Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

Di--butyl peroxide is a commonly used organoperoxide in many oxidation transformations. The primary factors contributing to the increasing usefulness of DTBP include its affordability, eco-friendliness, exceptional efficacy, and capacity to substitute harmful or rare heavy metal oxidants. In this decennial update, we thoroughly examined noteworthy C-C bond formation reactions promoted by DTBP from 2014 till the present. This review centers on the benefits and drawbacks of synthetic organic transformations using DTBP, as well as their extent and underlying mechanisms.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298333423241022033447
2025-01-08
2025-10-25
Loading full text...

Full text loading...

References

  1. DaviesH.M.L. MortonD. Recent advances in C-H functionalization.J. Org. Chem.201681234335010.1021/acs.joc.5b02818 26769355
    [Google Scholar]
  2. RoggeT. KaplanerisN. ChataniN. KimJ. ChangS. PunjiB. SchaferL.L. MusaevD.G. Wencel-DelordJ. RobertsC.A. SarpongR. WilsonZ.E. BrimbleM.A. JohanssonM.J. AckermannL. C–H activation.Nat. Rev. Methods Primers2021114310.1038/s43586‑021‑00041‑2
    [Google Scholar]
  3. DaltonT. FaberT. GloriusF. C-H activation: Toward sustainability and applications.ACS Cent. Sci.20217224526110.1021/acscentsci.0c01413 33655064
    [Google Scholar]
  4. AbramsD.J. ProvencherP.A. SorensenE.J. Recent applications of C–H functionalization in complex natural product synthesis.Chem. Soc. Rev.201847238925896710.1039/C8CS00716K 30426998
    [Google Scholar]
  5. LiC.J. Carbon–carbon bond formation and green chemistry: one dream and 30 years hence.Can. J. Chem.202210029810310.1139/cjc‑2021‑0053
    [Google Scholar]
  6. RavelliD. ProttiS. FagnoniM. Carbon-carbon bond forming reactions via photogenerated intermediates.Chem. Rev.2016116179850991310.1021/acs.chemrev.5b00662 27070820
    [Google Scholar]
  7. ZetzscheL.E. NarayanA.R.H. Broadening the scope of biocatalytic C–C bond formation.Nat. Rev. Chem.20204733434610.1038/s41570‑020‑0191‑2 34430708
    [Google Scholar]
  8. PasrichaS. ChaudharyA. SrivastavaA. Evolving trends for CC bond formation using functionalized covalent organic frameworks as heterogeneous catalysts.ChemistrySelect2022722e20220057610.1002/slct.202200576
    [Google Scholar]
  9. Ackerman-BiegasiewiczL.K.G. KariofillisS.K. WeixD.J. Multimetallic-catalyzed C-C bond-forming reactions: From serendipity to strategy.J. Am. Chem. Soc.2023145126596661410.1021/jacs.2c08615 36913663
    [Google Scholar]
  10. BabuR. 1,1-Di-tert-butyl Peroxide.Wiley200510.1002/047084289X.rd066.pub2
    [Google Scholar]
  11. PritchardH.O. ClothierP.Q.E. Anaerobic operation of an internal combustion engine.J. Chem. Soc. Chem. Commun.198620201529153010.1039/c39860001529
    [Google Scholar]
  12. KachotP.K. VyasD.K. ChavdaS.K. Effect of di-tert-butyl peroxide on diesel engine performance fuelled by biodiesel blends.Int. J. Environ. Clim. Chan.20241419711910.9734/ijecc/2024/v14i13813
    [Google Scholar]
  13. MaiaD.L.H. FernandesF.A.N. Production of castor oil maleate using di-tert-butyl peroxide as free radical catalyst.Braz. J. Chem. Eng.201835269970810.1590/0104‑6632.20180352s20160125
