Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

In recent years, photochemical organic conversion promoted by visible light has attracted the interest of many organic chemists. Compared with the traditional methods, visible light as the photocatalytic oxidation of renewable energy has been proved to be a mild and powerful tool that can promote the activation of organic molecules through the single electron transfer (SET) process. Katritzky salt has been widely used in organic synthesis and drug preparation due to its convenient synthesis, easy availability of raw materials and high stability. These large Katritzky salts derived from amines can easily generate carbon radicals and conduct various organic conversion reactions. At present, this research has become an important research field of organic synthesis. This paper reviews the research results of coupling reactions of Carbon-Carbon bond formation involving visible light promoted Katritzky salts since 2020, and discusses representative examples and reaction mechanisms.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298307537240722112735
2024-10-01
2025-09-09
Loading full text...

Full text loading...

References

  1. HanF.S. Transition-metal-catalyzed Suzuki–Miyaura cross-coupling reactions: A remarkable advance from palladium to nickel catalysts.Chem. Soc. Rev.201342125270529810.1039/c3cs35521g 23460083
    [Google Scholar]
  2. KaduB.S. Suzuki–Miyaura cross coupling reaction: Recent advancements in catalysis and organic synthesis.Catal. Sci. Technol.20211141186122110.1039/D0CY02059A
    [Google Scholar]
  3. AminiM. BagherzadehM. RostamniaS. Efficient imidazolium salts for palladium-catalyzed Mizoroki–Heck and Suzuki–Miyaura cross-coupling reactions.Chin. Chem. Lett.201324543343610.1016/j.cclet.2013.03.025
    [Google Scholar]
  4. AlamgholilooH. RostamniaR. HassankhaniA. KhalafyJ. BaradaraniM.M. MahmoudiG. LiuX. Stepwise post-modification immobilization of palladium Schiff-base complex on to the OMS-Cu (BDC) metal-organic framework for Mizoroki-Heck cross-coupling reaction.Appl. Organometal Chem.20182018e453910.1002/aoc.4539
    [Google Scholar]
  5. RostamniaS. ZeinizadehB. DoustkhahE. Exfoliated Pd decorated graphene oxide nanosheets (PdNP-GO/P123): Non-toxic, ligandless and recyclable in greener Hiyama cross-coupling reaction.J. Colloid. Interf. Sci.2015304010.1016/j.jcis.2015.03.040
    [Google Scholar]
  6. MoradiL. SadeghiS.H. Efficient pathway for the synthesis of amido alkyl derivatives using KCC-1/PMA immobilized on magnetic MnO2 nanowires as recyclable solid acid catalyst.J. Mol. Struct.2022202213447710.1016/j.molstruc
    [Google Scholar]
  7. AhadiA. RostamniaS. PanahiP. WilsonL. KongQ. AnZ. ShokouhimehrM. Palladium comprising dicationic bipyridinium supported periodic mesoporous organosilica (PMO): Pd@Bipy–PMO as an efficient hybrid catalyst for suzuki–miyaura cross-coupling reaction in water.Catalysts20199214010.3390/catal9020140
    [Google Scholar]
  8. WangS.S. YangG.Y. Recent developments in low-cost TM-catalyzed Heck-type reactions (TM = transition metal, Ni, Co, Cu, and Fe).Catal. Sci. Technol.2016692862287610.1039/C5CY02235E
    [Google Scholar]
  9. KoranneA. TurakhiaS. JhaV.K. GuptaS. RaviR. MishraA. AggarwalA.K. JhaC.K. DheerN. JhaA.K. The Mizoroki–Heck reaction between in situ generated alkenes and aryl halides: cross-coupling route to substituted olefins.RSC Advances20231332225122252810.1039/D3RA03533F 37497097
    [Google Scholar]
  10. HapkeM. BrandtL. LützenA. Versatile tools in the construction of substituted 2,2′-bipyridines—cross-coupling reactions with tin, zinc and boron compounds.Chem. Soc. Rev.200837122782279710.1039/b810973g 19020687
