Skip to content
2000
Volume 22, Issue 8
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

The oxadiazepine moiety and its derivatives are crucial in developing new drugs. Combined with various compounds such as phthalazine, imidazole, pyrazole, indole, benzofuran, and thiazolopyrimidine, they exhibit beneficial biological properties. Recent studies have made significant progress in synthesizing oxadiazepine derivatives, enhancing our understanding of their potential medicinal applications. This review offers a comprehensive overview of these advancements, detailing the synthesis of various oxadiazepine derivatives and the chemical reactions involved. Here are some examples of the compounds discussed in this review: 3,6-di-nitro-1,3,6-oxadiazepane; 1,3,6-oxadiazepinodiphthalazine; 6-(1,3,6-oxadiazepane)-glycyl-L-alanine; benzoimidazo-1,3,6-oxadiazepine; azepino[1,2-][1,3,6]oxadiazepine; dipyrazolo-1,3,6-oxadiazepine; sub-1,3,6-oxadiazepine-diindole; benzooxazino[3,4-]benzo[5,6][1,4] oxazino[4,3-][1,3,6]-oxadiazepine-6,8-diol and 2-(2-chloroethyl)-11-methyl-1,3,6-oxadiazepino[3,4-]indole derivatives. These compounds are created through chemical reactions such as alkylation, condensation, cyclization, coupling, substitution, oxidation, reduction, multi-component reactions, intramolecular Mannich bases, and hydrolysis. Considering the significant biological activity of oxadiazepine derivatives, which are found in certain drugs such as staurosporine, these synthetic methods facilitate the efficient production of these compounds, thus encouraging further research into their potential pharmaceutical applications.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298353146250128072331
2025-02-14
2025-10-13
Loading full text...

Full text loading...

References

  1. GalaD. DiBenedettoD.J. KuglemanM. PuarM.S. Pyrimidine to guanine PDE inhibitors: Determination of chemical course via structure elucidation.Tetrahedron Lett.200344132717272010.1016/S0040‑4039(03)00340‑X
    [Google Scholar]
  2. MayasundariA. FujiiN. Efficient formation of 4,6-disubstituted pyrrolo[2,3-d]pyrimidines: A novel route to TWS119, a glycogen synthase kinase-3β inhibitor.Tetrahedron Lett.201051273597359810.1016/j.tetlet.2010.05.032
    [Google Scholar]
  3. AngelucciA. SchenoneS. GravinaG.L. MuziP. FestucciaC. VicentiniC. BottaM. BolognaM. Pyrazolo[3,4-d]pyrimidines c-Src inhibitors reduce epidermal growth factor-induced migration in prostate cancer cells.Eur. J. Cancer200642162838284510.1016/j.ejca.2006.06.024 16973347
    [Google Scholar]
  4. SternbachL.H. The benzodiazepine story.J. Med. Chem.19792211710.1021/jm00187a001 34039
    [Google Scholar]
  5. MaryanoffB.E. McComseyD.F. Borane complexes in trifluoroacetic acid. reduction of indoles to indolines and generation of bis(trifluoroacetoxy)borane.J. Org. Chem.197843132733273510.1021/jo00407a052
    [Google Scholar]
  6. MaryanoffB.E. NorteyS.O. GardockiJ.F. Structure-activity studies on antidepressant 2,2-diarylethylamines.J. Med. Chem.19842781067107110.1021/jm00374a022 6747990
    [Google Scholar]
  7. KatzR.J. LandauP.S. LottM. BystritskyA. DiamondB. SaricH.R. RosenthalM. WeiseC. Serotonergic (5-HT2) mediation of anxiety-therapeutic effects of serazepine in generalized anxiety disorder.Biol. Psychiatry1993341-2414410.1016/0006‑3223(93)90254‑B 8104044
    [Google Scholar]
  8. DisneyA.J.M. KellamB. DekkerL.V. Alkylation of staurosporine to derive a kinase probe for fluorescence applications.ChemMedChem201611997297910.1002/cmdc.201500589 27008372
    [Google Scholar]
  9. GaylerK.M. KongK. ReisenauerK. TaubeJ.H. WoodJ.L. Staurosporine analogs via C-H borylation.ACS Med. Chem. Lett.202011122441244510.1021/acsmedchemlett.0c00420 33335665
    [Google Scholar]