    [Google Scholar]
  14. VaralaR. SeemaV. Recent applications of TEMPO in organic synthesis and catalysis.SynOpen20237340841310.1055/a‑2155‑2950
    [Google Scholar]
  15. VaralaR. SeemaV. AlamM.M. DubasiN. VummadiR.D. Iodoxybenzoic acid (IBX) in organic synthesis: A septennial review.Curr. Org. Synth.202421560766410.2174/0115701794263252230924074035 37861006
    [Google Scholar]
  16. AlamM.M. HussienM. BollikollaH.B. SeemaV. DubasiN. AmanullahM. VaralaR. Applications of phenyliodine(III) diacetate in heterocyclic ring formations: An update from 2015 to date.J. Heterocycl. Chem.20236081326135510.1002/jhet.4627
    [Google Scholar]
  17. AlamM.M. SeemaV. DubasiN. KurraM. VaralaR. Applications of polymethyl hydrosiloxane (PMHS) in organic synthesis-Covering up to march 2022.Mini Rev. Org. Chem.202320770873410.2174/1570193X20666221021104906
    [Google Scholar]
  18. VittalS. Mujahid AlamM. HussienM. AmanullahM. PisalP.M. RaviV. Applications of phenyliodine(III)diacetate in C-H functionalization and hetero-hetero bond formations: A septennial update.ChemistrySelect202381e20220424010.1002/slct.202204240
    [Google Scholar]
  19. VaralaR. SeemaV. DubasiN. Phenyliodine(III)diacetate (PIDA): Applications in organic synthesis.Organics20224114010.3390/org4010001
    [Google Scholar]
  20. AlamM.M. BollikollaH.B. AmanullahM. HusseinM. VaralaR. Phenyliodine (III) diacetate (PIDA): Applications in rearrangement/migration reactions.Curr. Org. Chem.20232729310710.2174/1385272827666230330105241
    [Google Scholar]
  21. VaralaR. DubasiN. SeemaV. KotraV. Sodium periodate (NaIO4) in organic synthesis.SynOpen20237454855410.1055/a‑2183‑3678
    [Google Scholar]
  22. VaralaR. SeemaV. AmanullahM. RamanaiahS. AlamM.M. Recent advances in hypervalent iodine reagents and m-CPBA mediated oxidative transformations.Curr. Org. Chem.202428748950910.2174/0113852728296345240215111730
    [Google Scholar]
  23. ZhangY. LiC-J. DDQ-mediated direct cross-dehydrogenative-coupling (CDC) between benzyl ethers and simple ketones.J. Am. Chem. Soc.20061281342424243
    [Google Scholar]
  24. LiZ. YuR. LiH. Iron-catalyzed C-C bond formation by direct functionalization of C-H bonds adjacent to heteroatoms.Angew. Chem. Int. Ed.200847397497750010.1002/anie.200802215 18698659
    [Google Scholar]
  25. SharmaA.K. RoyD. SunojR.B. The mechanism of catalytic methylation of 2-phenylpyridine using di-tert-butyl peroxide.Dalton Trans.20144326101831020110.1039/C4DT00250D 24875675
    [Google Scholar]
  26. AntonchickA.P. BurgmannL. Direct selective oxidative cross-coupling of simple alkanes with heteroarenes.Angew. Chem. Int. Ed.201352113267327110.1002/anie.201209584 23364911
    [Google Scholar]
  27. PengH. YuJ.T. JiangY. YangH. ChengJ. Di- tert-butyl peroxide-promoted α-alkylation of α-amino carbonyl compounds by simple alkanes.J. Org. Chem.201479209847985310.1021/jo5017426 25243610
    [Google Scholar]
  28. MinisciF. CitterioA. VismaraE. GiordanoC. Polar effects in free-radical reactions. New synthetic developments in the functionalization of heteroaromatic bases by nucleophilic radicals.Tetrahedron198541194157417010.1016/S0040‑4020(01)97191‑1
