Skip to content
2000
Volume 22, Issue 8
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

Imidazole, a versatile heterocyclic compound first discovered in 1858, has garnered significant attention for its wide range of pharmacological properties. The synthesis of imidazole derivatives has evolved through various innovative techniques, including condensation reactions, metal-catalyzed methods, and the use of nanoparticles as catalysts. Recent advancements, such as green chemistry approaches and microwave-assisted synthesis, have further highlighted its potential for sustainable and efficient drug development. Imidazole derivatives are known for their diverse therapeutic applications, including anticancer, antimicrobial, and anti-inflammatory activities. This review provides a comprehensive overview of the synthetic strategies for imidazole derivatives, emphasizing their historical significance, eco-friendly synthesis methods, and promising pharmacological properties. By exploring these advancements, we aim to underscore the critical role of imidazole in modern medicinal chemistry and its potential to inspire novel therapeutic solutions.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298374560250305074834
2025-04-09
2025-10-14
Loading full text...

Full text loading...

References

  1. SiwachA. VermaP.K. Synthesis and therapeutic potential of imidazole containing compounds.BMC Chem.20211511210.1186/s13065‑020‑00730‑1 33602331
    [Google Scholar]
  2. HamdiA. DaoudiW. AaddouzM. AzzouziM. AmhamdiH. ElyoussfiA. AatiaouiA.E. VermaD.K. AbboudM. AhariM. Various synthesis and biological evaluation of some tri-tetra-substituted imidazoles derivatives: A review.Heliyon20241010e3125310.1016/j.heliyon.2024.e31253 38803909
    [Google Scholar]
  3. KushwahaP.; Rashi; Bhardwaj, A.; Khan, D. Synthetic approaches toward imidazo‐fused heterocycles: a comprehensive review.J. Heterocycl. Chem.202461111807186910.1002/jhet.4910
    [Google Scholar]
  4. DeviM.M. DeviK.S. SinghO.M. SinghT.P. Synthesis of imidazole derivatives in the last 5 years: An update.Heterocycl. Commun.20243012022017310.1515/hc‑2022‑0173
    [Google Scholar]
  5. JaberA.M. Al-MahadeenM.M. Al-QawasmehR.A. TahaM.O. Synthesis, anticancer evaluation and docking studies of novel adamantanyl-1,3,4-oxadiazol hybrid compounds as Aurora-A kinase inhibitors.Med. Chem. Res.202332112394240410.1007/s00044‑023‑03145‑4
    [Google Scholar]
  6. JaberA.M. ZahraJ.A. El-AbadelahM.M. SabriS.S. KhanfarM.A. VoelterW. Utilization of 1-phenylimidazo[1,5-a]quinoline as partner in 1,4-dipolar cycloaddition reactions.Z. Naturforsch. B. J. Chem. Sci.202075325926710.1515/znb‑2019‑0150
    [Google Scholar]
  7. JaberA.M. ZahraJ.A. El-AbadelahM.M. SabriS.S. SabbahD.S. Thermodynamic control synthesis of spiro[oxindole-3,3′-pyrrolines] via 1,4-dipolar cycloaddition utilizing imidazo[1,5-a]quinoline.Z. Naturforsch. C J. Biosci.2023783-414114810.1515/znc‑2022‑0085 36796786
    [Google Scholar]
  8. KabirE. UzzamanM. A review on biological and medicinal impact of heterocyclic compounds.Results Chem.2022410060610.1016/j.rechem.2022.100606
    [Google Scholar]
  9. Al-MohammedM.M. JaberA.M. Comparative studies of benzimidazoles synthetic routes and its biological activity.Mini Rev. Org. Chem.202421116
    [Google Scholar]
  10. Al-MahadeenM.M. JaberA.M. Al-NajjarB.O. Design, synthesis and biological evaluation of novel 2-hydroxy-1 H-indene-1,3(2 H)-dione derivatives as FGFR1 inhibitors.Pharmacia2024711910.3897/pharmacia.71.e122127
    [Google Scholar]
  11. Al-MahadeenM.M. JaberA.M. Al-QawasmehR.A. TahaM.O. Synthesis, evaluation, and docking study of adamantyl-1,3,4-oxadiazol hybrid compounds as CaMKIIδ kinase inhibitor.J. Chem. Res.20244831747519824126246710.1177/17475198241262467