  10. ZhangJ. CordshagenA. MedinaI. NothwangH.G. WisniewskiJ.R. WinklhoferM. HartmannA.M. Staurosporine and NEM mainly impair WNK-SPAK/OSR1 mediated phosphorylation of KCC2 and NKCC1.PLoS One2020155e023296710.1371/journal.pone.0232967 32413057
    [Google Scholar]
  11. EnnisM.D. HoffmanR.L. GhazalN.B. OlsonR.M. KnauerC.S. ChioC.L. HyslopD.K. CampbellJ.E. FitzgeraldL.W. NicholsN.F. SvenssonK.A. McCallR.B. HaberC.L. KageyM.L. DinhD.M. 2,3,4,5-Tetrahydro- and 2,3,4,5,11,11a-hexahydro-1H-[1,4]diazepino[1,7-a]indoles: New templates for 5-HT2C agonists.Bioorg. Med. Chem. Lett.200313142369237210.1016/S0960‑894X(03)00403‑7 12824036
    [Google Scholar]
  12. OchsH.R. GreenblattD.J. OchsV.B. LocniskarA. Comparative single-dose kinetics of oxazolam, prazepam, and clorazepate: Three precursors of desmethyldiazepam.J. Clin. Pharmacol.1984241044645110.1002/j.1552‑4604.1984.tb01817.x 6150943
    [Google Scholar]
  13. ThurstonD.E. BoseD.S. Synthesis of DNA-interactive pyrrolo[2,1-c][1,4]benzodiazepines.Chem. Rev.199494243346510.1021/cr00026a006
    [Google Scholar]
  14. GuptaM.B. NathR. GuptaG.P. BhargavaK.P. A study of the anti-ulcer activity of diazepam and other tranquillosedatives in albino rats.Clin. Exp. Pharmacol. Physiol.1985121616610.1111/j.1440‑1681.1985.tb00303.x 2860988
    [Google Scholar]
  15. LokensgardJ.R. ChaoC.C. GekkerG. HuS. PetersonP.K. Benzodiazepines, Glia, and HIV-1 neuropathogenesis.Mol. Neurobiol.1998181233310.1007/BF02741458 9824847
    [Google Scholar]
  16. CurtisM.P. DwightW. PrattJ. CowartM. EsbenshadeT.A. KruegerK.M. FoxG.B. PanJ.B. PaganoT.G. HancockA.A. FaghihR. BennaniY.L. D-amino acid homopiperazine amides: Discovery of A-320436, a potent and selective non-imidazole histamine H(3)-receptor antagonist.Arch. Pharm.2004337421922910.1002/ardp.200300844 15146898
    [Google Scholar]
  17. LakatoshS.A. LuzikovY.N. PreobrazhenskayaM.N. Synthesis of 6H-pyrrolo[3′,4′:2,3][1,4]diazepino[6,7,1-hi]indole-8,10(7H,9H) -diones using 3-bromo-4-(indol-1-yl)maleimide scaffold.Org. Biomol. Chem.20031582683310.1039/b211163b 12929367
    [Google Scholar]
  18. LevinJ.I. DiJosephJ.F. KillarL.M. SungA. WalterT. SharrM.A. RothC.E. SkotnickiJ.S. AlbrightJ.D. The synthesis and biological activity of a novel series of diazepine MMP inhibitors.Bioorg. Med. Chem. Lett.19988192657266210.1016/S0960‑894X(98)00473‑9 9873598
    [Google Scholar]
  19. TaillefumierC. ThielgesS. ChapleurY. Anomeric spiroannelated 1,4-diazepine 2,5-diones from furano exo-glycals: Towards a new class of spironucleosides.Tetrahedron200460102213222410.1016/j.tet.2004.01.030
    [Google Scholar]
  20. MuylaertK. JatczakM. MangelinckxS. StevensC. Synthesis of pyrido- Annelated seven-membered N-containing heterocycles.Curr. Med. Chem.20152291086112510.2174/0929867322666141212114856 25515507
    [Google Scholar]
  21. KaurM. GargS. MalhiD.S. SohalH.S. A review on synthesis, reactions and biological properties of seven membered heterocyclic compounds: Azepine, azepane, azepinone.Curr. Org. Chem.202125444950610.2174/1385272825999210104222338
    [Google Scholar]
  22. RashidM.A. AshrafA. RehmanS.S. ShahidS.A. MahmoodA. FaruqM. 1,4-Diazepines: A review on synthesis, reactions and biological significance.Curr. Org. Synth.201916570972910.2174/1570179416666190703113807 31984889
    [Google Scholar]
  23. DorababuA. Update of recently (2016-2020) designed azepine analogs and related heterocyclic compounds with potent pharmacological activities.Polycycl. Aromat. Compd.20234332250226810.1080/10406638.2022.2041677
    [Google Scholar]
  24. OuvryG. Recent applications of seven-membered rings in drug design.Bioorg. Med. Chem.20225711665010.1016/j.bmc.2022.116650 35123178
    [Google Scholar]
  25. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019.J. Nat. Prod.202083377080310.1021/acs.jnatprod.9b01285 32162523