    [Google Scholar]
  29. YanG. BorahA.J. WangL. Recent advances in the synthesis of nitroolefin compounds.Org. Biomol. Chem.201412326049605810.1039/C4OB00573B 24963606
    [Google Scholar]
  30. LancianesiS. PalmieriA. PetriniM. Synthetic approaches to 3-(2-nitroalkyl) indoles and their use to access tryptamines and related bioactive compounds.Chem. Rev.2014114147108714910.1021/cr400676v 24905229
    [Google Scholar]
  31. VollaC.M.R. AtodireseiI. RuepingM. Catalytic C-C bond-forming multi-component cascade or domino reactions: pushing the boundaries of complexity in asymmetric organocatalysis.Chem. Rev.201411442390243110.1021/cr400215u 24304297
    [Google Scholar]
  32. LiG. WuL. LvG. LiuH. FuQ. ZhangX. TangZ. Alkyl transfer from C–C cleavage: replacing the nitro group of nitro-olefins.Chem. Commun. (Camb.)201450476246624810.1039/C4CC01119H 24789377
    [Google Scholar]
  33. GeX. Le Mai HoangK. LeowM.L. LiuX.W. Cascade reactions initiated by radical addition of tetrahydrofuran to β-bromonitrostyrenes.RSC Advances2014485451914519710.1039/C4RA08357A
    [Google Scholar]
  34. YuanY. GuoS. Copper-catalyzed alkenylation of alcohols with β-nitrostyrenes via a radical addition-elimination process.Synlett201526141961196810.1055/s‑0034‑1380445
    [Google Scholar]
  35. QuasdorfK.W. OvermanL.E. Catalytic enantioselective synthesis of quaternary carbon stereocentres.Nature2014516753018119110.1038/nature14007 25503231
    [Google Scholar]
  36. MishraN.K. SharmaS. ParkJ. HanS. KimI.S. Recent advances in catalytic C(sp2)-H allylation reactions.ACS Catal.2017742821284710.1021/acscatal.7b00159
    [Google Scholar]
  37. PalS. CotardM. GérardinB. HoarauC. SchneiderC. Cu-Catalyzed oxidative allylic C-H arylation of inexpensive alkenes with (hetero)aryl boronic acids.Org. Lett.20212383130313510.1021/acs.orglett.1c00812 33765389
    [Google Scholar]
  38. SrikrishnaD. GoduguC. DubeyP.K. A review on pharmacological properties of coumarins.Mini Rev. Med. Chem.2018182113141 27488585
    [Google Scholar]
  39. PisaniL. CattoM. MuncipintoG. NicolottiO. CarrieriA. RulloM. StefanachiA. LeonettiF. AltomareC. A twenty-year journey exploring coumarin-based derivatives as bioactive molecules.Front Chem.202210100254710.3389/fchem.2022.1002547 36300022
    [Google Scholar]
  40. MoazzamA. KhodadadiM. JafarpourF. GhandiM. Dual role of oxoaldehydes: Divergent synthesis of 3-aryl- and 3-aroylcoumarins.J. Org. Chem.20228753630363710.1021/acs.joc.1c02159 35112865
    [Google Scholar]
  41. BringmannG. GulderT. GulderT.A.M. BreuningM. Atroposelective total synthesis of axially chiral biaryl natural products.Chem. Rev.2011111256363910.1021/cr100155e 20939606
    [Google Scholar]
  42. FrankeR. SelentD. BörnerA. Applied hydroformylation.Chem. Rev.2012112115675573210.1021/cr3001803 22937803
    [Google Scholar]
  43. LiuY. RenW.M. LiuJ. LuX.B. Asymmetric copolymerization of CO2 with meso-epoxides mediated by dinuclear cobalt(III) complexes: unprecedented enantioselectivity and activity.Angew. Chem. Int. Ed.20135244115941159810.1002/anie.201305154 24019292