    [Google Scholar]
  11. RinuP.X.T. PhilipR.M. AnilkumarG. AnilkumarG. Low-cost transition metal catalysed Negishi coupling: An update.Org. Biomol. Chem.202321326438645510.1039/D3OB00784G 37522832
    [Google Scholar]
  12. ChinchillaR. NájeraC. Recent advances in Sonogashira reactions.Chem. Soc. Rev.201140105084512110.1039/c1cs15071e 21655588
    [Google Scholar]
  13. NicewiczD.A. MacMillanD.W.C. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes.Science20083225898778010.1126/science.1161976 18772399
    [Google Scholar]
  14. PrierC.K. RankicD.A. MacMillanD.W.C. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis.Chem. Rev.201311375322536310.1021/cr300503r 23509883
    [Google Scholar]
  15. YoonT.P. IschayM.A. DuJ. Visible light photocatalysis as a greener approach to photochemical synthesis.Nat. Chem.20102752753210.1038/nchem.687 20571569
    [Google Scholar]
  16. SchultzD.M. YoonT.P. Solar synthesis: Prospects in visible light photocatalysis.Science20143436174123917610.1126/science.1239176 24578578
    [Google Scholar]
  17. GanZ. LiG. YangX. YanQ. XuG. LiG. JiangY.Y. YangD. Visible-light-induced regioselective cross-dehydrogenative coupling of 2-isothiocyanatonaphthalenes with amines using molecular oxygen.Sci. China Chem.202063111652165810.1007/s11426‑020‑9811‑6
    [Google Scholar]
  18. WangL. ZhangM. ZhangY. LiuQ. ZhaoX. LiJ.S. LuoZ. WeiW. Metal-free visible-light-induced oxidative cyclization reaction of 1,6-enynes and arylsulfinic acids leading to sulfonylated benzofurans.Chin. Chem. Lett.2020311677010.1016/j.cclet.2019.05.041
    [Google Scholar]
  19. JohnsonM.W. HannounK.I. TanY. FuG.C. PetersJ.C. A mechanistic investigation of the photoinduced, copper-mediated cross-coupling of an aryl thiol with an aryl halide.Chem. Sci.2016774091410010.1039/C5SC04709A 28044096
    [Google Scholar]
  20. JouffroyM. KellyC.B. MolanderG.A. Thioetherification via photoredox/nickel dual catalysis.Org. Lett.201618487687910.1021/acs.orglett.6b00208 26852821
    [Google Scholar]
  21. BellJ.D. MurphyJ.A. Recent advances in visible light-activated radical coupling reactions triggered by (i) ruthenium, (ii) iridium and (iii) organic photoredox agents.Chem. Soc. Rev.202150179540968510.1039/D1CS00311A 34309610
    [Google Scholar]
  22. HeS. LiH. ChenX. KrylovI.B. Terent’evA.O. QuL. YuB. Advances of N -hydroxyphthalimide esters in photocatalytic alkylation reactions.Youji Huaxue202141124661468910.6023/cjoc202105041
    [Google Scholar]
  23. KongY.L. XuW.X. LiuX.H. WengJ.Q. Visible light-induced hydroxyalkylation of 2H-benzothiazoles with alcohols via selectfluor oxidation.Chin. Chem. Lett.20203132453249
    [Google Scholar]
  24. GuoW. TaoK. TanW. ZhaoM. ZhengL. FanX. Recent advances in photocatalytic C–S/P–S bond formation via the generation of sulfur centered radicals and functionalization.Org. Chem. Front.20196122048206610.1039/C8QO01353E
    [Google Scholar]
  25. SrivastavaV. SinghP.K. SrivastavaA. SinghP.P. Recent application of visible-light induced radicals in C–S bond formation.RSC Advances20201034200462005610.1039/D0RA03086D 35520400
    [Google Scholar]
  26. PengS. LinY. HeW. Visible light-induced aldehyde reductive minisci reaction towards N-heterocycles.Youji Huaxue202040254154210.6023/cjoc202000006
    [Google Scholar]
  27. SundaraveluN. NandyA. SekarG. Visible light mediated photocatalyst free C–S cross coupling: Domino synthesis of thiochromane derivatives via photoinduced electron transfer.Org. Lett.20212383115311910.1021/acs.orglett.1c00806 33826352
    [Google Scholar]