    [Google Scholar]
  26. ChiacchioM.A. LegnaniL. ChiacchioU. IannazzoD. Recent advances on the synthesis of azepane-based compounds. More Synthetic Approaches to Nonaromatic Nitrogen Heterocycles.Hoboken, New JerseyJohn Wiley & Sons, Ltd202252955810.1002/9781119757153.ch16
    [Google Scholar]
  27. KuchkovskaY.O. Grygorenko, O.O. 13.01- azepines and their fused-ring derivatives.Comprehensive Heterocyclic Chemistry IV. BlackD.S. CossyJ. StevensC.V. OxfordElsevier202219310.1016/B978‑0‑12‑818655‑8.00073‑1
    [Google Scholar]
  28. SinghS. GooJ. GajulapatiV. ChangT.S. LeeK. ChoiY. Recent advances in anticancer chemotherapeutics based upon azepine scaffold.Anticancer. Agents Med. Chem.201616553955710.2174/1871520615666150916091750 26373395
    [Google Scholar]
  29. SinghA.K. RajV. SahaS. Indole-fused azepines and analogues as anticancer lead molecules: Privileged findings and future directions.Eur. J. Med. Chem.201714224426510.1016/j.ejmech.2017.07.042 28803677
    [Google Scholar]
  30. ZhaG.F. RakeshK.P. ManukumarH.M. ShantharamC.S. LongS. Pharmaceutical significance of azepane based motifs for drug discovery: A critical review.Eur. J. Med. Chem.201916246549410.1016/j.ejmech.2018.11.031 30469042
    [Google Scholar]
  31. LeśniewskaA. PrzybylskiP. Seven-membered N-heterocycles as approved drugs and promising leads in medicinal chemistry as well as the metal-free domino access to their scaffolds.Eur. J. Med. Chem.202427511655610.1016/j.ejmech.2024.116556 38879971
    [Google Scholar]
  32. Abu-HashemA.A. HakamiO. AmriN. MukhrishY.E. AbdelgawadA.A.M. Synthesis of 1,3,5-triazepines and benzo[f][1,3,5]triazepines and their biological activity: Recent advances and new approaches.Molecules202429363210.3390/molecules29030632 38338376
    [Google Scholar]
  33. Abu-HashemA.A. AlyA.S. Chemistry of new dimethyl-benzo,-1,3,6-oxadiazepine and 1,3,5-triazepine derivatives as anticancer agents.Synth. Commun.201747242417242510.1080/00397911.2017.1381261
    [Google Scholar]
  34. BadryE.S.M. TahaM.A.M. Novel and efficient synthesis of tetrazolo[1,5-b]-1,2,5-oxadiazepines as antibacterial activities from ethyl 1-aminotetrazole-5-carboxylate.J. Kor. Chem. Soc.201155697497710.5012/jkcs.2011.55.6.974
    [Google Scholar]
  35. MuehlebachM. BoegerM. CederbaumF. CornesD. FriedmannA.A. GlockJ. NidermanT. StollerA. WagnerT. Aryldiones incorporating a [1,4,5]oxadiazepane ring. Part I: Discovery of the novel cereal herbicide pinoxaden.Bioorg. Med. Chem.200917124241425610.1016/j.bmc.2008.12.062 19167895
    [Google Scholar]
  36. D’ErricoS. OlivieroG. AmatoJ. BorboneN. CerulloV. HemminkiA. PiccialliV. ZaccariaS. MayolL. PiccialliG. Synthesis and biological evaluation of unprecedented ring-expanded nucleosides (RENs) containing the imidazo[4,5-d][1,2,6]oxadiazepine ring system.Chem. Commun. (Camb.)201248749310931210.1039/c2cc33511e 22874871
    [Google Scholar]
  37. BaileyD.M. Chemical abstractU.S. Patent 3,607,8661971
  38. BrunoO. BrulloC. SchenoneS. RaniseA. BondavalliF. BarocelliE. TognoliniM. MagnaniniF. BallabeniV. Progress in 5H[1]benzopyrano[4,3-d]pyrimidin-5-amine series: 2-methoxy derivatives effective as antiplatelet agents with analgesic activity.Farmaco200257975375810.1016/S0014‑827X(02)01269‑7 12385526
    [Google Scholar]
  39. PadmajaA. PayaniT. ReddyG.D. PadmavathiV. Synthesis, antimicrobial and antioxidant activities of substituted pyrazoles, isoxazoles, pyrimidine and thioxopyrimidine derivatives.Eur. J. Med. Chem.200944114557456610.1016/j.ejmech.2009.06.024 19631423
    [Google Scholar]
  40. Abu-HashemA.A. HussainA.S.A. ZakiM.E.A. Synthesis of novel benzodifuranyl; 1,3,5-Triazines; 1,3,5-Oxadiazepines; and thiazolopyrimidines derived from visnaginone and khellinone as anti-inflammatory and analgesic agents.Molecules202025122010.3390/molecules25010220 31948127