    [Google Scholar]
  44. JiaH. HeM. YangS. YuX. BaoM. Visible-light-driven di-t-butyl peroxide-promoted the oxidative homo- and cross-coupling of phenols.Eur. J. Org. Chem.202220228e20210146910.1002/ejoc.202101469
    [Google Scholar]
  45. ChenJ. KirchmeierR.L. ShreeveJ.M. Insertion of fluoroalkenes into activated CH bonds for the preparation of polyfluorinatedSulfanes, alcohols, and acyclic and cyclic ethers.Inorg. Chem.199635236676668110.1021/ic960541i 11666828
    [Google Scholar]
  46. PatilS.V. TankoJ.M. Radical additions of acyclic and cyclic ethers to alkenes via an allyl transfer reaction involving phthalimido-N-oxyl radical.Tetrahedron201672487849785810.1016/j.tet.2016.05.046
    [Google Scholar]
  47. XuY. LiaoY. LinL. ZhouY. LiJ. LiuX. FengX. Catalytic asymmetric inverse-electron demand 1,3-dipolar cycloaddition of isoquinoliniummethylides with enecarbamates by a chiral N,N′-dioxide/Ag(I) complex.ACS Catal.20166258959210.1021/acscatal.5b02178
    [Google Scholar]
  48. KowalkowskaA. JończykA. MaurinJ.K. Domino reaction of pyrrolidinium ylides: Michael addition/[1,2]-Stevens rearrangement.J. Org. Chem.20188374105411010.1021/acs.joc.7b03278 29533069
    [Google Scholar]
  49. FanW.T. LiY. WangD. JiS.J. ZhaoY. Iron-catalyzed highly para-selective difluoromethylation of arenes.J. Am. Chem. Soc.202014249205242053010.1021/jacs.0c09545 33252232
    [Google Scholar]
  50. GaoY. YangC. BaiS. LiuX. WuQ. WangJ. JiangC. QiX. Visible-light-induced nickel-catalyzed cross-coupling with alkylzirconocenes from unactivated alkenes.Chem20206367568810.1016/j.chempr.2019.12.010
    [Google Scholar]
  51. LiB. WangJ. WangJ. ZhaoY. A bipyridine-promoted Csp3-Csp3 coupling of β-chlorophenones.Chem. Asian J.2023188e20230003010.1002/asia.202300030 36869775
    [Google Scholar]
  52. TianT. LiZ. LiC.J. Cross-dehydrogenative coupling: a sustainable reaction for C–C bond formations.Green Chem.202123186789686210.1039/D1GC01871J
    [Google Scholar]
  53. JinL. FengJ. LuG. CaiC. Di-tert-butyl peroxide (DTBP)-mediated oxidative crosscoupling of isochroman and indole derivatives.Adv. Synth. Catal.201535792105211010.1002/adsc.201500048
    [Google Scholar]
  54. SunH. JiangG. 1,2-Alkynyl functionalization of unactivated alkenes via diverse radical-triggered functional group migration.J. Org. Chem.20238816116611167410.1021/acs.joc.3c00975 37552549
    [Google Scholar]
  55. MaoZ. ZhouY. ZhangJ. LiuC. WangC.S. YangX. QinH. FangZ. GuoK. Difunctionalization of alkenes proceeding with radical 1,2-alkynyl migration in batch and continuous-flow modes.New J. Chem.20244841735174010.1039/D3NJ05081E
    [Google Scholar]
  56. ZhangP. ZhangT. CaiP. JiangB. TuS. Bob,J.; Shujiang, T. Study on tert-Butyl radical-initiated 1,2-alkynyl migration.Youji Huaxue20214162408241610.6023/cjoc202101042
    [Google Scholar]
  57. GenschT. HopkinsonM.N. GloriusF. Wencel-DelordJ. Mild metal-catalyzed C–H activation: examples and concepts.Chem. Soc. Rev.201645102900293610.1039/C6CS00075D 27072661
    [Google Scholar]
