Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

The toxicity of systemic release in common drug delivery has irreversible effects on various tissues and organs of the body. The use of programmed biopolymers sensitive to the body's physiological conditions for targeted drug delivery has attracted extensive consideration. There are numerous benefits to this approach. The need for appropriate biopolymers for drug carriers suitable for programmed cargo delivery is a crucial challenge for biologists and physicists. Summarizing such materials can be very helpful in selecting the right materials. Extensive advances and many capabilities in the field of biopolymers have led to their increasing daily use, and among other materials, this research on biopolymers. In this study, the most important polymers for programmed drug delivery are introduced. We have tried to discuss the effective properties of materials in smart stimuli-sensitive drug delivery, their advantages and disadvantages, different forms, how to use them as a smart carrier, and their absorption mechanism.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298304506240628062045
2024-07-15
2025-09-09
Loading full text...

Full text loading...

References

  1. KumarR. MondalK. PandaP.K. KaushikA. AbolhassaniR. AhujaR. RubahnH.G. MishraY.K. Core-shell nanostructures: Perspectives towards drug delivery applications.J. Mater. Chem. B Mater. Biol. Med.20208398992902710.1039/D0TB01559H 32902559
    [Google Scholar]
  2. AlbinaliK. ZaghoM. DengY. ElzatahryA. A perspective on magnetic core-shell carriers for responsive and targeted drug delivery systems.Int. J. Nanomedicine2019141707172310.2147/IJN.S193981 30880975
    [Google Scholar]
  3. FentonO.S. OlafsonK.N. PillaiP.S. MitchellM.J. LangerR. Advances in biomaterials for drug delivery.Adv. Mater.20183029170532810.1002/adma.201705328 29736981
    [Google Scholar]
  4. AskariE. SeyfooriA. AmerehM. GharaieS.S. GhazaliH.S. GhazaliZ.S. KhunjushB. AkbariM. Stimuli-responsive hydrogels for local post-surgical drug delivery.Gels2020621410.3390/gels6020014 32397180
    [Google Scholar]
  5. BedoyaD.A. FigueroaF.N. MacchioneM.A. StrumiaM.C. Stimuli-Responsive Polymeric Systems for Smart Drug Delivery.Springer International Publishing202010.1007/978‑3‑030‑46923‑8_5
    [Google Scholar]
  6. Ilaria ParisiO. ScrivanoL. Stefania SinicropiM. PicciN. PuociF. Engineered polymer-based nanomaterials for diagnostic, therapeutic and theranostic applications.Mini Rev. Med. Chem.201616975476110.2174/1389557515666150709112122
    [Google Scholar]
  7. OlivaN. AlmquistB.D. Spatiotemporal delivery of bioactive molecules for wound healing using stimuli-responsive biomaterials.Adv. Drug Deliv. Rev.2020161-162224110.1016/j.addr.2020.07.021 32745497
    [Google Scholar]
  8. RabanelJ.M. AounV. ElkinI. MokhtarM. HildgenP. Drug-loaded nanocarriers: Passive targeting and crossing of biological barriers.Curr. Med. Chem.201219193070310210.2174/092986712800784702 22612696
    [Google Scholar]
  9. GirijaA.R. BalasubramanianS. CowinA.J. Nanomaterials-based drug delivery approaches for wound healing.Curr. Pharm. Des.202228971172610.2174/1381612828666220328121211 35345993
    [Google Scholar]