  28. BaiJ. YanS. ZhangZ. GuoZ. ZhouC.Y. Visible-light carbon nitride-catalyzed aerobic cyclization of thiobenzanilides under ambient air conditions.Org. Lett.202123124843484810.1021/acs.orglett.1c01571 34076439
    [Google Scholar]
  29. XuQ. ZhouX. ZhangS. PanL. LiuQ. LiY. Visible-light-induced sulfur-alkenylation of alkenes.Org. Lett.202123124870487510.1021/acs.orglett.1c01596 34109797
    [Google Scholar]
  30. SunK. LiG. LiY. YuJ. ZhaoQ. ZhangZ. ZhangG. Oxidative radical relay functionalization for the synthesis of benzimidazo[2,1‐ a]iso‐quinolin‐6(5 H)‐ones.Adv. Synth. Catal.2020362101947195410.1002/adsc.202000040
    [Google Scholar]
  31. WuC. BianQ. DingT. TangM. ZhangW. XuY. LiuB. XuH. LiH.B. FuH. Photoinduced iron-catalyzed ipso -nitration of aryl halides via single-electron transfer.ACS Catal.202111159561956810.1021/acscatal.1c02272
    [Google Scholar]
  32. YuX.Y. ChenJ.R. XiaoW.J. Visible light-driven radical-mediated C–C bond cleavage/functionalization in organic synthesis.Chem. Rev.2021121150656110.1021/acs.chemrev.0c00030 32469528
    [Google Scholar]
  33. ChanA.Y. PerryI.B. BissonnetteN.B. BukshB.F. EdwardsG.A. FryeL.I. GarryO.L. LavagninoM.N. LiB.X. LiangY. MaoE. MilletA. OakleyJ.V. ReedN.L. SakaiH.A. SeathC.P. MacMillanD.W.C. Metallaphotoredox: The merger of photoredox and transition metal catalysis.Chem. Rev.202212221485154210.1021/acs.chemrev.1c00383 34793128
    [Google Scholar]
  34. RomeroN.A. NicewiczD.A. Organic photoredox catalysis.Chem. Rev.201611617100751016610.1021/acs.chemrev.6b00057 27285582
    [Google Scholar]
  35. SkubiK.L. BlumT.R. YoonT.P. Dual catalysis strategies in photochemical synthesis.Chem. Rev.201611617100351007410.1021/acs.chemrev.6b00018 27109441
    [Google Scholar]
  36. ChenY. LuL.Q. YuD.G. ZhuC.J. XiaoW.J. Visible light-driven organic photochemical synthesis in China.Sci. China Chem.2019621245710.1007/s11426‑018‑9399‑2
    [Google Scholar]
  37. ZhouQ.Q. ZouY.Q. LuL.Q. XiaoW.J. Visible-light-induced organic photochemical reactions through energy-transfer pathways.Angew. Chem. Int. Ed. Engl.20195861586160410.1002/anie.201803102
    [Google Scholar]
  38. MeiQ. Recent progress of visible light-induced the synthesis of C-3 (hetero) aryl thio indole compounds.Chin. J. Organ. Chem.202344239810.6023/cjoc202308008
    [Google Scholar]
  39. CandishL. CollinsK.D. CookG.C. DouglasJ.J. Gómez-SuárezA. JolitA. KeessS. Photocatalysis in the life science industry.Chem. Rev.202212222907298010.1021/acs.chemrev.1c00416 34558888
    [Google Scholar]
  40. HeF.S. YeS. WuJ. Recent advances in pyridinium salts as radical reservoirs in organic synthesis.ACS Catal.20199108943896010.1021/acscatal.9b03084
    [Google Scholar]
  41. KongD. MoonP.J. LundgrenR.J. Radical coupling from alkyl amines.Nat. Catal.20192647347610.1038/s41929‑019‑0292‑9
    [Google Scholar]
  42. M CorreiaJ.T. A FernandesV. MatsuoB.T. C DelgadoJ.A. de SouzaW.C. PaixãoM.W. Photoinduced deaminative strategies: Katritzky salts as alkyl radical precursors.Chem. Commun.202056450351410.1039/C9CC08348K 31850410
    [Google Scholar]
  43. RösslerS.L. JelierB.J. MagnierE. DagoussetG. CarreiraE.M. TogniA. Pyridinium salts as redox-active functional group transfer reagents.Angew. Chem. Int. Ed. Engl.202059249264928010.1002/anie.201911660
    [Google Scholar]
  44. LiY.N. XiaoF. GuoY. ZengY.F. Recent developments in deaminative functionalization of alkyl amines.Eur. J. Org. Chem.2021202181215122810.1002/ejoc.202001193
    [Google Scholar]
  45. YousifA.M. ColarussoS. BianchiE. Katritzky salts for the synthesis of unnatural amino acids and late‐stage functionalization of peptides.Eur. J. Org. Chem.20232612e20220127410.1002/ejoc.202201274