  58. WangF. YuS. LiX. Transition metal-catalysed couplings between arenes and strained or reactive rings: combination of C–H activation and ring scission.Chem. Soc. Rev.201645236462647710.1039/C6CS00371K 27711636
    [Google Scholar]
  59. HeJ. WasaM. ChanK.S.L. ShaoQ. YuJ.Q. Palladium-catalyzed transformations of alkyl C-H bonds.Chem. Rev.2017117138754878610.1021/acs.chemrev.6b00622 28697604
    [Google Scholar]
  60. CrabtreeR.H. LeiA. Introduction: CH activation.Chem. Rev.2017117138481848210.1021/acs.chemrev.7b00307 28697603
    [Google Scholar]
  61. LiuC. YuanJ. GaoM. TangS. LiW. ShiR. LeiA. Oxidative coupling between two hydrocarbons: An update of recent C-H functionalizations.Chem. Rev.201511522121381220410.1021/cr500431s 26558751
    [Google Scholar]
  62. YangY. LanJ. YouJ. Oxidative C-H/C-H coupling reactions between two (hetero) arenes.Chem. Rev.2017117138787886310.1021/acs.chemrev.6b00567 28085272
    [Google Scholar]
  63. LiQ. HuW. HuR. LuH. LiG. Cobalt-catalyzed cross-dehydrogenative coupling reaction between unactivated C(sp2)-H and C(sp3)-H Bonds.Org. Lett.201719174676467910.1021/acs.orglett.7b02316 28829611
    [Google Scholar]
  64. MilanM. SalamoneM. CostasM. BiettiM. The quest for selectivity in hydrogen atom transfer based aliphatic C-H bond oxygenation.Acc. Chem. Res.20185191984199510.1021/acs.accounts.8b00231 30080039
    [Google Scholar]
  65. WhiteM.C. ZhaoJ. Aliphatic C-H oxidations for late-stage functionalization.J. Am. Chem. Soc.201814043139881400910.1021/jacs.8b05195 30185033
    [Google Scholar]
  66. KippoT. HamaokaK. UedaM. FukuyamaT. RyuI. Radical bromoallylation of alkynes leading to 1-bromo-1,4-dienes.Tetrahedron201672487866787410.1016/j.tet.2016.05.084
    [Google Scholar]
  67. KippoT. KimuraY. UedaM. FukuyamaT. RyuI. Bromine-radical-mediated synthesis of β-functionalized β,γ- and δ,ε-unsaturated ketones via C–H functionalization of aldehydes.Synlett201728141733173710.1055/s‑0036‑1588494
    [Google Scholar]
  68. KippoT. HamaokaK. UedaM. FukuyamaT. RyuI. Bromoallylation of alkenes leading to 4-alkenyl bromides based on trapping of β-bromoalkyl radicals.Org. Lett.201719195198520010.1021/acs.orglett.7b02471 28945430
    [Google Scholar]
  69. UedaM. MaedaA. HamaokaK. SasanoM. FukuyamaT. RyuI. Bromine-radical-mediated site-selective allylation of C(sp3)-H bonds.Synthesis20195151171117710.1055/s‑0037‑1610413
    [Google Scholar]
  70. LópezR. PalomoC. Cyanoalkylation: Alkylnitriles in catalytic C-C bond‐forming reactions.Angew. Chem. Int. Ed.20155445131701318410.1002/anie.201502493 26387483
    [Google Scholar]
  71. AlemánJ. ReyesE. RichterB. OvergaardJ. JørgensenK.A. Organocatalytic asymmetric “anti-Michael” reaction of β-ketoesters.Chem. Commun. (Camb.)2007383921392310.1039/b710393j 17896033
    [Google Scholar]
  72. WangC. LiY. GongM. WuQ. ZhangJ. KimJ.K. HuangM. WuY. Method for direct synthesis of α-cyanomethyl-β-dicarbonyl compounds with acetonitrile and 1,3-dicarbonyls.Org. Lett.201618174151415310.1021/acs.orglett.6b01871 27512940
    [Google Scholar]