  10. WuY. ErmakovaA. LiuW. PramanikG. VuT.M. KurzA. McGuinnessL. NaydenovB. HafnerS. ReuterR. WrachtrupJ. IsoyaJ. FörtschC. BarthH. SimmetT. JelezkoF. WeilT. Programmable biopolymers for advancing biomedical applications of fluorescent nanodiamonds.Adv. Funct. Mater.201525426576658510.1002/adfm.201502704
    [Google Scholar]
  11. GuptaM.K. BecknellK.A. CrosbyM.G. BedfordN.M. WrightJ. DennisP.B. NaikR.R. Programmable mechanical properties from a worm jaw-derived biopolymer through hierarchical ion exposure.ACS Appl. Mater. Interfaces20181038319283193710.1021/acsami.8b10107 30165014
    [Google Scholar]
  12. WangY. LiM. ChangJ.K. AurelioD. LiW. KimB.J. KimJ.H. LiscidiniM. RogersJ.A. OmenettoF.G. Light-activated shape morphing and light-tracking materials using biopolymer-based programmable photonic nanostructures.Nat. Commun.2021121165110.1038/s41467‑021‑21764‑6 33712607
    [Google Scholar]
  13. SusanM.A.B.H. Harun-Ur-RashidM. ImranA.B. Green polymer nanocomposites in automotive and packaging industries.Curr. Pharm. Biotechnol.202324114516310.2174/1389201023666220506111027 35524658
    [Google Scholar]
  14. EneN. Soare VladuM.G. LupescuI. IonescuA.D. VamanuE. The production of biodegradable polymers-medium-chain-length polyhydroxyalkanoates (mcl-PHA) in Pseudomonas putida for biomedical engineering applications.Curr. Pharm. Biotechnol.20222381109111710.2174/1389201022666210810114117 34375190
    [Google Scholar]
  15. RameshM. RajeshkumarL. BalajiD. BhuvaneswariV. Sustainable and renewable nano-biocomposites for sensors and actuators: A review on preparation and performance.Curr. Anal. Chem.2023191386910.2174/1573411018666220421112916
    [Google Scholar]
  16. Borrero-de AcuñaJ.M. Hidalgo-DumontC. PachecoN. CabreraA. Poblete-CastroI. A novel programmable lysozyme-based lysis system in Pseudomonas putida for biopolymer production.Sci. Rep.201771437310.1038/s41598‑017‑04741‑2 28663596
    [Google Scholar]
  17. RaoK.S.V.K. NagarajaK. AdilakshmiB. LakshmideviJ. ReddyG.V. HanS.S. RaoK.M. Recent advances in chitosan-based composite materials in organic transformations - A review.Curr. Org. Chem.202226131294130210.2174/1385272826666220908120319
    [Google Scholar]
  18. LendleinA. BalkM. TarazonaN.A. GouldO.E.C. Bioperspectives for shape-memory polymers as shape programmable, active materials.Biomacromolecules201920103627364010.1021/acs.biomac.9b01074 31529957
    [Google Scholar]
  19. AliD.S. OthmanH.O. AnwerE.T. The advances in chitosan-based drug delivery systems for colorectal cancer: A narrative review.Curr. Pharm. Biotechnol.202324121554155910.2174/1389201024666230202160504 36733239
    [Google Scholar]
  20. Starbird-PerezR. Del GaudioP. García-GonzálezC.A. Special issue: Biopolymers in drug delivery and regenerative medicine.Molecules202126356810.3390/molecules26030568 33499078
    [Google Scholar]
  21. UgoezeK.C. Bioadhesive polymers for drug delivery applications, bioadhesives.Drug Deliv.20202020295610.1002/9781119640240.ch2
    [Google Scholar]
  22. Yumatra Complimentary Contributor Copy2018
  23. KanwalU. Irfan BukhariN. OvaisM. AbassN. HussainK. RazaA. Advances in nano-delivery systems for doxorubicin: An updated insight.J. Drug Target.201826429631010.1080/1061186X.2017.1380655 28906159
    [Google Scholar]
  24. MehtaniD. SethA. SharmaP. MaheshwariN. KapoorD. ShrivastavaS.K. TekadeR.K. Biomaterials for Sustained and Controlled Delivery of Small Drug Molecules.Elsevier Inc.201910.1016/B978‑0‑12‑814427‑5.00004‑4