    [Google Scholar]
  41. Abu-HashemA.A. HakamiO. ShazlyE.M. NasharE.H.A.S. YousifM.N.M. Caffeine and purine derivatives: A comprehensive review on the chemistry, biosynthetic pathways, synthesis‐related reactions, biomedical prospectives and clinical applications.Chem. Biodivers.2024217e20240005010.1002/cbdv.202400050 38719741
    [Google Scholar]
  42. Abu-HashemA.A. HussainA.S.A. The synthesis, antimicrobial activity, and molecular docking of new 1, 2, 4-Triazole, 1, 2, 4-triazepine, quinoline, and pyrimidine scaffolds condensed to naturally occurring furochromones.Pharmaceuticals (Basel)20221510123210.3390/ph15101232 36297343
    [Google Scholar]
  43. Abu-HashemA.A. HussainA.S.A. ZakiM.E.A. Design, synthesis and anticancer activity of new polycyclic: Imidazole, thiazine, oxathiine, pyrrolo-quinoxaline and thienotriazolopyrimidine derivatives.Molecules2021267203110.3390/molecules26072031 33918322
    [Google Scholar]
  44. Abu-HashemA.A. ZiedA.K.M. ZakiA.M.E. ShehryE.M.F. AwadH.M. KhedrM.A. Design, synthesis, and anticancer potential of the enzyme (PARP-1) inhibitor with computational studies of new triazole, thiazolidinone,-thieno [2, 3-d] pyrimidinones.Lett. Drug Des. Discov.202017679981710.2174/1570180817666200117114716
    [Google Scholar]
  45. HashemA.A. ShehryE.M. BadriaF. Design and synthesis of novel thiophenecarbohydrazide, thienopyrazole and thienopyrimidine derivatives as antioxidant and antitumor agents.Acta Pharm.201060331132310.2478/v10007‑010‑0027‑6 21134865
    [Google Scholar]
  46. Abu-HashemA.A. Synthesis and biological activity of pyrimidines, quinolines, thiazines and pyrazoles bearing a common thieno moiety. Acta Pol. Pharm.-.Drug Res.2018755970
    [Google Scholar]
  47. Abu-HashemA.A. Synthesis and antimicrobial activity of new 1,2,4‐triazole, 1,3,4‐oxadiazole, 1,3,4‐thiadiazole, thiopyrane, thiazolidinone, and azepine derivatives.J. Heterocycl. Chem.2021581749210.1002/jhet.4149
    [Google Scholar]
  48. Abu-HashemA.A. Synthesis of new pyrazoles, oxadiazoles, triazoles, pyrrolotriazines, and pyrrolotriazepines as potential cytotoxic agents.J. Heterocycl. Chem.202158380582110.1002/jhet.4216
    [Google Scholar]
  49. Abu-HashemA.A. FathyU. GoudaM.A. Synthesis of 1,2, 4‐triazolopyridazines, isoxazolofuropyridazines, and tetrazolo-pyridazines as antimicrobial agents.J. Heterocycl. Chem.20205793461347410.1002/jhet.4065
    [Google Scholar]
  50. Abu-HashemA.A. HusseinH.A.R. AlyA.S. Synthesis and antimicrobial activity of novel 1, 2, 4-Triazolopyrimidofuro-quinazolinones from natural furochromones (Visnagenone and Khellinone).Med. Chem.202117770772310.2174/18756638MTA1hNjcq3 32250227
    [Google Scholar]
  51. Abu-HashemA.A. ZakiM.E.A. Direct amination and synthesis of fused N‐substituted isothiochromene derivatives.J. Heterocycl. Chem.201956388689410.1002/jhet.3466
    [Google Scholar]
  52. Abu-HashemA.A. Synthesis of new furothiazolo pyrimido quinazolinones from visnagenone or khellinone and antimicrobial activity.Molecules20182311279310.3390/molecules23112793 30373270
    [Google Scholar]
  53. Abu-HashemA.A. FatyR.A.M. Synthesis, antimicrobial evaluation of some new 1, 3, 4-Thiadiazoles and 1, 3, 4- Thiadiazines.Curr. Org. Synth.20181581161117010.2174/1570179415666180720114547
    [Google Scholar]
  54. Abu-HashemA.A. GoudaM.A. BadriaF.A. Design, synthesis and identification of novel substituted isothiochromene analogs as potential antiviral and cytotoxic agents.Med. Chem. Res.201827102297231110.1007/s00044‑018‑2236‑3
    [Google Scholar]
  55. Abu-HashemA.A. ZiedA.K.M. ShehryE.M.F. Synthetic utility of bifunctional thiophene derivatives and antimicrobial evaluation of the newly synthesized agents.Monatsh. Chem.2011142553954510.1007/s00706‑011‑0456‑z