    [Google Scholar]
  12. Al-MahadeenM.M. JaberA.M. ZahraJ.A. El-AbadelahM.M. AlshaerW. TahaM.O. Synthesis of novel benzothieno-[3,2′-f][1,3] oxazepines and their isomeric 2-oxo-2H-spiro[benzothiophene-3,3′-pyrrolines] via 1,4-dipolar cycloaddition reaction and their evaluation as cytotoxic anticancer leads.Med. Chem. Res.202433691892910.1007/s00044‑024‑03229‑9
    [Google Scholar]
  13. Al-MahadeenM.M. JaberA.M. Al-NajjarB.O. KhanfarM.A. El-AbadelahM.M. Novel N-substituted isatin-oxoindolin-1h-benzo[d] imidazole fumarate as a new class of jnk3 inhibitor: design, synthesis, molecular modeling and its biological activity.Curr. Org. Synth.202422341041810.2174/0115701794335274240910111137
    [Google Scholar]
  14. Al-MahadeenM.M. ZahraJ.A. El-AbadelahM.M. JaberA.M. KhanfarM.A. One-pot synthesis of novel 2-oxo(2H)-spiro[benzofuran-3,3′-pyrrolines] via 1,4-dipolar cycloaddition reaction.Resu. Chem.2022410064310.1016/j.rechem.2022.100643
    [Google Scholar]
  15. AlghamdiS.S. SulimanR.S. AlmutairiK. KahtaniK. AljatliD. Imidazole as a promising medicinal scaffold: current status and future direction.Drug Des. Devel. Ther.2021153289331210.2147/DDDT.S307113 34354342
    [Google Scholar]
  16. ChaudharyB. SinglaD. AryaP. DabraA. KumarP. AfzalO. AltamimiA.S.A. AlzareaS.I. KazmiI. Al-AbbasiF.A. GuptaG. GuptaM.M. Versatile imidazole synthesis via multicomponent reaction approach.J. Heterocycl. Chem.202260452353610.1002/jhet.4583
    [Google Scholar]
  17. TaperaM. DoğanE. ŞahinK. GözkamaneG.A. KekeçmuhammedH. SandalS. GurkanA.C. BoraR.E. AnberA. DurdagiS. ZorluY. SarıpınarE. Imidazole-based hydrazones as potent anti-colon cancer agents: Design, synthesis, biological evaluation and computational studies.J. Mol. Struct.2024131813924010.1016/j.molstruc.2024.139240
    [Google Scholar]
  18. JaberA.M. ZahraJ.A. SabriS.S. KhanfarM.A. AwwadiF.F. El-AbadelahM.M. New trends in 1,4-dipolar cycloaddition reactions. thermodynamic control synthesis of model 2′-(isoquinolin-1-yl)-spiro[oxindole-3,3′-pyrrolines].Curr. Org. Chem.202226554254910.2174/1385272826666220221141306
    [Google Scholar]
  19. JaberA.M. ZahraJ.A. El-AbadelahM.M. Al-MahadeenM.M. SabriS.S. KasabriV. HaddadinR.N. Evaluation of spirooxindole-3,3′-pyrrolines-incorporating isoquinoline motif as antitumor, anti-inflammatory, antibacterial, antifungal, and antioxidant agents.Antiinflamm. Antiallergy Agents Med. Chem.202423426127210.2174/0118715230322113240705071750 39069700
    [Google Scholar]
  20. ShaliniK. SharmaP. KumarN. Imidazole and its biological activities: A review.Asi. J. Res. Chem20105217118210.5958/0974‑4150
    [Google Scholar]
  21. ibrahim; salama, I.A.A.; Darweesh, K.M.; loksha; Kishk, S.M. A review: Imidazole and its biological activities.Reco. Pharmac. Biomed. Sci.20248112312910.21608/rpbs.2024.294154.1301
    [Google Scholar]
  22. GujjarappaR. KabiA.K. SravaniS. GargA. VodnalaN. TyagiU. KaldhiD. VelayuthamR. SinghV. GuptaS. MalakarC.C. Overview on biological activities of imidazole derivatives.Nanostructured Biomaterials. Materials Horizons: From Nature to Nanomaterials.SingaporeSpringer202213522710.1007/978‑981‑16‑8399‑2_6
    [Google Scholar]
  23. Abu AssabM. HasanH.E. AlhamadH. AlbaharF. AlzayadnehA. Abu AssabH. Abu DayyihW. ZakarayaZ. Assessing pharmacists’ awareness of financial indicators in community pharmacy management: A cross-sectional study.Heliyon20241013e3333810.1016/j.heliyon.2024.e33338 39027593
    [Google Scholar]
  24. DayyihW.A. Al-AniI. HailatM. AlarmanS.M. ZakarayaZ. AssabM.A. AlkhaderE. Review of grapefruit juice-drugs interactions mediated by intestinal CYP3A4 inhibition.J. Appl. Pharm. Sci.2024140505906810.7324/JAPS.2024.160197