    [Google Scholar]
  25. BhatiaS. Natural polymer drug delivery systems: Nanoparticles, plants, and algae.Nat. Polym. Drug Deliv. Syst.20162016122510.1007/978‑3‑319‑41129‑3
    [Google Scholar]
  26. UyenN.T.T. HamidZ.A.A. TramN.X.T. AhmadN. Fabrication of alginate microspheres for drug delivery: A review.Int. J. Biol. Macromol.20201531035104610.1016/j.ijbiomac.2019.10.233 31794824
    [Google Scholar]
  27. SongR. MurphyM. LiC. TingK. SooC. ZhengZ. Current development of biodegradable polymeric materials for biomedical applications.Drug Des. Devel. Ther.2018123117314510.2147/DDDT.S165440 30288019
    [Google Scholar]
  28. AokiK. SaitoN. Biodegradable polymers as drug delivery systems for bone regeneration.Pharmaceutics20201229510.3390/pharmaceutics12020095 31991668
    [Google Scholar]
  29. HuangC.Y. LeeY.D. Core-shell type of nanoparticles composed of poly[(n-butyl cyanoacrylate)-co-(2-octyl cyanoacrylate)] copolymers for drug delivery application: Synthesis, characterization and in vitro degradation.Int. J. Pharm.20063251-213213910.1016/j.ijpharm.2006.06.008 16857330
    [Google Scholar]
  30. LeeJ.S. FeijenJ. Polymersomes for drug delivery: Design, formation and characterization.J. Control. Release2012161247348310.1016/j.jconrel.2011.10.005 22020381
    [Google Scholar]
  31. UpadhyayK.K. BhattA.N. MishraA.K. DwarakanathB.S. JainS. SchatzC. Le MeinsJ.F. FarooqueA. ChandraiahG. JainA.K. MisraA. LecommandouxS. The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly(γ-benzyl l-glutamate)-b-hyaluronan polymersomes.Biomaterials201031102882289210.1016/j.biomaterials.2009.12.043 20053435
    [Google Scholar]
  32. SharmaA.K. PrasherP. AljabaliA.A. MishraV. GandhiH. KumarS. MutalikS. ChellappanD.K. TambuwalaM.M. DuaK. KapoorD.N. Emerging era of somes: Polymersomes as versatile drug delivery carrier for cancer diagnostics and therapy.Drug Deliv. Transl. Res.20201051171119010.1007/s13346‑020‑00789‑2 32504410
    [Google Scholar]
  33. ZhaoY. LiX. ZhaoX. YangY. LiH. ZhouX. YuanW. Asymmetrical polymer vesicles for drug delivery and other applications.Front. Pharmacol.2017837410.3389/fphar.2017.00374 28676761
    [Google Scholar]
  34. WongC.K. MasonA.F. StenzelM.H. ThordarsonP. Formation of non-spherical polymersomes driven by hydrophobic directional aromatic perylene interactions.Nat. Commun.201781124010.1038/s41467‑017‑01372‑z 29093442
    [Google Scholar]
  35. LiuG. TanJ. CenJ. ZhangG. HuJ. LiuS. Oscillating the local milieu of polymersome interiors via single input-regulated bilayer crosslinking and permeability tuning.Nat. Commun.202213158510.1038/s41467‑022‑28227‑6 35102153
    [Google Scholar]
  36. SunJ. RijpkemaS.J. LuanJ. ZhangS. WilsonD.A. Generating biomembrane-like local curvature in polymersomes via dynamic polymer insertion.Nat. Commun.2021121223510.1038/s41467‑021‑22563‑9 33854061
    [Google Scholar]
  37. Prakash JainJ. Yenet AyenW. KumarN. Self assembling polymers as polymersomes for drug delivery.Curr. Pharm. Des.2011171657910.2174/138161211795049822 21342115
    [Google Scholar]
  38. CavalliR. SosterM. ArgenzianoM. Nanobubbles: A promising efficient tool for therapeutic delivery.Ther. Deliv.20167211713810.4155/tde.15.92 26769397
    [Google Scholar]
  39. ThambiT. DeepaganV.G. KoH. LeeD.S. ParkJ.H. Bioreducible polymersomes for intracellular dual-drug delivery.J. Mater. Chem.20122241220282203610.1039/c2jm34546c