    [Google Scholar]
  46. KlauckF.J.R. YoonH. JamesM.J. LautensM. GloriusF. Visible-light-mediated deaminative three-component dicarbofunctionalization of styrenes with benzylic radicals.ACS Catal.20199123624110.1021/acscatal.8b04191
    [Google Scholar]
  47. SunS.Z. RomanoC. MartinR. Site-selective catalytic deaminative alkylation of unactivated olefins.J. Am. Chem. Soc.201914141161971620110.1021/jacs.9b07489
    [Google Scholar]
  48. WangC. QiR. XueH. ShenY. ChangM. ChenY. WangR. XuZ. Visible-light-promoted C(sp3)−H alkylation by intermolecular charge transfer: Preparation of unnatural α-amino acids and late-stage modification of peptides.Angew. Chem. Int. Ed.20205974617466
    [Google Scholar]
  49. YangT. WeiY. KohM.J. Photoinduced nickel-catalyzed deaminative cross- electrophile coupling for C(sp2)−C(sp3) and C(sp3)−C(sp3) bond formation.ACS Catal.20211165196525
    [Google Scholar]
  50. SunS.Z. CaiY.M. ZhangD.L. WangJ.B. YaoH.Q. RuiX.Y. MartinR. ShangM. Enantioselective deaminative alkylation of amino acid derivatives with unactivated olefins.J. Am. Chem. Soc.202214431130113710.1021/jacs.1c12350 35029378
    [Google Scholar]
  51. WangK. LiuX. YangS. TianY. ZhouM. ZhouJ. JiaX. LiB. LiuS. ChenJ. In situ alkyl radical recycling-driven decoupled electrophotochemical deamination.Org. Lett.202224193471347610.1021/acs.orglett.2c01022 35546086
    [Google Scholar]
  52. KlauckF.J.R. JamesM.J. GloriusF. Deaminative strategy for the visible‐light‐mediated generation of alkyl radicals.Angew. Chem. Int. Ed.20175640123361233910.1002/anie.201706896 28762257
    [Google Scholar]
  53. LiaoJ. GuanW. BoscoeB.P. TuckerJ.W. TomlinJ.W. GarnseyM.R. WatsonM.P. Transforming benzylic amines into diarylmethanes: Cross-couplings of benzylic pyridinium salts via C–N bond activation.Org. Lett.201820103030303310.1021/acs.orglett.8b01062 29745674
    [Google Scholar]
  54. YueH. ZhuC. ShenL. GengQ. HockK.J. YuanT. CavalloL. RuepingM. Nickel-catalyzed C−N bond activation: Activated primary amines as alkylating reagents in reductive cross-coupling.Chem. Sci.20191044304435
    [Google Scholar]
  55. YiJ. BadirS.O. KammerL.M. RibagordaM. MolanderG.A. Deaminative reductive arylation enabled by nickel/photoredox dual catalysis.Org. Lett.20192133463351
    [Google Scholar]
  56. CuiP. LiS. WangX. LiM. WangC. WuL. Visible-light-promoted unsymmetrical phosphine synthesis from benzylamines.Org. Lett.20222471566157010.1021/acs.orglett.2c00317 35157457
    [Google Scholar]
  57. WesenbergL.J. SivoA. ViléG. NoëlT. Ni-catalyzed electro-reductive cross-electrophile couplings of alkyl amine-derived radical precursors with aryl iodides.J. Org. Chem.20238822161211612510.1021/acs.joc.3c00859
    [Google Scholar]
  58. ZhangM.M. LiuF. Visible-light-mediated allylation of alkyl radicals with allylic sulfones via a deaminative strategy.Org. Chem. Front.20185233443344610.1039/C8QO01046C
    [Google Scholar]
  59. WuJ. GrantP.S. LiX. NobleA. AggarwalV.K. Catalyst‐free deaminative functionalizations of primary amines by photoinduced single‐electron transfer.Angew. Chem. Int. Ed.201958175697570110.1002/anie.201814452 30794331
    [Google Scholar]
  60. LübbesmeyerM. MackayE.G. RaycroftM.A.R. ElfertJ. PrattD.A. StuderA. Base-promoted C–C bond activation enables radical allylation with homoallylic alcohols.J. Am. Chem. Soc.202014252609261610.1021/jacs.9b12343 31941267
    [Google Scholar]
  61. LiuY. TaoX. MaoY. YuanX. QiuJ. KongL. NiS. GuoK. WangY. PanY. Electrochemical C–N bond activation for deaminative reductive coupling of Katritzky salts.Nat. Commun.2021121674510.1038/s41467‑021‑27060‑7 34799580