  73. AwasthiD. KumarK. KnudsonS.E. SlaydenR.A. OjimaI. SAR studies on trisubstituted benzimidazoles as inhibitors of Mtb FtsZ for the development of novel antitubercular agents.J. Med. Chem.201356239756977010.1021/jm401468w 24266862
    [Google Scholar]
  74. KuttyS.K. BarraudN. PhamA. IskanderG. RiceS.A. BlackD.S. KumarN. Design, synthesis, and evaluation of fimbrolide-nitric oxide donor hybrids as antimicrobial agents.J. Med. Chem.201356239517952910.1021/jm400951f 24191659
    [Google Scholar]
  75. HocekM. NaušP. PohlR. VotrubaI. FurmanP.A. TharnishP.M. OttoM.J. Cytostatic 6-arylpurine nucleosides. 6. SAR in anti-HCV and cytostatic activity of extended series of 6-hetarylpurine ribonucleosides.J. Med. Chem.200548185869587310.1021/jm050335x 16134952
    [Google Scholar]
  76. KuchařM. PohlR. KlepetářováB. VotrubaI. HocekM. Synthesis of substituted 6-cyclopropylpurine bases and nucleosides by cross-coupling reactions or cyclopropanations.Org. Biomol. Chem.20086132377238710.1039/b802833h 18563272
    [Google Scholar]
  77. WangD.C. XiaR. XieM.S. QuG.R. GuoH.M. Synthesis of cycloalkyl substituted purine nucleosides via a metal-free radical route.Org. Biomol. Chem.201614184189419310.1039/C6OB00596A 27101306
    [Google Scholar]
  78. GallifordC.V. ScheidtK.A. Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents.Angew. Chem. Int. Ed.200746468748875810.1002/anie.200701342 17943924
    [Google Scholar]
  79. ZhangF.L. LiB. HoukK.N. WangY.F. Application of the spin-center shift in organic synthesis.JACS Au2022251032104210.1021/jacsau.2c00051 35647602
    [Google Scholar]
  80. SimurT.T. PengT.Y. WangY.F. WuX.W. ZhangF.L. Boryl radical-promoted dehydroxylative alkylation of 3-hydroxyoxindole derivatives.Org. Lett.202325132270227410.1021/acs.orglett.3c00521 36961306
    [Google Scholar]
  81. ShiX. HeY. ZhangX. FanX. FeCl3-Catalyzed cascade reactions of cyclic amines with 2-oxo-2-arylacetic acids toward furan-2(5H)-one fused N,O-bicyclic bompounds.Adv. Synth. Catal.2018360226126610.1002/adsc.201701053
    [Google Scholar]
  82. ShiX. ChenX. WangM. ZhangX. FanX. Regioselective synthesis of acylated N-heterocycles via the cascade reactions of saturated cyclic amines with 2-oxo-2-arylacetic acids.J. Org. Chem.201883126524653310.1021/acs.joc.8b00805 29756782
    [Google Scholar]
  83. KaurM. SinghM. ChadhaN. SilakariO. Oxindole: A chemical prism carrying plethora of therapeutic benefits.Eur. J. Med. Chem.201612385889410.1016/j.ejmech.2016.08.011 27543880
    [Google Scholar]
  84. ZhouL.M. QuR.Y. YangG.F. An overview of spirooxindole as a promising scaffold for novel drug discovery.Expert Opin. Drug Discov.202015560362510.1080/17460441.2020.1733526 32106717
    [Google Scholar]
  85. MeanwellN.A. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design.J. Med. Chem.201861145822588010.1021/acs.jmedchem.7b01788 29400967
    [Google Scholar]
  86. SimurT.T. DagnawF.W. YuY.J. ZhangF.L. WangY.F. Study on 4-dimethylaminopyridine-boryl radical promoted monodefluorinative alkylation of 3,3-difluorooxindoles.Chin. J. Chem.202240557758110.1002/cjoc.202100784
    [Google Scholar]
  87. SunS. FuJ. Methyl-containing pharmaceuticals: Methylation in drug design.Bioorg. Med. Chem. Lett.201828203283328910.1016/j.bmcl.2018.09.016 30243589