    [Google Scholar]
  40. MengF. ZhongZ. FeijenJ. Stimuli-responsive polymersomes for programmed drug delivery.Biomacromolecules200910219720910.1021/bm801127d 19123775
    [Google Scholar]
  41. MoulahoumH. GhorbanizamaniF. ZihniogluF. TimurS. Surface biomodification of liposomes and polymersomes for efficient targeted drug delivery.Bioconjug. Chem.20213281491150210.1021/acs.bioconjchem.1c00285 34283580
    [Google Scholar]
  42. MeerovichI. DashA.K. Polymersomes for drug delivery and other biomedical applications.Elsevier Inc.201910.1016/B978‑0‑12‑818433‑2.00008‑X
    [Google Scholar]
  43. XuJ.P. JiJ. ChenW.D. ShenJ.C. Novel biomimetic polymersomes as polymer therapeutics for drug delivery.J. Control. Release2005107350251210.1016/j.jconrel.2005.06.013 16154659
    [Google Scholar]
  44. PegoraroC. CecchinD. GraciaL.S. WarrenN. MadsenJ. ArmesS.P. LewisA. MacNeilS. BattagliaG. Enhanced drug delivery to melanoma cells using PMPC-PDPA polymersomes.Cancer Lett.2013334232833710.1016/j.canlet.2013.02.007 23402813
    [Google Scholar]
  45. BejR. AchaziK. HaagR. GhoshS. Polymersome formation by amphiphilic polyglycerol- b -polydisulfide- b -polyglycerol and glutathione-triggered intracellular drug delivery.Biomacromolecules20202183353336310.1021/acs.biomac.0c00775 32589015
    [Google Scholar]
  46. NehateC. NayalA. KoulV. Redox responsive polymersomes for enhanced doxorubicin delivery.ACS Biomater. Sci. Eng.201951708010.1021/acsbiomaterials.8b00238 33405869
    [Google Scholar]
  47. PanJ. AttiaS.A. FilipczakN. TorchilinV.P. Dendrimers for drug delivery purposes.Elsevier Ltd.202010.1016/B978‑0‑08‑102985‑5.00010‑3
    [Google Scholar]
  48. FujikiS. AmaikeK. YagiA. ItamiK. Synthesis, properties, and material hybridization of bare aromatic polymers enabled by dendrimer support.Nat. Commun.2022131535810.1038/s41467‑022‑33100‑7 36114165
    [Google Scholar]
  49. HuangY. WangJ. JiangK. ChungE.J. Improving kidney targeting: The influence of nanoparticle physicochemical properties on kidney interactions.J. Control. Release202133412713710.1016/j.jconrel.2021.04.016 33892054
    [Google Scholar]
  50. SherjeA.P. JadhavM. DravyakarB.R. KadamD. Dendrimers: A versatile nanocarrier for drug delivery and targeting.Int. J. Pharm.2018548170772010.1016/j.ijpharm.2018.07.030 30012508
    [Google Scholar]
  51. HuangD. WuD. Biodegradable dendrimers for drug delivery.Mater. Sci. Eng. C20189071372710.1016/j.msec.2018.03.002 29853143
    [Google Scholar]
  52. SvensonS. Dendrimers as versatile platform in drug delivery applications.Eur. J. Pharm. Biopharm.200971344546210.1016/j.ejpb.2008.09.023 18976707
    [Google Scholar]
  53. WangH. HuangQ. ChangH. XiaoJ. ChengY. Stimuli-responsive dendrimers in drug delivery.Biomater. Sci.20164337539010.1039/C5BM00532A 26806314
    [Google Scholar]
  54. ChauhanA. Dendrimers for drug delivery.Molecules201823493810.3390/molecules23040938 29670005
    [Google Scholar]
  55. CaminadeA.M. TurrinC.O. Dendrimers for drug delivery.J. Mater. Chem. B Mater. Biol. Med.20142264055406610.1039/C4TB00171K 32261736
    [Google Scholar]
  56. LiuJ. GrayW.D. DavisM.E. LuoY. Peptide- and saccharide-conjugated dendrimers for targeted drug delivery: A concise review.Interface Focus20122330732410.1098/rsfs.2012.0009 23741608
    [Google Scholar]