    [Google Scholar]
  62. ZhuT. ShenJ. SunY. WuJ. Deaminative metal-free reaction of alkenylboronic acids, sodium metabisulfite and Katritzky salts.Chem. Commun.202157791591810.1039/D0CC07632E 33393531
    [Google Scholar]
  63. OciepaM. TurkowskaJ. GrykoD. Redox-activated amines in C(sp3)−C(sp) and C(sp3)−C(sp2) bond formation enabled by metal-free photoredox catalysis.ACS Catal.201881136211367
    [Google Scholar]
  64. YinJ. ZhangX. ZhaoL. LuoM. GuoL. YangC. XiaW. Electrochemically enabled C(sp 3)–C(sp) cross-coupling of alkyl iodides, N -hydroxyphthalimide esters, and Katritzky salts with acetylenic sulfones.Org. Chem. Front.202310184679468610.1039/D3QO00844D
    [Google Scholar]
  65. LaiS.Z. YangY.M. XuH. TangZ.Y. LuoZ.Z. Photoinduced deaminative coupling of alkylpyridium salts with terminal arylalkynes.J. Org. Chem.20208523156381564410.1021/acs.joc.0c01928
    [Google Scholar]
  66. HuangY. LiuZ. LiuW.H. Deaminative addition of alkylpyridinium salt to aldehyde.Org. Lett.202325264934493910.1021/acs.orglett.3c01724 37364276
    [Google Scholar]
  67. KimI.; Im, H.; Lee, H.; Hong, S. N-Heterocyclic carbene-catalyzed deaminative cross-coupling of aldehydes with Katritzky pyridinium salts.Chem. Sci.202011123192319710.1039/D0SC00225A 34122824
    [Google Scholar]
  68. CuiP.L. LiS.D. WangX.J. LiM. WangC. WuL.P. Nickel-catalyzed deaminative acylation of activated aliphatic amines with aromatic amides via C–N bond activation.Org. Lett.2022223950955
    [Google Scholar]
  69. ZhaoF. LiC.L. WuX.F. Deaminative carbonylative coupling of alkylamines with styrenes under transition-metal-free conditions.Chem. Commun.202056649182918510.1039/D0CC04062B 32661525
    [Google Scholar]
  70. WangX. KuangY. YeS. WuJ. Photoredox-catalyzed synthesis of sulfones through deaminative insertion of sulfur dioxide.Chem. Commun.20195599149621496410.1039/C9CC08333B 31774418
    [Google Scholar]
  71. AndrewsJ.A. PantaineL.R.E. PalmerC.F. PooleD.L. WillisM.C. Sulfinates from Amines: A radical approach to alkyl sulfonyl derivatives via donor–acceptor activation of pyridinium salts.Org. Lett.202123218488849310.1021/acs.orglett.1c03194 34648294
    [Google Scholar]
  72. DasK.K. PaulS. PandaS. Transition metal-free synthesis of alkyl pinacol boronates.Org. Biomol. Chem.202018448939897410.1039/D0OB01721C 33146221
    [Google Scholar]
  73. CorcéV. OllivierC. FensterbankL. Boron, silicon, nitrogen and sulfur-based contemporary precursors for the generation of alkyl radicals by single electron transfer and their synthetic utilization.Chem. Soc. Rev.20225114701510
    [Google Scholar]
  74. GaoY. JiangS. MaoN.D. XiangH. DuanJ.L. YeX.Y. WangL.W. YeY. XieT. Recent progress in fragmentation of katritzky salts enabling formation of C–C, C–B, and C–S bonds.Top. Curr. Chem.202238042510.1007/s41061‑022‑00381‑x 35585362
    [Google Scholar]
  75. YangM. CaoT. XuT. LiaoS. Visible-light-induced deaminative thioesterification of amino acid derived katritzky salts via electron donor–acceptor complex formation.Org. Lett.201921218673867810.1021/acs.orglett.9b03284 31638821
    [Google Scholar]
  76. TcyrulnikovS. CaiQ. TwittyJ.C. XuJ. AtifiA. BercherO.P. YapG.P.A. RosenthalJ. WatsonM.P. KozlowskiM.C. Dissection of alkylpyridinium structures to understand deamination reactions.ACS Catal.202111148456846610.1021/acscatal.1c01860 34745709
    [Google Scholar]
  77. HuanF. ChenQ.Y. GuoY. Visible light-induced photoredox construction of trifluoromethylated quaternary carbon centers from trifluoromethylated tertiary Bromides.J. Org. Chem.201681167051706310.1021/acs.joc.6b00930 27438228