    [Google Scholar]
  25. DebusH. Ueber die einwirkung des ammoniaks auf glyoxal.Justus Liebigs Ann. Chem.1858107219920810.1002/jlac.18581070209
    [Google Scholar]
  26. RadziszewskiB. Ueber die constitution des lophins und verwandter verbindungen.Berich. Der. Deuts. Chemis. Gesellsc.1882151493149610.1002/cber.18820150207
    [Google Scholar]
  27. BourissouD. GuerretO. GabbaïF.P. BertrandG. Stable carbenes.Chem. Rev.20001001399210.1021/cr940472u 11749234
    [Google Scholar]
  28. SafariJ. KhaliliS.D. BanitabaS.H. A novel and an efficient catalyst for one-pot synthesis of 2,4,5-trisubstituted imidazoles by using microwave irradiation under solvent-free conditions.J. Chem. Sci.2010122343744110.1007/s12039‑010‑0051‑6
    [Google Scholar]
  29. AbbasovV. Imidazole derivatives, synthesis and biological activity. Process. Petrochem.Oil-Refin.2012134347364
    [Google Scholar]
  30. FinarI.L. Organic Chemistry: Volume 2 - Stereochemistry and the Chemistry of Natural Products. 5th ed.London: Pearson Education195616
    [Google Scholar]
  31. BanerjeeJ. ChaudhuryD. SharmaN. ShresthaN. Routes of synthesis and biological significances of Imidazole derivatives.World J. Pharmac. Sci.20153816681681
    [Google Scholar]
  32. HenaryM. KanandaC. RotoloL. SavinoB. OwensE.A. CravottoG. Benefits and applications of microwave-assisted synthesis of nitrogen containing heterocycles in medicinal chemistry.RSC Advances20201024141701419710.1039/D0RA01378A 35498463
    [Google Scholar]
  33. LuY. ZhangW. Microwave-assisted synthesis of a 3-aminoimidazo[1,2-a]-pyridine/pyrazine library by fluorous multicomponent reactions and subsequent cross-coupling reactions.QSAR Comb. Sci.2004231082783510.1002/qsar.200420045 18542716
    [Google Scholar]
  34. SparksR.B. CombsA.P. Microwave-assisted synthesis of 2,4,5-triaryl-imidazole; a novel thermally induced N-hydroxyimidazole N-O bond cleavage.Org. Lett.20046142473247510.1021/ol049124x 15228307
    [Google Scholar]
  35. QasimS. AliS. AhmedS. SnCl2. 2H2O catalyzed one-pot synthesis of 2-phenylimidazo [4, 5-f][1, 10] phenanthroline.Res. J. Pharmac. Biolog. Chem. Sci.201122423428
    [Google Scholar]
  36. NalageS.V. KalyankarM.B. PatilV.S. BhosaleS.V. DeshmukhS.U. PawarR.P. An efficient noncatalytic protocol for the synthesis of trisubstituted imidazole in polyethylene glycol using microwaves.Open Cataly. J.20103586110.2174/1876214X01003010058
    [Google Scholar]
  37. MaitiB. ChandaK. SelvarajuM. TsengC.C. SunC.M. Multicomponent solvent-free synthesis of benzimidazolyl imidazo[1,2-a]-pyridine under microwave irradiation.ACS Comb. Sci.201315629129710.1021/co400010y 23590286
    [Google Scholar]
  38. KaramthullaS. KhanM.N. ChoudhuryL.H. Microwave-assisted synthesis of novel 2,3-disubstituted imidazo[1,2-a]pyridines via one-pot three component reactions.RSC Advances2015525197241973310.1039/C4RA16298F
    [Google Scholar]
  39. WagareD.S. FarooquiM. KecheT.D. DurraniA. Efficient and green microwave-assisted one-pot synthesis of azaindolizines in PEG-400 and water.Synth. Commun.201646211741174610.1080/00397911.2016.1223314
    [Google Scholar]
  40. MalaS. Design, Synthesis, Characterization and Biological Evaluation of Some Novel Anti Tubercular Agents Targeting L, D-Transpeptidase-2.ChennaiCollege of Pharmacy, Madras Medical College201619
    [Google Scholar]
  41. RaoR.N. MmB. MaitiB. ThakuriaR. ChandaK. Efficient access to imidazo [1, 2-a] pyridines/pyrazines/pyrimidines via catalyst-free annulation reaction under microwave irradiation in green solvent.ACS Comb. Sci.201820316417110.1021/acscombsci.7b00173 29373013
    [Google Scholar]