  57. BonamS.R. AretiA. KomirishettyP. MullerS. Dendrimers in immunotherapy and hormone therapy.Elsevier Inc.201910.1016/B978‑0‑12‑814527‑2.00010‑X
    [Google Scholar]
  58. NikzamirM. HanifehpourY. AkbarzadehA. PanahiY. Applications of dendrimers in nanomedicine and drug delivery: A review.J. Inorg. Organomet. Polym. Mater.20213162246226110.1007/s10904‑021‑01925‑2
    [Google Scholar]
  59. ZengW. GuoP. JiangP. LiuW. HongT. ChenC. Combination of microfluidic chip and electrostatic atomization for the preparation of drug-loaded core-shell nanoparticles.Nanotechnology20203114145301
    [Google Scholar]
  60. YuanH. LuoK. LaiY. PuY. HeB. WangG. WuY. GuZ. A novel poly(l-glutamic acid) dendrimer based drug delivery system with both pH-sensitive and targeting functions.Mol. Pharm.20107495396210.1021/mp1000923 20481567
    [Google Scholar]
  61. RatemiE. pH-responsive polymers for drug delivery applications.Stimuli Responsive Polymeric Nanocarriers for Drug Delivery ApplicationsWoodhead Publishing Series in Biomaterials.201810.1016/B978‑0‑08‑101997‑9.00005‑9
    [Google Scholar]
  62. AkashM.S.H. RehmanK. ChenS. Polymeric-based particulate systems for delivery of therapeutic proteins.Pharm. Dev. Technol.201621336737810.3109/10837450.2014.999785 25567454
    [Google Scholar]
  63. ZhouQ. ZhangL. YangT. WuH. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy.Int. J. Nanomedicine2018132921294210.2147/IJN.S158696 29849457
    [Google Scholar]
  64. YiY. LinG. ChenS. LiuJ. ZhangH. MiP. Polyester micelles for drug delivery and cancer theranostics: Current achievements, progresses and future perspectives.Mater. Sci. Eng. C20188321823210.1016/j.msec.2017.10.004 29208282
    [Google Scholar]
  65. DingC. TongL. FengJ. FuJ. Recent advances in stimuli-responsive release function drug delivery systems for tumor treatment.Molecules20162112171510.3390/molecules21121715 27999414
    [Google Scholar]
  66. LiaoZ.S. HuangS.Y. HuangJ.J. ChenJ.K. LeeA.W. LaiJ.Y. LeeD.J. ChengC.C. Self-assembled pH-responsive polymeric micelles for highly efficient, noncytotoxic delivery of doxorubicin chemotherapy to inhibit macrophage activation: In vitro investigation.Biomacromolecules20181972772278110.1021/acs.biomac.8b00380 29677448
    [Google Scholar]
  67. BalakrishnanB. JayakrishnanA. Injectable hydrogels for biomedical applications.Injectable Hydrogels for Regenerative Engineering.World Scientific Publishing Co Pte Ltd.2015339610.1142/9781783267477_0002
    [Google Scholar]
  68. MayaS. SarmentoB. NairA. RejinoldN.S. NairS.V. JayakumarR. Smart stimuli sensitive nanogels in cancer drug delivery and imaging: A review.Curr. Pharm. Des.2013194172037218 23489200
    [Google Scholar]
  69. NguyenM.K. LeeD.S. Injectable biodegradable hydrogels.Macromol. Biosci.201010656357910.1002/mabi.200900402 20196065
    [Google Scholar]
  70. AkhtarM.F. HanifM. RanjhaN.M. Methods of synthesis of hydrogels. A review.Saudi Pharm. J.201624555455910.1016/j.jsps.2015.03.022 27752227
    [Google Scholar]
  71. GulrezS.K.H. Al-AssafS. PhillipsG.O. Hydrogels: Methods of preparation, characterisation and applications.Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology ApplicationsIntechopen2011
    [Google Scholar]
  72. ZhangY.S. KhademhosseiniA. Advances in engineering hydrogels.Science20173566337eaaf362710.1126/science.aaf3627 28473537
