyl. beta.-lactam derivatives.J. Org. Chem.19935851068107510.1021/jo00057a018
    [Google Scholar]
  60. ForróE. FülöpF. Lipase-catalyzed enantioselective ring opening of unactivated alicyclic-fused β-lactams in an organic solvent.Org. Lett.2003581209121210.1021/ol034096o 12688721
    [Google Scholar]
  61. ForróE. FülöpF. Synthesis of enantiopure 1,4-ethyl- and 1,4-ethylene-bridged cispentacin by lipase-catalyzed enantioselective ring opening of β-lactams.Tetrahedron Asymmetry200415457357510.1016/j.tetasy.2003.12.034
    [Google Scholar]
  62. ForróE. TasnádiG. FülöpF. Enzymatic preparation of (S)-3-amino-3-(o-tolyl)propanoic acid, a key intermediate for the construction of Cathepsin inhibitors.J. Mol. Catal., B Enzym.20139381410.1016/j.molcatb.2013.04.001
    [Google Scholar]
  63. RodriguesJ.A.R. MilagreH.M.S. MilagreC.D.F. MoranP.J.S. A highly enantioselective chemoenzymatic synthesis of syn-3-amino-2-hydroxy esters: Key intermediates for taxol side chain and phenylnorstatine.Tetrahedron Asymmetry200516183099310610.1016/j.tetasy.2005.08.015
    [Google Scholar]
  64. MayerS.F. KroutilW. FaberK. Enzyme-initiated domino (cascade) reactions.Chem. Soc. Rev.200130633233910.1039/b105493g
    [Google Scholar]
  65. TietzeL.F. Domino reactions in organic synthesis.Chem. Rev.199696111513610.1021/cr950027e 11848746
    [Google Scholar]
  66. MüllerG.H. LangA. SeithelD.R. WaldmannH. An enzyme-initiated hydroxylation-oxidation carbo diels-alder domino reaction.Chemistry19984122513252210.1002/(SICI)1521‑3765(19981204)4:12<2513:AID‑CHEM2513>3.0.CO;2‑4
    [Google Scholar]
  67. AkaiS. NakaT. OmuraS. TanimotoK. ImanishiM. TakebeY. MatsugiM. KitaY. Lipase-catalyzed domino kinetic resolution/intramolecular Diels-Alder reaction: One-pot synthesis of optically active 7-oxabicyclo[2.2.1]heptenes from furfuryl alcohols and β-substituted acrylic acids.Chemistry20028184255426410.1002/1521‑3765(20020916)8:18<4255:AID‑CHEM4255>3.0.CO;2‑6 12298017
    [Google Scholar]
  68. Torres-GavilánA. EscalanteJ. ReglaI. López-MunguíaA. CastilloE. ‘Easy-on, easy-off’ resolution of chiral 1-phenylethylamine catalyzed by Candida antarctica lipase B.Tetrahedron Asymmetry200718222621262410.1016/j.tetasy.2007.10.045
    [Google Scholar]
  69. VirsuP. LiljebladA. KanervaA. KanervaL.T. Preparation of the enantiomers of 1-phenylethan-1,2-diol. Regio- and enantioselectivity of acylase I and Candida antarctica lipases A and B.Tetrahedron Asymmetry200112172447245510.1016/S0957‑4166(01)00428‑1
    [Google Scholar]
  70. ForróE. FülöpF. An efficient enzymatic synthesis of benzocispentacin and its new six- and seven-membered homologues.Chemistry20061292587259210.1002/chem.200501286 16382480
    [Google Scholar]
  71. ForróE. PaálT. TasnádiG. FülöpF. A new route to enantiopure β‐aryl‐substituted β‐amino acids and 4‐aryl‐substituted β‐lactams through lipase‐catalyzed enantioselective ring cleavage of β‐lactams.Adv. Synth. Catal.20063487-891792310.1002/adsc.200505434
    [Google Scholar]
  72. ForróE. FülöpF. New enzymatic two‐step cascade reaction for the preparation of a key intermediate for the taxol side‐chain.Eur. J. Org. Chem.20102010163074307910.1002/ejoc.201000262
    [Google Scholar]
  73. GallaZ. BekeF. ForróE. FülöpF. Enantioselective hydrolysis of 3,4-disubstituted β-lactams. An efficient enzymatic method for the preparation of a key Taxol side-chain intermediate.J. Mol. Catal., B Enzym.201612310711210.1016/j.molcatb.2015.11.011
    [Google Scholar]
  74. ForróE. FülöpF. A new enzymatic strategy for the preparation of (2R,3S)-3-phenylisoserine: a key intermediate for the Taxol side chain.Tetrahedron Asymmetry201021663763910.1016/j.tetasy.2010.04.004
    [Google Scholar]
  75. ForróE. GallaZ. NádasdiZ. ÁrvaJ. FülöpF. Novel chemo-enzymatic route to a key intermediate for the taxol side-chain through enantioselective O-acylation. Unexpected acyl migration.J. Mol. Catal., B Enzym.201511610110510.1016/j.molcatb.2015.03.015
    [Google Scholar]
  76. ForróE. GallaZ. FülöpF. The N ‐hydroxymethyl group as a traceless activating group for the CAL‐B‐catalysed ring cleavage of β‐lactams: A type of two‐step cascade reaction.Eur. J. Org. Chem.20162016152647265210.1002/ejoc.201600234
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298317278240913071521
Loading
/content/journals/mroc/10.2174/0118756298317278240913071521
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test