    [Google Scholar]
  56. Abu-HashemA.A. YoussefM.M. HusseinH.A.R. Synthesis, antioxidant, antituomer activities of some new thiazolopyrimidines, pyrrolothiazolopyrimidines and triazolopyrrolothiazolopyrimidines derivatives.J. Chin. Chem. Soc.2011581414810.1002/jccs.201190056
    [Google Scholar]
  57. Abu-HashemA.A. GoudaM.A. Synthesis, anti-inflammatory and analgesic evaluation of certain new 3a,4,9,9a-tetrahydro-4,9-benzenobenz[f]isoindole-1,3-diones.Arch. Pharm.2011344854355110.1002/ardp.201100020 21681809
    [Google Scholar]
  58. Abu-HashemA.A. ShazlyE.M. Synthesis and antimicrobial evaluation of novel triazole, tetrazole, and spiropyrimidinethiadiazole derivatives.Polycycl. Aromat. Compd.202141347849710.1080/10406638.2019.1598448
    [Google Scholar]
  59. Abu-HashemA.A. HakamiO. AmriN. Synthesis, anticancer activity and molecular docking of new quinolines, quinazolines and 1,2,4-triazoles with pyrido[2,3-d] pyrimidines.Heliyon2024105e2673510.1016/j.heliyon.2024.e26735 38468950
    [Google Scholar]
  60. Abu-HashemA.A. GoudaM.A. BadriaF.A. Synthesis of some new pyrimido[2′,1′:2,3]thiazolo[4,5-b]quinoxaline derivatives as anti-inflammatory and analgesic agents.Eur. J. Med. Chem.20104551976198110.1016/j.ejmech.2010.01.042 20149490
    [Google Scholar]
  61. Abu-HashemA.A. AlyA.S. Synthesis of new pyrazole, triazole, and thiazolidine-pyrimido [4, 5-b] quinoline derivatives with potential antitumor activity.Arch. Pharm. Res.201235343744510.1007/s12272‑012‑0306‑5 22477190
    [Google Scholar]
  62. Abu-HashemA.A. HussainA.S.A. Design, synthesis of new 1,2,4-Triazole/1,3,4-Thiadiazole with Spiroindoline, Imidazo[4,5-b] quinoxaline and Thieno[2,3-d] pyrimidine from isatin derivatives as anticancer agents.Molecules202227383510.3390/molecules27030835 35164098
    [Google Scholar]
  63. Abu-HashemA.A. GazzarE.A.B.A. HusseinH.A.R. HafezH.N. Synthesis and antimicrobial activity of new triazines, tetrazines, thiazinoquinoxalines, thienotriazepine-imidazo[4, 5-b]quinolines from isatin derivatives.Polycycl. Aromat. Compd.20234387073709210.1080/10406638.2022.2130368
    [Google Scholar]
  64. GoudaM.A. Abu-HashemA.A. AmeenT.A. SalemM.A. Synthesis of pyrimido[4, 5-b]quinolones from 6-aminopyrimidin-4- (thi)one derivatives (part i).Mini Rev. Org. Chem.202320662264110.2174/1570193X20666221104110606
    [Google Scholar]
  65. GoudaM.A. Abu-HashemA.A. AmeenT.A. SalemM.A. AteyatallahA. Recent progress in synthetic chemistry and biological activities of pyrimido[4,5-b] quinoline derivatives (part III).Mini Rev. Org. Chem.202421777979210.2174/1570193X20666230626101436
    [Google Scholar]
  66. Abu-HashemA.A. GoudaM.A. AbdelgawadA.A.M. Vilsmeier-haack cyclisation as a facile synthetic route to thieno [2,3- b]quinolines (Part I).Lett. Org. Chem.202320319722010.2174/1570178619666220922105259
    [Google Scholar]
  67. GoudaM.A. Abu-HashemA.A. AbdelgawadA.A.M. Recent progress on the chemistry of thieno[3,2‐ b]quinoline derivatives (part III).J. Heterocycl. Chem.202158490892710.1002/jhet.4205
    [Google Scholar]
  68. Abu-HashemA.A. AbdelgawadA.A.M. HusseinH.A.R. GoudaM.A. Synthetic and reactions routes to tetrahydrothieno[3,2-b]quinoline derivatives (Part IV).Mini Rev. Org. Chem.2022191749110.2174/1570193X18666210218212719
    [Google Scholar]
  69. Abu-HashemA.A. GazzarE.A.B.A. AbdelgawadA.A.M. GoudaM.A. Synthesis and chemical reactions of thieno[3,2- c]quinolines from arylamine derivatives, part (V): A review.Phosphorus Sulfur Silicon Relat. Elem.2022197766568810.1080/10426507.2021.2012176
    [Google Scholar]
  70. GoudaM.A. Abu-HashemA.A. AbdelgawadA.A.M. Thieno [3, 2-c]quinoline heterocyclic synthesis and reactivity part (VI).Mini Rev. Org. Chem.202219562965310.2174/1570193X18666211004102537
    [Google Scholar]