    [Google Scholar]
  73. TangY. HeaysmanC.L. WillisS. LewisA.L. Physical hydrogels with self-assembled nanostructures as drug delivery systems.Expert Opin. Drug Deliv.2011891141115910.1517/17425247.2011.588205 21619469
    [Google Scholar]
  74. BiX. LiangA. In Situ‐Forming cross‐linking hydrogel systems: chemistry and biomedical applications. In: Emerging Concepts in Analysis and Applications of Hydrogels.Intechopen2016
    [Google Scholar]
  75. MacielD. FigueiraP. XiaoS. HuD. ShiX. RodriguesJ. TomásH. LiY. Redox-responsive alginate nanogels with enhanced anticancer cytotoxicity.Biomacromolecules20131493140314610.1021/bm400768m 23927460
    [Google Scholar]
  76. SunZ. SongC. WangC. HuY. WuJ. Hydrogel-based controlled drug delivery for cancer treatment: A review.Mol. Pharm.202017237339110.1021/acs.molpharmaceut.9b01020
    [Google Scholar]
  77. RizwanM. YahyaR. HassanA. YarM. AzzahariA. SelvanathanV. SonsudinF. AbouloulaC. pH sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications.Polymers (Basel)201791213710.3390/polym9040137 30970818
    [Google Scholar]
  78. WeiL. CaiC. LinJ. ChenT. Dual-drug delivery system based on hydrogel/micelle composites.Biomaterials200930132606261310.1016/j.biomaterials.2009.01.006 19162320
    [Google Scholar]
  79. AkhlaqM. AzadA.K. UllahI. NawazA. SafdarM. BhattacharyaT. UddinA.B.M.H. AbbasS.A. MathewsA. KunduS.K. MiretM.M. MurthyH.C.A. NagaswarupaH.P. Methotrexate-loaded gelatin and polyvinyl alcohol (Gel/pva) hydrogel as a ph-sensitive matrix.Polymers (Basel)20211314230010.3390/polym13142300 34301057
    [Google Scholar]
  80. CulverH.R. CleggJ.R. PeppasN.A. Analyte-responsive hydrogels: Intelligent materials for biosensing and drug delivery.Acc. Chem. Res.201750217017810.1021/acs.accounts.6b00533 28170227
    [Google Scholar]
  81. XueB. KozlovskayaV. KharlampievaE. Shaped stimuli-responsive hydrogel particles: Syntheses, properties and biological responses.J. Mater. Chem. B Mater. Biol. Med.20175193510.1039/C6TB02746F 32263432
    [Google Scholar]
  82. QureshiD. NayakS.K. MajiS. AnisA. KimD. PalK. Environment sensitive hydrogels for drug delivery applications.Eur. Polym. J.201912010922010.1016/j.eurpolymj.2019.109220
    [Google Scholar]
  83. YinR. HeJ. BaiM. HuangC. WangK. ZhangH. YangS.M. ZhangW. Engineering synthetic artificial pancreas using chitosan hydrogels integrated with glucose-responsive microspheres for insulin delivery.Mater. Sci. Eng. C20199637438210.1016/j.msec.2018.11.032 30606545
    [Google Scholar]
  84. HuM. AiX. WangZ. ZhangZ. CheongH. ZhangW. LinJ. LiJ. YangH. XingB. Nanoformulation of metal complexes: Intelligent stimuli-responsive platforms for precision therapeutics.Nano Res.201811105474549810.1007/s12274‑018‑2138‑1
    [Google Scholar]
  85. LiL. YangZ. ChenX. Recent advances in stimuli-responsive platforms for cancer immunotherapy.Acc. Chem. Res.202053102044205410.1021/acs.accounts.0c00334 32877161
    [Google Scholar]
  86. KocakG. TuncerC. BütünV. pH-Responsive polymers.Polym. Chem.20178114417610.1039/C6PY01872F
    [Google Scholar]
  87. WellsC.M. HarrisM. ChoiL. MuraliV.P. GuerraF.D. JenningsJ.A. Stimuli-responsive drug release from smart polymers.J. Funct. Biomater.20191033410.3390/jfb10030034 31370252
    [Google Scholar]