    [Google Scholar]
  88. SchönherrH. CernakT. Profound methyl effects in drug discovery and a call for new C-H methylation reactions.Angew. Chem. Int. Ed.20135247122561226710.1002/anie.201303207 24151256
    [Google Scholar]
  89. VasilopoulosA. KrskaS.W. StahlS.S.C. (sp 3)–H methylation enabled by peroxide photosensitization and Ni-mediated radical coupling.Science2021372654039840310.1126/science.abh2623 33888639
    [Google Scholar]
  90. LiuD. YuL. YuY. XiaZ. SongZ. LiaoL. TanZ. ChenX. Nickel-catalyzed ortho C-H methylation of aromatic amides with di-tert-butyl peroxide as methylation reagent.Eur. J. Org. Chem.20192019416930693410.1002/ejoc.201901211
    [Google Scholar]
  91. MassonG. CourantT. DagoussetG. Enamide derivatives: versatile building blocks for total synthesis.Synthesis201547131799185610.1055/s‑0034‑1378706
    [Google Scholar]
  92. XieJ. JinH. HashmiA.S.K. The recent achievements of redox-neutral radical C–C cross-coupling enabled by visible-light.Chem. Soc. Rev.201746175193520310.1039/C7CS00339K 28762417
    [Google Scholar]
  93. ShiP. LiS. HuL.M. WangC. LohT.P. HuX.H. The ruthenium-catalyzed C–H functionalization of enamides with isocyanates: easy entry to pyrimidin-4-ones.Chem. Commun. (Camb.)20195574111151111810.1039/C9CC03612A 31461097
    [Google Scholar]
  94. ShenZ.Y. ChengJ.K. WangC. YuanC. LohT.P. HuX.H. Iron-catalyzed carbamoylation of enamides with formamides as a direct approach to N-acyl enamine amides.ACS Catal.2019998128813510.1021/acscatal.9b02635
    [Google Scholar]
  95. LiuR.H. ShenZ.Y. WangC. LohT.P. HuX.H. Selective dehydrogenative acylation of enamides with aldehydes leading to valuable β-ketoenamides.Org. Lett.202022394494910.1021/acs.orglett.9b04495 31971809
    [Google Scholar]
  96. GirardS.A. KnauberT. LiC.J. The cross-dehydrogenative coupling of C(sp3)-H bonds: a versatile strategy for C-C bond formations.Angew. Chem. Int. Ed.20145317410010.1002/anie.201304268 24214829
    [Google Scholar]
  97. TranB.L. LiB. DriessM. HartwigJ.F. Copper-catalyzed intermolecular amidation and imidation of unactivated alkanes.J. Am. Chem. Soc.201413662555256310.1021/ja411912p 24405209
    [Google Scholar]
  98. ZhaoJ. FangH. SongR. ZhouJ. HanJ. PanY. Metal-free oxidative C(sp3)–H bond functionalization of alkanes and alkylation-initiated radical 1,2-aryl migration in α,α-diaryl allylic alcohols.Chem. Commun. (Camb.)201551359960210.1039/C4CC07654K 25415337
    [Google Scholar]
  99. ShenC. ZhangP. SunQ. BaiS. HorT.S.A. LiuX. Recent advances in C–S bond formation via C–H bond functionalization and decarboxylation.Chem. Soc. Rev.201544129131410.1039/C4CS00239C 25309983
    [Google Scholar]
  100. JiJ. LiuP. SunP. Peroxide promoted tunable decarboxylative alkylation of cinnamic acids to form alkenes or ketones under metal-free conditions.Chem. Commun. (Camb.)201551357546754910.1039/C5CC01762A 25847275
    [Google Scholar]
  101. GillardR.M. SperryJ. Synthesis of 2-(3′-Indolyl)tetrahydrofurans by oxidative cycloetherification.J. Org. Chem.20158052900290610.1021/acs.joc.5b00112 25679438
    [Google Scholar]