  42. KusyD. ManiukiewiczW. BłażewskaK.M. Microwave-assisted synthesis of 3-formyl substituted imidazo[1,2-a]pyridines.Tetrahed. Lett.2019604515124410.1016/j.tetlet.2019.151244
    [Google Scholar]
  43. NesaragiA.R. KambleR.R. HoolageriS.R. DixitS. JoshiS.D. VootlaS. KumbarV.M. Microwave-assisted copper(I) catalyzed A 3 cascade coupling of imidazo[1,2-a]pyridinesvia C–H bond functionalization as selective COX-2 inhibitors and antioxidants, and in silico studies.New J. Chem.202347199401941310.1039/D3NJ00524K
    [Google Scholar]
  44. Macías-BenítezP. Sierra-PadillaA. GuerraF.M. Moreno-DoradoF.J. Microwave-assisted one-pot telescoped synthesis of 2-amino-1,3-thiazoles, selenazoles, imidazo[1,2-a]pyridines, and other heterocycles from alcohols.J. Org. Chem.20248974628464610.1021/acs.joc.3c02903 38497561
    [Google Scholar]
  45. GovindanK. JayaramA. SeenivasanV.T. VenkatachalamG. LinW-Y. Transition‐metal catalyzed synthesis of N‐heterocycles using solvent‐carbon (C1) synthons.ChemCatChem20241618e20240065810.1002/cctc.202400658
    [Google Scholar]
  46. EicherT. HauptmannS. SpeicherA. The chemistry of heterocycles: structures, reactions, synthesis, and applications.England, UKJohn Wiley & Sons2013556
    [Google Scholar]
  47. Das SharmaS. HazarikaP. KonwarD. An efficient and one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed by InCl3·3H2O.Tetrahedron Lett.200849142216222010.1016/j.tetlet.2008.02.053
    [Google Scholar]
  48. KumarA. KumarM. MauryaS. KhannaR.S. Regioselective synthesis of fused imidazo[1,2-a]pyrimidines via intramolecular CN bond formation/6-endo-dig cycloisomerization.J. Org. Chem.201479156905691210.1021/jo5007762 24988318
    [Google Scholar]
  49. RakshitA. DharaH.N. AlamT. DahiyaA. PatelB.K. Cu(II)-promoted cascade synthesis of fused imidazo-pyridine-carbonitriles.J. Org. Chem.20218623175041751010.1021/acs.joc.1c02198 34723521
    [Google Scholar]
  50. WangL.S. ZhouY. LeiS.G. YuX.X. HuangC. WuY.D. WuA.X. Iodine-mediated multicomponent cascade cyclization and sulfenylation/selenation: synthesis of imidazo[2,1-a]isoquinoline derivatives.Org. Lett.202224244449445310.1021/acs.orglett.2c01681 35696662
    [Google Scholar]
  51. BabuS.A. P v, V.; Poulose, S.; Varughese, S.; John, J. Copper-catalyzed annulation of electrophilic benzannulated heterocycles with 2-aminopyridine and 2-aminoquinoline: direct access toward polyring-fused imidazo[1,2-a]pyridines.J. Org. Chem.20238814100271003910.1021/acs.joc.3c00849 37433107
    [Google Scholar]
  52. ParteL.G. FernándezS. SandonísE. GuerraJ. LópezE. Transition-metal-catalyzed transformations for the synthesis of marine drugs.Mar. Drugs202422625310.3390/md22060253 38921564
    [Google Scholar]
  53. SinghF.V. DohiT. KumarR. Metal-free oxidative transformations in organic synthesis.Front Chem.20221095677910.3389/fchem.2022.956779 36003623
    [Google Scholar]
  54. SteckE.A. DayA.R. Reactions of Phenanthraquinone and Retenequinone with aldehydes and ammonium acetate in acetic acid solution1.J. Am. Chem. Soc.1943653452456
    [Google Scholar]
  55. SharmaV. KhanM.S.Y. Synthesis of novel tetrahydroimidazole derivatives and studies for their biological properties.Eur. J. Med. Chem.2001367-865165810.1016/S0223‑5234(01)01256‑9 11600234
    [Google Scholar]
  56. JoshiR.S. MandhaneP.G. ShaikhM.U. KaleR.P. GillC.H. Potassium dihydrogen phosphate catalyzed one-pot synthesis of 2,4,5-triaryl-1H-imidazoles.Chin. Chem. Lett.201021442943210.1016/j.cclet.2009.11.012
    [Google Scholar]
  57. OliveiraE. BaptistaR.M.F. CostaS.P.G. RaposoM.M.M. LodeiroC. Exploring the emissive properties of new azacrown compounds bearing aryl, furyl, or thienyl moieties: a special case of chelation enhancement of fluorescence upon interaction with Ca(2+), Cu(2+), or Ni(2+).Inorg. Chem.20104923108471085710.1021/ic101095y 21049907