    [Google Scholar]
  78. PanferovaL.I. ChernovG.N. LevinV.V. KokorekinV.A. DilmanA.D. Photoredox mediated annelation of iododifluoromethylated alcohols with 1,1-diarylethylenes.Tetrahedron201874507136714210.1016/j.tet.2018.10.062
    [Google Scholar]
  79. CaiS.H. WangD.X. YeL. LiuZ.Y. FengC. LohT.P. Pyrroline synthesis via visible‐light‐promoted hydroimination of unactivated alkenes with N, N′ ‐Dimethylpropylene urea as H‐donor.Adv. Synth. Catal.201836061262126610.1002/adsc.201700937
    [Google Scholar]
  80. ZhangH. ZhangP.X. JiangM. YangH.J. FuH. Merging photoredox with copper catalysis: Decarboxylative alkynylation of α-amino acid derivatives.Org. Lett.20171910161019
    [Google Scholar]
  81. SchönbauerD. SambiagioC. NoëlT. SchnürchM. Photocatalytic deaminative benzylation and alkylation of tetrahydroisoquinolines with N -alkylpyrydinium salts.Beilstein J. Org. Chem.20201680981710.3762/bjoc.16.74 32395184
    [Google Scholar]
  82. HuangY. JiaJ. HuangQ.P. ZhaoL. WangP. GuJ. HeC.Y. Visible light promoted deaminative difluoroalkylation of aliphatic amines with difluoroenoxysilanes.Chem. Commun.20205691142471425010.1039/D0CC05725H 33118572
    [Google Scholar]
  83. YangT. WeiY. KohM.J. Photoinduced nickel-catalyzed deaminative cross-electrophile coupling for C(sp 2)–C(sp 3) and C(sp 3)–C(sp 3) bond formation.ACS Catal.202111116519652510.1021/acscatal.1c01416
    [Google Scholar]
  84. TaoM. WangA.J. GuoP. LiW. ZhaoL. TongJ. WangH. YuY. HeC.Y. Visible‐light‐induced regioselective deaminative alkylation of coumarins via photoredox catalysis.Adv. Synth. Catal.20223641242910.1002/adsc.202100940
    [Google Scholar]
  85. XieK.A. BednarovaE. JoeC.L. LinC. SherwoodT.C. SimmonsE.M. LainhartB.C. RovisT. Orange light-driven C(sp2)-C(sp3) cross-coupling via spin-forbidden If(III) metallaphotoredox catalysis.J. Am. Chem. Soc.202314536199251993110.1021/jacs.3c06285 37642382
    [Google Scholar]
  86. NandiS. DasP. DasS. MondalS. JanaR. Visible-light-mediated β-acylative divergent alkene difunctionalization with Katritzky salt/CO 2.Green Chem.20232593633364310.1039/D3GC00143A
    [Google Scholar]
  87. Fuentes de ArribaA.L. UrbitschF. DixonD.J. Umpolung synthesis of branched α-functionalized amines from imines via photocatalytic three-component reductive coupling reactions.Chem. Commun.201652100144341443710.1039/C6CC09172E 27901532
    [Google Scholar]
  88. MarzoL. GhoshI. EstebanF. KönigB. Metal-free photocatalyzed cross-coupling of bromoheteroarenes with pyrroles.ACS Catal.20166106780678410.1021/acscatal.6b01452
    [Google Scholar]
  89. GrandjeanJ.M.M. NicewiczD.A. Synthesis of highly substituted tetrahydrofurans by catalytic polar-radical-crossover cycloadditions of alkenes and alkenols.Angew. Chem. Int. Ed.201352143967397110.1002/anie.201210111 23440762
    [Google Scholar]
  90. ZengT.T. XuanJ. DingW. WangK. LuL.Q. XiaoW.J. [3 + 2] Cycloaddition/oxidative aromatization sequence via photoredox catalysis: One-pot synthesis of oxazoles from 2H-azirines and aldehydes.Org. Lett.201517164070407310.1021/acs.orglett.5b01994 26250789
    [Google Scholar]
  91. RameshV. GangadharM. NanuboluJ.B. AdiyalaP.R. Visible-light-induced deaminative alkylation/cyclization of alkyl amines with N -methacryloyl-2-phenylbenzoimidazoles in continuous-flow organo-photocatalysis.J. Org. Chem.20218618129081292110.1021/acs.joc.1c01555 34477379
    [Google Scholar]
  92. KishorG. RameshV. RaoV.R. PabbarajaS. AdiyalaP.R. Regioselective C-3-alkylation of quinoxalin-2(1 H)-ones via C–N bond cleavage of amine derived Katritzky salts enabled by continuous-flow photoredox catalysis.RSC Adv.20221220122351224110.1039/D2RA00753C 35517836