  88. DeirramN. ZhangC. KermaniyanS.S. JohnstonA.P.R. SuchG.K. pH‐responsive polymer nanoparticles for drug delivery.Macromol. Rapid Commun.20194010180091710.1002/marc.201800917 30835923
    [Google Scholar]
  89. OfridamF. TarhiniM. LebazN. GagnièreÉ. ManginD. ElaissariA. pH ‐sensitive polymers: Classification and some fine potential applications.Polym. Adv. Technol.20213241455148410.1002/pat.5230
    [Google Scholar]
  90. YouJ.O. AlmedaD. YeG.J.C. AugusteD.T. Bioresponsive matrices in drug delivery.J. Biol. Eng.2010411510.1186/1754‑1611‑4‑15 21114841
    [Google Scholar]
  91. LiuJ. HuangY. KumarA. TanA. JinS. MozhiA. LiangX.J. pH-Sensitive nano-systems for drug delivery in cancer therapy.Biotechnol. Adv.201432469371010.1016/j.biotechadv.2013.11.009 24309541
    [Google Scholar]
  92. RosenblattJ. DevereuxB. WallaceD.G. Injectable collagen as a pH-sensitive hydrogel.Biomaterials1994151298599510.1016/0142‑9612(94)90079‑5 7841296
    [Google Scholar]
  93. HaseebM.T. HussainM.A. BashirS. AshrafM.U. AhmadN. Evaluation of superabsorbent linseed-polysaccharides as a novel stimuli-responsive oral sustained release drug delivery system.Drug Dev. Ind. Pharm.201743340942010.1080/03639045.2016.1257017 27808567
    [Google Scholar]
  94. IndermunS. GovenderM. KumarP. ChoonaraY.E. PillayV. Stimuli-responsive polymers as smart drug delivery systems: Classifications based on carrier type and triggered-release mechanism.Elsevier Ltd.201810.1016/B978‑0‑08‑101997‑9.00002‑3
    [Google Scholar]
  95. P.C. HUI, Delivery and textile application.Molecules201924254710.3390/molecules24142547
    [Google Scholar]
  96. HuhK.M. KangH.C. LeeY.J. BaeY.H. pH-sensitive polymers for drug delivery.Macromol. Res.201220322423310.1007/s13233‑012‑0059‑5
    [Google Scholar]
  97. GaoG.H. LiY. LeeD.S. Environmental pH-sensitive polymeric micelles for cancer diagnosis and targeted therapy.J. Control. Release2013169318018410.1016/j.jconrel.2012.11.012 23195533
    [Google Scholar]
  98. HuangY. YuH. XiaoC. pH-sensitive cationic guar gum/poly (acrylic acid) polyelectrolyte hydrogels: Swelling and in vitro drug release.Carbohydr. Polym.200769477478310.1016/j.carbpol.2007.02.016
    [Google Scholar]
  99. ShahA. MalikM.S. KhanG.S. NosheenE. IftikharF.J. KhanF.A. ShuklaS.S. AkhterM.S. KraatzH.B. AminabhaviT.M. Stimuli-responsive peptide-based biomaterials as drug delivery systems.Chem. Eng. J.201835355958310.1016/j.cej.2018.07.126
    [Google Scholar]
  100. PatilA.S. GadadA.P. DandagiP.M. Mono and multi‐stimuli responsive polymers: Application as intelligent nano‐drug delivery systems.Nanopharmaceutical Advanced Delivery Systems.Scrivener Publishing202110.1002/9781119711698.ch11
    [Google Scholar]
  101. LuoY. YinX. YinX. ChenA. ZhaoL. ZhangG. LiaoW. HuangX. LiJ. ZhangC.Y. Dual pH/redox-responsive mixed polymeric micelles for anticancer drug delivery and controlled release.Pharmaceutics201911417610.3390/pharmaceutics11040176 30978912
    [Google Scholar]
  102. ReddyS.G. MurthyH.C.A. Smart biomaterials in drug delivery applications.Engineered biomaterials: Synthesis and applications.SingaporeSpringer Nature Singapore202332336010.1007/978‑981‑99‑6698‑1_11
    [Google Scholar]
  103. SponchioniM. Capasso PalmieroU. MoscatelliD. Thermo-responsive polymers: Applications of smart materials in drug delivery and tissue engineering.Mater. Sci. Eng. C201910258960510.1016/j.msec.2019.04.069 31147031