    [Google Scholar]
  58. PashaM.A. NizamA. p-TSA catalysed efficient synthesis of 1,2,4,5-tetraaryl-imidazoles.J. Saudi Chem. Soc.2011151555810.1016/j.jscs.2010.10.009
    [Google Scholar]
  59. VijeshA.M. IsloorA.M. TelkarS. PeethambarS.K. RaiS. IsloorN. Synthesis, characterization and antimicrobial studies of some new pyrazole incorporated imidazole derivatives.Eur. J. Med. Chem.20114683531353610.1016/j.ejmech.2011.05.005 21620535
    [Google Scholar]
  60. BangadeV.M. ReddyB.C. ThakurP.B. MadhuB.B. MeshramH.M. DABCO catalyzed highly regioselective synthesis of fused imidazo-heterocycles in aqueous medium.Tetrahedron Lett.201354354767477110.1016/j.tetlet.2013.06.123
    [Google Scholar]
  61. MalekiA. AlirezvaniZ. GhamariN. UHP as a mild and efficient catalyst for the synthesis of substituted imidazoles via multicomponent condensation strategy.Proceedings of the 17th International Electronic Conference on Synthetic Organic ChemistryBasel, Switzerland, 1–30 Nov20131610.3390/ecsoc‑17‑a031
    [Google Scholar]
  62. QianG. LiuB. TanQ. ZhangS. XuB. Hypervalent iodine (iii) promoted direct synthesis of imidazo [1, 2‐a] pyrimidines.Eur. J. Org. Chem.20142014224837484310.1002/ejoc.201402456
    [Google Scholar]
  63. XiaoX. XieY. BaiS. DengY. JiangH. ZengW. Transition-metal-free tandem chlorocyclization of amines with carboxylic acids: access to chloroimidazo[1,2-α]pyridines.Org. Lett.201517163998400110.1021/acs.orglett.5b01868 26230657
    [Google Scholar]
  64. LeeS.K. ParkJ.K. Room-temperature transition-metal-free one-pot synthesis of 3-aryl imidazo[1,2-a]pyridines via iodo-hemiaminal intermediate.J. Org. Chem.20158073723372910.1021/acs.joc.5b00298 25742167
    [Google Scholar]
  65. TberZ. HiebelM.A. El HakmaouiA. AkssiraM. GuillaumetG. Berteina-RaboinS. Metal free formation of various 3-iodo-1 H-pyrrolo [3′, 2′: 4, 5] imidazo-[1, 2-a] pyridines and [1, 2-b] pyridazines and their further functionalization.J. Org. Chem.201580136564657310.1021/acs.joc.5b00555 26083102
    [Google Scholar]
  66. HuoC. TangJ. XieH. WangY. DongJ. CBr4 mediated oxidative C–N bond formation: applied in the synthesis of Imidazo [1, 2-α] pyridines and Imidazo [1, 2-α] pyrimidines.Org. Lett.20161851016101910.1021/acs.orglett.6b00137 26882001
    [Google Scholar]
  67. NaureenS. IjazF. MunawarM.A. AsifN. ChaudhryF. AshrafM. KhanM.A. Synthesis of tetrasubstitutd imidazoles containing indole and their antiurease and antioxidant activities.J. Chil. Chem. Soc.20176233583358710.4067/s0717‑97072017000303583
    [Google Scholar]
  68. JanaA. BhaumickP. PandayA.K. MishraR. ChoudhuryL.H.I. 2/DMSO mediated multicomponent reaction for the synthesis of 2-arylbenzo[d]imidazo[2,1-b] thiazole derivatives.Org. Biomol. Chem.201917215316533010.1039/C9OB00515C 31095156
    [Google Scholar]
  69. OkaiH. TanimotoK. OhkadoR. IidaH. Multicomponent synthesis of imidazo [1, 2-a] pyridines: Aerobic oxidative formation of C–N and C–S bonds by flavin–iodine-coupled organocatalysis.Org. Lett.202022208002800610.1021/acs.orglett.0c02929 33006477
    [Google Scholar]
  70. ZhangY. ChenR. WangZ. WangL. MaY. I2-Catalyzed three-component consecutive reaction for the synthesis of 3-aroylimidazo [1, 2-a]-N-heterocycles.J. Org. Chem.20218696239624610.1021/acs.joc.1c00023 33835809
    [Google Scholar]
  71. AcharyaS.S. BhaumickP. KumarR. ChoudhuryL.H. Iodine-catalyzed multicomponent synthesis of highly fluorescent pyrimidine-linked imidazopyridines.ACS Omega2022722186601867010.1021/acsomega.2c01332 35694517
    [Google Scholar]