  71. GoudaM.A. AlansariR.M. Abu-HashemA.A. GazzarE.A.B.A. AbdelgawadA.A.M. SalemM.A. Chemistry of thieno[2,3-c]quinoline derivatives part (vii), reactivities, and biological activities.Mini Rev. Org. Chem.202421552754110.2174/1570193X20666230301153215
    [Google Scholar]
  72. Abu-HashemA.A. GazzarE.A. HafezN. Synthesis and reactions of thieno[2,3-c]quinolines from arylaldehyde and arylamine derivatives: A review (part viii).Mini Rev. Org. Chem.202421215117110.2174/1570193X20666221205163624
    [Google Scholar]
  73. Abu-HashemA.A. AbdelgawadA.A.M. GoudaM.A. Chemistry and biological activity of thieno[3,4- b]quinoline, thieno[3,4-c] quinolone, thieno[3,2-g]quinoline and thieno[2,3-g]quinoline derivatives: A review (part IX).Mini Rev. Org. Chem.202421776477810.2174/1570193X20666230601151439
    [Google Scholar]
  74. GoudaM.A. HadhramiA.N.A. Abu-HashemA.A. AbdelgawadA.A.M. SalemM.A. Chemistry of thieno [2,3-h]-/[3,2-h] quinoline and thieno [2,3-f]-/[3,2-f] quinoline derivatives part (x), reactivities, and biological activities.Mini Rev. Org. Chem.202421667168310.2174/1570193X20666230525120540
    [Google Scholar]
  75. DrueyJ. DaenikerH.U. Quaternary heterocyclic compounds.The Chemistry of Heterocyclic Compounds. WeissbergerA. New YorkInterscience Publishers1962Vol. 16, Chapter VI, pp. 162–177.
    [Google Scholar]
  76. JeanD. UlrichD.H. Phthalazinium compounds.U.S. Patent No. 2,945,0361960
    [Google Scholar]
  77. KrakowiakK. Synthesis of heterocyclic systems by condensing bis(chloromethyl) ether with aliphatic diamines.Pol. J. Chem.198458251257
    [Google Scholar]
  78. WoodcockD. Studies on nitroamines. Part III. The reactions of nitroamines with formaldehyde.J. Chem. Soc.194919491635163810.1039/jr9490001635
    [Google Scholar]
  79. WuX. ParkP.K. DanishefskyS.J. On the synthesis of conformationally modified peptides through isonitrile chemistry: Implications for dealing with polypeptide aggregation.J. Am. Chem. Soc.2011133207700770310.1021/ja2023898 21539308
    [Google Scholar]
  80. LiX. DanishefskyS.J. New chemistry with old functional groups: On the reaction of isonitriles with carboxylic acids-a route to various amide types.J. Am. Chem. Soc.2008130165446544810.1021/ja800612r 18370392
    [Google Scholar]
  81. JonesG.O. LiX. HaydenA.E. HoukK.N. DanishefskyS.J. The coupling of isonitriles and carboxylic acids occurring by sequential concerted rearrangement mechanisms.Org. Lett.200810184093409610.1021/ol8016287 18707109
    [Google Scholar]
  82. LiX. YuanY. BerkowitzW.F. TodaroL.J. DanishefskyS.J. On the two-component microwave-mediated reaction of isonitriles with carboxylic acids: Regarding alleged formimidate carboxylate mixed anhydrides.J. Am. Chem. Soc.200813040132221322410.1021/ja8047078 18783224
    [Google Scholar]
  83. LiX. YuanY. KanC. DanishefskyS.J. Addressing mechanistic issues in the coupling of isonitriles and carboxylic acids: Potential routes to peptidic constructs.J. Am. Chem. Soc.200813040132251322710.1021/ja804709s 18783225
    [Google Scholar]
  84. ZhuJ. WuX. DanishefskyS.J. On the preparation of enantiomerically pure isonitriles from amino acid esters and peptides.Tetrahedron Lett.200950557757910.1016/j.tetlet.2008.11.069 21869850
    [Google Scholar]
  85. WuX. YuanY. LiX. DanishefskyS.J. Thio-mediated synthesis of derivatized N-linked glycopeptides using isonitrile chemistry.Tetrahedron Lett.200950324666466910.1016/j.tetlet.2009.06.005 20161157
    [Google Scholar]
  86. ThomasE.W. RynbrandtR.H. ZimmermannD.C. BellL.T. MuchmoreC.R. YankeeE.W. Reaction of novel imide reducing reagents with pyrrolizidinediones.J. Org. Chem.198954194535454310.1021/jo00280a018
    [Google Scholar]
  87. CoreyE.J. ReichardG.A. Synthesis of (6R,7S)-lactacystin and 6-deoxylactacystin from a common intermediate.Tetrahedron Lett.199334446973697610.1016/S0040‑4039(00)61574‑5