    [Google Scholar]
  93. SinghS. TripathiK.N. SinghR.P. Redox activated amines in the organophotoinduced alkylation of coumarins.Org. Biomol. Chem.202220295716572010.1039/D2OB00943A 35838252
    [Google Scholar]
  94. SekinoT. SatoS. YoshinoT. KojimaM. MatsunagaS. Regioselective deaminative allylation of aliphatic amines via dual cobalt and organophotoredox catalysis.Org. Lett.202224112120212410.1021/acs.orglett.2c00319
    [Google Scholar]
  95. ArceoE. JurbergI.D. Álvarez-FernándezA. MelchiorreP. Photochemical activity of a key donor–acceptor complex can drive stereoselective catalytic α-alkylation of aldehydes.Nat. Chem.20135975075610.1038/nchem.1727 23965676
    [Google Scholar]
  96. GuoQ. WangM. LiuH. WangR. XuZ. Visible‐light‐promoted dearomative fluoroalkylation of β‐naphthols through intermolecular charge transfer.Angew. Chem. Int. Ed.201857174747475110.1002/anie.201800767 29476596
    [Google Scholar]
  97. WangC. QiR. XueH. ShenY. ChangM. ChenY. WangR. XuZ. Visible‐light‐promoted C(sp 3)−H alkylation by intermolecular charge transfer: Preparation of unnatural α‐amino acids and late‐stage modification of peptides.Angew. Chem. Int. Ed.202059197461746610.1002/anie.201914555 32078758
    [Google Scholar]
  98. LarocheB. TangX. ArcherG. Di SanzaR. MelchiorreP. Photochemical chemoselective alkylation of tryptophan-containing peptides.Org. Lett.202123228528910.1021/acs.orglett.0c03735 33400540
    [Google Scholar]
  99. XiaQ. LiY. WangX. DaiP. DengH. ZhangW.H. Visible light-driven α-alkylation of N-Aryl tetrahydro isoquinolines initiated by electron donor−acceptor complex.Org. Lett.202022187290729410.1021/acs.orglett.0c02631 32902295
    [Google Scholar]
  100. WangJ.X. GeW. XingW.L. FuM.C. Photoinduced deaminative alkylation for the synthesis of γ-ketoesters via electron donor–acceptor complex formation.J. Org. Chem.20218624182241823110.1021/acs.joc.1c02499 34846880
    [Google Scholar]
  101. HuangQ.P. HuangY. WangA.J. ZhaoL. JiaJ. YuY.B. TongJ. GuJ.W. HeC.Y. Visible light induced deaminative alkylation of difluoroenoxysilanes: A transition metal free strategy.Org. Chem. Front.202184438444410.1039/D1QO00507C
    [Google Scholar]
  102. LuY. FangC.Z. LiuQ. LiB.L. WangZ.X. ChenX.Y. Donor–acceptor complex enables cascade radical cyclization of N -arylacrylamides with katritzky salts.Org. Lett.202123145425542910.1021/acs.orglett.1c01758 34190559
    [Google Scholar]
  103. FerkoB. MarčekováM. DetkováK.R. DoháňošováJ. BerkešD. JakubecP. Visible-light-promoted cross-coupling of N -alkylpyridinium salts and nitrostyrenes.Org. Lett.202123228705871010.1021/acs.orglett.1c03122 34723544
    [Google Scholar]
  104. ZhangC.S. BaoL. ChenK.Q. WangZ.X. ChenX.Y. Photoinduced α-alkenylation of katritzky salts: Synthesis of β,γ-unsaturated esters.Org. Lett.20212351577158110.1021/acs.orglett.0c04287 33595328
    [Google Scholar]
  105. WangJ.X. WangY.T. ZhangH. FuM.C. Visible-light-induced iodine-anion-catalyzed decarboxylative/deaminative C–H alkylation of enamides.Org. Chem. Front.20218164466447210.1039/D1QO00660F
    [Google Scholar]
  106. CaiZ. GuR. SiW. XiangY. SunJ. JiaoY. ZhangX. Photoinduced allylic defluorinative alkylation of trifluoromethyl alkenes with Katritzky salts under catalyst- and metal-free conditions.Green Chem.202224186830683510.1039/D2GC02266D
    [Google Scholar]
  107. GaoP. ZhangQ. LiY. CuiL. FanX. ZhangG. ChenF. Catalyst‐free defluoroalkylation of trifluoromethylated alkenes via photoinduced electron donor‐acceptor complex.ChemistrySelect2023822e20230066510.1002/slct.202300665