  72. KrishnamoorthyR. AnaikuttiP. Iodine catalyzed synthesis of imidazo[1,2-a]pyrazine and imidazo[1,2-a]pyridine derivatives and their anticancer activity.RSC Advances20231351364393645410.1039/D3RA07842F 38093732
    [Google Scholar]
  73. BiswasS. RoyA. DuariS. MaityS. ElsharifA.M. BiswasS. Brønsted acid-catalyzed regioselective ring opening of 2H-azirines by 2-mercaptopyridines and related heterocycles; one pot access to imidazo[1,2-a]pyridines and imidazo[2,1-b]thiazoles.Org. Biomol. Chem.202422234697470310.1039/D4OB00410H 38775270
    [Google Scholar]
  74. ZhangL. LiC.X. WanS.S. ZhangX.Z. Nanocatalyst‐mediated chemodynamic tumor therapy.Adv. Healthc. Mater.2022112210197110.1002/adhm.202101971 34751505
    [Google Scholar]
  75. SinghK. GuntreddiT. AllamB. Simple and efficient one-pot synthesis of imidazo [1, 2-a] pyridines catalyzed by magnetic nano-Fe3O4–KHSO4· SiO2.Synlett201223182635263810.1055/s‑0032‑1317323
    [Google Scholar]
  76. BharateJ.B. GuruS.K. JainS.K. MeenaS. SinghP.P. BhushanS. SinghB. BharateS.B. VishwakarmaR.A. Cu–Mn spinel oxide catalyzed synthesis of imidazo[1,2-a]pyridines through domino three-component coupling and 5-exo-dig cyclization in water.RSC Advances2013343208692087610.1039/c3ra42046a
    [Google Scholar]
  77. MouradzadegunA. Ma’maniL. MahdaviM. RashidZ. ShafieeA. ForoumadiA. DianatS. Sulfamic acid-functionalized hydroxyapatite-encapsulated γ-Fe 2 O 3 nanoparticles as a magnetically recoverable catalyst for synthesis of N-fused imidazole-quinoline conjugates under solvent-free conditions.RSC Advances20155101835308353710.1039/C5RA12307K
    [Google Scholar]
  78. MalekiA. AghaeiM. Ultrasonic assisted synergetic green synthesis of polycyclic imidazo(thiazolo)pyrimidines by using Fe3O4@clay core-shell.Ultrason. Sonochem.20173858558910.1016/j.ultsonch.2016.08.024 27545571
    [Google Scholar]
  79. SanaeishoarT. TavakkoliH. MohaveF. A facile and eco-friendly synthesis of imidazo[1,2-a]pyridines using nano-sized LaMnO3 perovskite-type oxide as an efficient catalyst under solvent-free conditions.Appl. Catal. A Gen.2014470566210.1016/j.apcata.2013.10.026
    [Google Scholar]
  80. ZhangM. LuJ. ZhangJ-N. ZhangZ-H. Magnetic carbon nanotube supported Cu (CoFe2O4/CNT-Cu) catalyst: A sustainable catalyst for the synthesis of 3-nitro-2-arylimidazo[1,2-a]pyridines.Catal. Commun.201678263210.1016/j.catcom.2016.02.004
    [Google Scholar]
  81. SwamiS. DeviN. AgarwalaA. SinghV. ShrivastavaR. ZnO nanoparticles as reusable heterogeneous catalyst for efficient one pot three component synthesis of imidazo-fused polyheterocycles.Tetrahedron Lett.201657121346135010.1016/j.tetlet.2016.02.045
    [Google Scholar]
  82. SwamiS. AgarwalaA. ShrivastavaR. Sulfonic acid functionalized silica-coated CuFe 2 O 4 core–shell nanoparticles: an efficient and magnetically separable heterogeneous catalyst for the synthesis of 2-pyrazole-3-amino-imidazo-fused polyheterocycles.New J. Chem.201640119788979410.1039/C6NJ02264B
    [Google Scholar]
  83. KhairnarB.J. ManeD.V. ShingareM.S. ChaudhariB.R. Nano-Fe3O4 as a heterogeneous recyclable magnetically separable catalyst for synthesis of nitrogen fused imidazoheterocycles via double CN bond formation. Iran.J. Catal.201883155163
    [Google Scholar]
  84. RawatM. RawatD.S. Copper oxide nanoparticle catalysed synthesis of imidazo[1,2-a]pyrimidine derivatives, their optical properties and selective fluorescent sensor towards zinc ion.Tetrahed. Lett.201859242341234610.1016/j.tetlet.2018.05.005
    [Google Scholar]
  85. BenzenineD. KibouZ. BerrichiA. BachirR. Choukchou-BrahamN. New synthesis of imidazo [1, 2-a] pyrimidines catalyzed using gold nanoparticles.Chem. Proc.20218111010.3390/ecsoc‑25‑11690
    [Google Scholar]