    [Google Scholar]
  88. IshiwataS. ShiokawaY. Studies on benzimidazoles and related compounds. III. the intramolecular mannich reaction of 2-alkylaminomethylbenzimidazoles.Chem. Pharm. Bull.19701861245124810.1248/cpb.18.1245
    [Google Scholar]
  89. AfsahE.M. Utility of sec-Mannich bases of cycloalkanones in synthesis of mixed Mannich bases and fused heterocycles with ring junction nitrogen atom.Res. J. Pharm. Biol. Chem. Sci.20112410661078
    [Google Scholar]
  90. KozlovN.S. Vorob’evaG.V. Vestsi akad, navuk belarus ssr, ser khim navuk.Chem. Abstr.19697077508z
    [Google Scholar]
  91. BlattA.H. GrossN. The addition of ketones to schiff bases.J. Org. Chem.196429113306331110.1021/jo01034a044
    [Google Scholar]
  92. DongF. JunL. LiX.Z. LiangZ.L. Mannich reaction in water using acidic ionic liquid as recoverable and reusable catalyst.Catal. Lett.20071161-2768010.1007/s10562‑007‑9095‑8
    [Google Scholar]
  93. MerrimanG.H. ItsunoS. Bis(chloromethyl) ether.Encyclopedia of reagents for organic synthesis.New YorkJohn Wiley & Sons200110.1002/047084289X.rb114
    [Google Scholar]
  94. DaenikerH.U. DrueyJ. Heilmittelchemische studien in der heterocyclischen reihe. 18. mitteilung. über polymethylen‐bis‐sydnone und polymethylen‐bis‐hydrazine.Helv. Chim. Acta195740491893210.1002/hlca.19570400406
    [Google Scholar]
  95. KochD. KochE. DesarbreE. StenslandB. SvenssonP.H. BergmanJ. 2,2′‐biindolyl reactions with aldehydes.Eur. J. Org. Chem.2016201671389139610.1002/ejoc.201501561
    [Google Scholar]
  96. BaldwinJ.E. Rules for ring closure.J. Chem. Soc. Chem. Commun.1976181873473610.1039/c39760000734
    [Google Scholar]
  97. BaldwinJ.E. ThomasR.C. KruseL.I. SilbermanL. Rules for ring closure: Ring formation by conjugate addition of oxygen nucleophiles.J. Org. Chem.197742243846385210.1021/jo00444a011
    [Google Scholar]
  98. McCombieS.W. BishopR.W. CarrD. DobekE. KirkupM.P. KirschmeierP. LinS.I. PetrinJ. RosinskiK. ShankarB.B. WilsonO. Indolocarbazoles. 1. Total synthesis and protein kinase inhibiting characteristics of compounds related to K-252c.Bioorg. Med. Chem. Lett.1993381537154210.1016/S0960‑894X(00)80013‑X
    [Google Scholar]
  99. JoyceR.P. GainorJ.A. WeinrebS.M. Synthesis of the aromatic and monosaccharide moieties of staurosporine.J. Org. Chem.19875271177118510.1021/jo00383a001
    [Google Scholar]
  100. ViceS.F. BishopW.R. McCombieS.W. DaoH. FrankE. GangulyA.K. Indolocarbazole nitrogens linked by three-atom bridges: A potent new class of PKC inhibitors.Bioorg. Med. Chem. Lett.19944111333133810.1016/S0960‑894X(01)80356‑5
    [Google Scholar]
  101. BishopW.R. PetrinJ. WangL. RameshU. DollR.J. Inhibition of protein kinase c by the tyrosine kinase inhibitor erbstatin.Biochem. Pharmacol.19904092129213510.1016/0006‑2952(90)90245‑G 2242040
    [Google Scholar]
  102. KleinschrothJ. HartensteinJ. RudolphC. SchächteleC. Non-glycosidic/non-aminoalkyl-substituted indolocarbazoles as inhibitors of protein kinase C.Bioorg. Med. Chem. Lett.19933101959196410.1016/S0960‑894X(01)80995‑1
    [Google Scholar]
  103. OchoaM. Rojas-LimaS. HöpflH. RodríguezP. CastilloD. FarfánN. SantillanR. Facile synthesis of 1,3,6-oxadiazepines from 2,2′-(1,2-ethanediyldiimino) bis-phenols.Tetrahedron2001571556410.1016/S0040‑4020(00)00984‑4
    [Google Scholar]
  104. O’ConnellA.J. PeckC.J. SammesP.G. Thermal ring contraction of oxygenated pyrazines to imidazoles via diazoxepins.J. Chem. Soc. Chem. Commun.1983399-400739910.1039/c39830000399
    [Google Scholar]
  105. AutioK. PyysaloH. Application of gamma-irradiation technique in the identification of some metabolites of Maneb in mice.J. Agric. Food Chem.198331356857110.1021/jf00117a025 6886212
    [Google Scholar]