    [Google Scholar]
  108. YetraS.R. SchmittN. TambarU.K. Catalytic photochemical enantioselective α-alkylation with pyridinium salts.Chem. Sci.202314358659210.1039/D2SC05654B 36741522
    [Google Scholar]
  109. DengY. ChengX. TanH. HeY. ZhangC. QiuG. ZhengD. Photoinitiated deaminative alkylation of quinoxalin‐2(1 H)‐ones via electron catalysis.Adv. Synth. Catal.2023365686587010.1002/adsc.202300035
    [Google Scholar]
  110. SinghN. SharmaS. SharmaA. Visible light induced EDA-mediated deaminative C-2 alkylation of heterocyclic-N-oxides using katritzky salts.Adv. Synth. & Catal.20233653505351110.1002/adsc.202300723
    [Google Scholar]
  111. LapierreR. Lina TruongL. HedouinM. OulyadiH. SchiaviB. JeanA. JubaultP. PoissonT. Electron donor–acceptor complex photoactivation for deaminative alkynylation, alkenylation and allenylation: A comprehensive study.Org. Chem. Front.2024112231224010.1039/D4QO00177J
    [Google Scholar]
  112. FoleyD.J. WaldmannH. Ketones as strategic building blocks for the synthesis of natural product-inspired compounds.Chem. Soc. Rev.202251104094412010.1039/D2CS00101B 35506561
    [Google Scholar]
  113. LeeF.K. KrishnanP. MuhamadA. LowY.Y. KamT.S. TingK.N. LimK.H. Concise synthesis of the vasorelaxant alkaloids schwarzinicines A and B.Nat. Prod. Res.202236153972397810.1080/14786419.2021.1903005 33749454
    [Google Scholar]
  114. CuquerellaM.C. Lhiaubet-ValletV. CadetJ. MirandaM.A. Benzophenone photosensitized DNA damage.Acc. Chem. Res.20124591558157010.1021/ar300054e 22698517
    [Google Scholar]
  115. MallatT. BaikerA. Oxidation of alcohols with molecular oxygen on solid catalysts.Chem. Rev.200410463037305810.1021/cr0200116 15186187
    [Google Scholar]
  116. BecharaW.S. PelletierG. CharetteA.B. Chemoselective synthesis of ketones and ketimines by addition of organometallic reagents to secondary amides.Nat. Chem.20124228234
    [Google Scholar]
  117. SartoriG. MaggiR. Use of solid catalysts in Friedel-Crafts acylation reactions.Chem. Rev.200610631077110410.1021/cr040695c 16522017
    [Google Scholar]
  118. JanaR. PathakT.P. SigmanM.S. Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners.Chem. Rev.201111131417149210.1021/cr100327p 21319862
    [Google Scholar]
  119. ChalotraN. SultanS. ShahB.A. Recent advances in photoredox methods for ketone synthesis.Asian J. Org. Chem.20209863881
    [Google Scholar]
  120. YinH. JianS. FengX. BaoM. ZhangX. Metal-free photoinduced denitrogenative alkylation of vinyl azides with alkyl radicals toward ketones.Org. Chem. Front.202411113124313010.1039/D4QO00280F
    [Google Scholar]
  121. QinH.T. WuS.W. LiuJ.L. LiuF. Photoredox-catalysed redox-neutral trifluoromethylation of vinyl azides for the synthesis of α-trifluoromethylated ketones.Chem. Commun.201753101696169910.1039/C6CC10035J 28101550
    [Google Scholar]
  122. ZhengC. WangG.Z. ShangR. Catalyst-free decarboxylation and decarboxylative giese additions of alkyl carboxylates through photoactivation of electron donor-acceptor complex.Adv. Synth. Catal.201936145004505
    [Google Scholar]
  123. GhoshI. MarzoL. DasA. ShaikhR. KönigB. Visible light mediated photoredox catalytic arylation reactions.Acc. Chem. Res.20164981566157710.1021/acs.accounts.6b00229 27482835
    [Google Scholar]
  124. BabuS.S. MuthurajaP. YadavP. GopinathP. Aryldiazonium salts in photoredox catalysis: Recent trends.Adv. Synth. Catal.202136371782180910.1002/adsc.202100136
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298307537240722112735
Loading
/content/journals/mroc/10.2174/0118756298307537240722112735
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test