  86. TolomeuH.V. FragaC.A.M. Imidazole: Synthesis, functionalization and physicochemical properties of a privileged structure in medicinal chemistry.Molecules202328283810.3390/molecules28020838 36677894
    [Google Scholar]
  87. GujjarappaR. KabiA.K. SravaniS. GargA. VodnalaN. TyagiU. Overview on Biological Activities of Imidazole Derivatives; Nanostructured Biomaterials. Materials Horizons: From Nature to Nanomaterials; Swain, B.P.SingaporeSpringer202213522710.1007/978‑981‑16‑8399‑2_6
    [Google Scholar]
  88. KhabnadidehS. RezaeiZ. Khalafi-NezhadA. BahrinajafiR. MohamadiR. FarrokhrozA.A. Synthesis of N-Alkylated derivatives of imidazole as antibacterial agents.Bioorg. Med. Chem. Lett.200313172863286510.1016/S0960‑894X(03)00591‑2 14611845
    [Google Scholar]
  89. MoraskiG.C. ThanassiJ.A. PodosS.D. PucciM.J. MillerM.J. One-step syntheses of nitrofuranyl benzimidazoles that are active against multidrug-resistant bacteria.J. Antibiot. (Tokyo)2011641066767110.1038/ja.2011.67 21811261
    [Google Scholar]
  90. LuB. LuF. RanL. YuK. XiaoY. LiZ. DaiF. WuD. LanG. Self-assembly of natural protein and imidazole molecules on gold nanoparticles: Applications in wound healing against multi-drug resistant bacteria.Int. J. Biol. Macromol.201811950551610.1016/j.ijbiomac.2018.07.167 30059736
    [Google Scholar]
  91. MendograloE.Y. NesterovaL.Y. NasibullinaE.R. ShcherbakovR.O. MyasnikovD.A. TkachenkoA.G. SidorovR.Y. UchuskinM.G. Synthesis, antimicrobial and antibiofilm activities, and molecular docking investigations of 2-(1H-Indol-3-yl)-1H-benzo[d]imidazole derivatives.Molecules20232820709510.3390/molecules28207095 37894573
    [Google Scholar]
  92. ZarenezhadE. BehrouzS. BehrouzM. RadM.N.S. Synthesis, anti-microbial, antifungal and in silico assessment of some 2,4,5-trisubstituted imidazole analogues.J. Mol. Struct.2024129613683910.1016/j.molstruc.2023.136839
    [Google Scholar]
  93. PoyrazS. YıldırımM. ErsatirM. Recent pharmacological insights about imidazole hybrids: a comprehensive review.Med. Chem. Res.202433683986810.1007/s00044‑024‑03230‑2
    [Google Scholar]
  94. SadeghianS. BekhradiF. MansouriF. RazmiR. MansouriS.G. PoustforooshA. KhabnadidehS. ZomorodianK. ZareshahrabadiZ. RezaeiZ. Imidazole derivatives as novel and potent antifungal agents: Synthesis, biological evaluation, molecular docking study, molecular dynamic simulation and ADME prediction.J. Mol. Struct.2024130213744710.1016/j.molstruc.2023.137447
    [Google Scholar]
  95. RaoG.D. BendiA. Imidazole and Benzimidazole Derivatives as Anti-Inflammatory Agents.Heterocyclic Anti-Inflammatory Agents: A Guide for Medicinal Chemists.Sharjah, U.A.E.Bentham Science Publishers20244769
    [Google Scholar]
  96. JamilI. NawazF. ShafiqM. RashidM. AkramA. SiddiqueA. A recent trends on green synthesis and bioactivity of imidazole. Univer.J. Green Chem.202421508810.37256/ujgc.2120244234
    [Google Scholar]
  97. WangJ. DingX. LanZ. LiuG. HouS. HouS. Imidazole compounds: synthesis, characterization and application in optical analysis.Crit. Rev. Anal. Chem.202254512610.1080/10408347.2021.2023459 35001757
    [Google Scholar]
  98. AtiaA.J.K. Synthesis and antibacterial activities of new metronidazole and imidazole derivatives.Molecules20091472431244610.3390/molecules14072431 19633614
    [Google Scholar]
  99. JainA.K. RavichandranV. SisodiyaM. AgrawalR.K. Synthesis and antibacterial evaluation of 2–substituted–4,5–diphenyl–N–alkyl imidazole derivatives.Asian Pac. J. Trop. Med.20103647147410.1016/S1995‑7645(10)60113‑7
    [Google Scholar]
  100. GuW. QiaoC. WangS.F. HaoY. MiaoT.T. Synthesis and biological evaluation of novel N-substituted 1H-dibenzo[a,c]carbazole derivatives of dehydroabietic acid as potential antimicrobial agents.Bioorg. Med. Chem. Lett.201424132833110.1016/j.bmcl.2013.11.009 24300736