  106. KanekoC. YamadaS. YokoeI. IshikawaM. Structures of the stable photo-products derived from quinoline 1-oxides and quinoxaline 1-oxides.Tetrahedron Lett.19678201873187710.1016/S0040‑4039(00)90745‑7
    [Google Scholar]
  107. BuchardtO. JensenB. LarsenI.K. LevstekI. ErženV. BlincR. PaušakS. EhrenbergL. DumanovićJ. Photochemical studies. VIII. The formation of benz[d]-1,3-oxazepines in the photolysis of quinoline n-oxides in solution.Acta Chem. Scand.19672171841185410.3891/acta.chem.scand.21‑1841
    [Google Scholar]
  108. BuchardtO. JensenB. WeeksO.B. SchwieterU. PaasivirtaJ. Photochemical studies. xi. the photolysis of quinoxaline n-oxides to benz[d][1,3,6]-oxadiazepines: an X-ray study.Acta Chem. Scand.19682287788210.3891/acta.chem.scand.22‑0877
    [Google Scholar]
  109. AlcaideB. PlumetJ. CamposR.I.M. BlancoG.S. CarreraM.S. Reaction of. alpha.-diketones with 2-amino alcohols. Intramolecular competitive 6-exo-trig vs 5-endo-trig processes. A systematic and kinetic study.J. Org. Chem.19925782446245410.1021/jo00034a046
    [Google Scholar]
  110. ChassonneryD. ChastretteF. ChastretteM. BlancA. MattiodaG. Disproportionation reactions from glyoxal and difunctional basic molecules.Bull. Soc. Chim. Fr.1994131188199
    [Google Scholar]
  111. CalderI.C. SasseW.H.F. SpotswoodT.M. The formation of the 6,8-dihydrodipyrido[1,2-c:2′,1′-e][1,3,6]oxadiazepidiinium cation in the reaction of 2,2′-bipyridyl with methylene sulphate.Aust. J. Chem.196316228929110.1071/CH9630289
    [Google Scholar]
  112. WittigG. DavisP. KoenigG. Phenanthrensynthesen über intraionische Isomerisationen.Chem. Ber.195184762763210.1002/cber.19510840713
    [Google Scholar]
  113. MonfaredH.H. GhorbanlooM. JaniakC. MayerP. Intramolecular diastereoselective cascade cyclization reaction of N,N′-bis(salicylidene)cyclohexanediimine with phosphoryltrichloride to a bis(chlorophosphorylated) decahydro-2,4-DI (2-hydroxy-phenyl)benzo[d][1,3,6]oxadiazepine.Phosphorus Sulfur Silicon Relat. Elem.2014189222623410.1080/10426507.2013.818994
    [Google Scholar]
  114. MajimaK. TosakiS. OhshimaT. ShibasakiM. Enantio- and diastereoselective construction of vicinal quaternary and tertiary carbon centers by catalytic Michael reaction of α-substituted β-keto esters to cyclic enones.Tetrahedron Lett.200546325377538110.1016/j.tetlet.2005.05.139
    [Google Scholar]
  115. KrishnaR.P. DayakerG. ReddyN.P.V. Diastereoselective Passerini reactions using p-toluenesulfonylmethyl isocyanide (TosMIC) as the isonitrile component.Tetrahedron Lett.200647335977598010.1016/j.tetlet.2006.06.044
    [Google Scholar]
  116. YamashitaM. UsuiT. OsakabeN. OshikawaT. SeoK. Iastereoselective preparation and structure of novel cyclophosphamide derivatives of amino acids.Heterocycl. Commun.19973323523810.1515/HC.1997.3.3.235
    [Google Scholar]
  117. JonesG. StanforthS.P. The vilsmeier reaction of non‐aromatic compounds.Org. React.200056355659
    [Google Scholar]
  118. HariharanM. UrbachF.L. Stereochemistry of tetradentate Schiff base complexes of cobalt(II).Inorg. Chem.19698355655910.1021/ic50073a029
    [Google Scholar]
  119. LiJ. NiH. ZhangW. LaiZ. JinH. ZengL. CuiS. A multicomponent reaction for modular assembly of indole-fused heterocycles.Chem. Sci.202415145211521710.1039/D4SC00522H 38577354
    [Google Scholar]
  120. AljaarN. MalakarC.C. ShtaiwiM. AliB.F. RefaiA.M. KantK. BlissN.S. NoaimiA.M. MomaniA.L.A. Ortho-halobenzyl halides as precursors for the synthesis of five- to nine-membered ring structures employing transition metals as catalysts.Synthesis2024570113810.1055/a‑2311‑4002
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298353146250128072331
Loading
/content/journals/mroc/10.2174/0118756298353146250128072331
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test