  102. HolmesM. KwonD. TaronM. BrittonR. Total synthesis of amphirionin-4.Org. Lett.201517153868387110.1021/acs.orglett.5b01844 26172382
    [Google Scholar]
  103. GuH. WangC. Rhenium-catalyzed dehydrogenative olefination of C(sp 3)–H bonds with hypervalent iodine(III) reagents.Org. Biomol. Chem.201513215880588410.1039/C5OB00619H 25925137
    [Google Scholar]
  104. JinL.K. WanL. FengJ. CaiC. Nickel-catalyzed regioselective cross-dehydrogenative coupling of inactive C(sp3)-H bonds with indole derivatives.Org. Lett.201517194726472910.1021/acs.orglett.5b02217 26366464
    [Google Scholar]
  105. SchrockR.R. HoveydaA.H. Asymmetric metathesis reactions involving achiral and meso substrates.WO 2000002834 A12000
  106. PuL. Enantioselective fluorescent sensors: A tale of BINOL.Acc. Chem. Res.201245215016310.1021/ar200048d 21834528
    [Google Scholar]
  107. Grant-OvertonS. BussJ.A. SmithE.H. GutierrezE.G. MoorheadE.J. LinV.S. WenzelA.G. Efficient microwave method for the oxidative coupling of phenols.Synth. Commun.201545333133710.1080/00397911.2014.956370
    [Google Scholar]
  108. MaH. YuT. YouS. ZhangM.Z. DengC. Synthesis of nitro‐containing isoquinoline‐1,3‐diones with tert‐butyl nitrite.J. Heterocycl. Chem.202461233133510.1002/jhet.4762
    [Google Scholar]
  109. DiRoccoD.A. DykstraK. KrskaS. VachalP. ConwayD.V. TudgeM. Late-stage functionalization of biologically active heterocycles through photoredox catalysis.Angew. Chem. Int. Ed.201453194802480610.1002/anie.201402023 24677697
    [Google Scholar]
  110. GuiJ. ZhouQ. PanC.M. YabeY. BurnsA.C. CollinsM.R. OrnelasM.A. IshiharaY. BaranP.S. C-H methylation of heteroarenes inspired by radical SAM methyl transferase.J. Am. Chem. Soc.2014136134853485610.1021/ja5007838 24611732
    [Google Scholar]
  111. WangX. StuderA. Iodine(III) reagents in radical chemistry.Acc. Chem. Res.20175071712172410.1021/acs.accounts.7b00148 28636313
    [Google Scholar]
  112. LanX.W. WangN.X. XingY. Recent advances in radical difunctionalization of simple alkenes.Eur. J. Org. Chem.20172017395821585110.1002/ejoc.201700678
    [Google Scholar]
  113. YiH. ZhangG. WangH. HuangZ. WangJ. SinghA.K. LeiA. Recent advances in radical C-H activation/radical cross-coupling.Chem. Rev.2017117139016908510.1021/acs.chemrev.6b00620 28639787
    [Google Scholar]
  114. TongC.L. XuX.H. QingF.L. Oxidative hydro-, bromo-, and chloro hepta fluoroisopropylation of unactivated alkenes with hepta fluoro isopropyl silver.Org. Lett.201921239532953510.1021/acs.orglett.9b03705 31736315
    [Google Scholar]
  115. WuL.H. ZhaoK. ShenZ.L. LohT.P. Copper-catalyzed trifluoromethylation of styrene derivatives with CF 3 SO 2 Na.Org. Chem. Front.2017491872187510.1039/C7QO00416H
    [Google Scholar]
  116. ZhaoJ. LiuR.X. LuoC.P. YangL. Radical-dual-difunctionalization and trifluoromethylative decarboxylation of two different alkenes.Org. Lett.202022176776677910.1021/acs.orglett.0c02267 32820933
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298333423241022033447
Loading
/content/journals/mroc/10.2174/0118756298333423241022033447
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test