    [Google Scholar]
  101. VallsA. AndreuJ.J. FalomirE. LuisS.V. Atrián-BlascoE. MitchellS.G. AltavaB. Imidazole and imidazolium antibacterial drugs derived from amino acids.Pharmaceuticals (Basel)2020131248210.3390/ph13120482 33371256
    [Google Scholar]
  102. SamalaR. NukalaS.K. ManchalR. NagavelliV.R. NarsimhaS. Synthesis and biological evaluation of coumarine-imidazo[1,2-c][1,2,3]triazoles: PEG-400 mediated one-pot reaction under ultrasonic irradiation.J. Mol. Struct.2023129013594410.1016/j.molstruc.2023.135944
    [Google Scholar]
  103. GarigantiN. LokeS.K. PagadalaE. ChintaP. PoolaB. ChettiP. BansalA. RamachandranB. SrinivasadesikanV. KottalankaR.K. Design, synthesis, anticancer activity of new amide derivatives derived from 1,2,3-triazole-benzofuran hybrids: An insights from molecular docking, molecular dynamics simulation and DFT studies.J. Mol. Struct.2023127313425010.1016/j.molstruc.2022.134250
    [Google Scholar]
  104. El-SofanyW.I. El-sayedW.A. Abd-RabouA.A. El-ShahatM. Synthesis of new imidazole-triazole-glycoside hybrids as anti-breast cancer candidates.J. Mol. Struct.2022127013394210.1016/j.molstruc.2022.133942
    [Google Scholar]
  105. Al-blewiF. ShaikhS.A. NaqviA. AljohaniF. AouadM.R. IhmaidS. RezkiN. Design and synthesis of novel imidazole derivatives possessing triazole pharmacophore with potent anticancer activity, and in silico ADMET with GSK-3β molecular docking investigations.Int. J. Mol. Sci.2021223116210.3390/ijms22031162 33503871
    [Google Scholar]
  106. DadouS. AltayA. BaydereC. AnouarE.H. TürkmenoğluB. KoudadM. Chalcone-based imidazo[2,1-b]thiazole derivatives: synthesis, crystal structure, potent anticancer activity, and computational studies.J. Biomol. Struct. Dyn.202543126127610.1080/07391102.2023.2280756 38009853
    [Google Scholar]
  107. SabryM.A. GhalyM.A. MaaroufA.R. El-SubbaghH.I. New thiazole-based derivatives as EGFR/HER2 and DHFR inhibitors: Synthesis, molecular modeling simulations and anticancer activity.Eur. J. Med. Chem.202224111466110.1016/j.ejmech.2022.114661 35964425
    [Google Scholar]
  108. GopalanS. VidhyaK. ArasakumarT. JayaramanA. Quinoline-based imidazole derivative as heme oxygenase-1 inhibitor: A strategy for cancer treatment.Chem. Sele.20183133680368610.1002/slct.201800173
    [Google Scholar]
  109. Rahimzadeh OskueiS. MirzaeiS. Reza Jafari-NikM. HadizadehF. EisvandF. MosaffaF. GhodsiR. Design, synthesis and biological evaluation of novel imidazole-chalcone derivatives as potential anticancer agents and tubulin polymerization inhibitors.Bioorg. Chem.202111210490410.1016/j.bioorg.2021.104904 33933802
    [Google Scholar]
  110. Al-MahadeenM.M. JaberA.M. ZahraJ.A. Al-NajjarB.O. El-AbadelahM.M. KhanfarM.A. Discovery and chemical exploration of spiro(benzofuran-3,3′-pyrroles) derivatives as innovative FLT3 inhibitors for targeting acute myeloid leukemia.anti-inflamm. Anti-Allergy Agents.Med. Chem.202524212713810.2174/0118715230343474241009112335
    [Google Scholar]
  111. JaberA.M. Al-MahadeenM.M. Al-NajjarB.O. Al-QawasmehR.A. Synthesis, molecular docking, and anti-inflammatory evaluation of novel 4-(benzo[d][1,3]dioxol-5-yloxy)-N,N-2-yn-1-amine derivatives as potent cysteinyl leukotriene receptor (CysLT2) antagonists.Pharmacia20257211110.3897/pharmacia.72.e143171
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298374560250305074834
Loading
/content/journals/mroc/10.2174/0118756298374560250305074834
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anticancer; antimicrobial; bioactive; Imidazole; microwave; nanoparticles
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test