    [Google Scholar]
  104. KarimiM. Sahandi ZangabadP. GhasemiA. AmiriM. BahramiM. MalekzadH. Ghahramanzadeh AslH. MahdiehZ. BozorgomidM. GhasemiA. RahmaniT.B.M.R. HamblinM.R. Temperature-responsive smart nanocarriers for delivery of therapeutic agents: Applications and recent advances.ACS Appl. Mater. Interfaces2016833211072113310.1021/acsami.6b00371 27349465
    [Google Scholar]
  105. CuiG. WangH. LongS. ZhangT. GuoX. ChenS. KakuchiT. DuanQ. ZhaoD. Thermo- and light-responsive polymer-coated magnetic nanoparticles as potential drug carriers.Front. Bioeng. Biotechnol.20221093183010.3389/fbioe.2022.931830 35903791
    [Google Scholar]
  106. SonS. ShinE. KimB.S. Light-responsive micelles of spiropyran initiated hyperbranched polyglycerol for smart drug delivery.Biomacromolecules201415262863410.1021/bm401670t 24432713
    [Google Scholar]
  107. PhanH. TarescoV. PenelleJ. CouturaudB. Polymerisation-induced self-assembly (PISA) as a straightforward formulation strategy for stimuli-responsive drug delivery systems and biomaterials: Recent advances.Biomater. Sci.202191385010.1039/D0BM01406K 33179646
    [Google Scholar]
  108. WeiX. GongC. GouM. FuS. GuoQ. ShiS. LuoF. GuoG. QiuL. QianZ. Biodegradable poly(ɛ-caprolactone)-poly(ethylene glycol) copolymers as drug delivery system.Int. J. Pharm.2009381111810.1016/j.ijpharm.2009.07.033 19664700
    [Google Scholar]
  109. DasS.S. BharadwajP. BilalM. BaraniM. RahdarA. TaboadaP. BungauS. KyzasG.Z. Stimuli-responsive polymeric nanocarriers for drug.Polymers (Basel)2020126139710.3390/polym12061397 32580366
    [Google Scholar]
  110. MollazadehS. MackiewiczM. YazdimamaghaniM. Recent advances in the redox-responsive drug delivery nanoplatforms: A chemical structure and physical property perspective.Mater. Sci. Eng. C202111811153610.1016/j.msec.2020.111536 33255089
    [Google Scholar]
  111. MazidiZ. JavanmardiS. NaghibS.M. MohammadpourZ. Smart stimuli-responsive implantable drug delivery systems for programmed and on-demand cancer treatment: An overview on the emerging materials.Chem. Eng. J.202243313456910.1016/j.cej.2022.134569
    [Google Scholar]
  112. LuY. AimettiA.A. LangerR. GuZ. Bioresponsive materials.Nat. Rev. Mater.2016211607510.1038/natrevmats.2016.75
    [Google Scholar]
  113. ZhaoJ. YangY. HanX. LiangC. LiuJ. SongX. GeZ. LiuZ. Redox-sensitive nanoscale coordination polymers for drug delivery and cancer theranostics.ACS Appl. Mater. Interfaces2017928235552356310.1021/acsami.7b07535 28636308
    [Google Scholar]
  114. RazaA. HayatU. RasheedT. BilalM. IqbalH.M.N. Redox-responsive nano-carriers as tumor-targeted drug delivery systems.Eur. J. Med. Chem.201815770571510.1016/j.ejmech.2018.08.034 30138802
    [Google Scholar]
  115. LiuD. YangF. XiongF. GuN. The smart drug delivery system and its clinical potential.Theranostics2016691306132310.7150/thno.14858 27375781
    [Google Scholar]
  116. ChengR. MengF. DengC. KlokH.A. ZhongZ. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery.Biomaterials201334143647365710.1016/j.biomaterials.2013.01.084 23415642
    [Google Scholar]
  117. SoleimaniK. DerakhshankhahH. JaymandM. SamadianH. Stimuli-responsive natural gums-based drug delivery systems for cancer treatment.Carbohydr. Polym.202125411742210.1016/j.carbpol.2020.117422 33357903
    [Google Scholar]
  118. LeiB. WangM. JiangZ. QiW. SuR. HeZ. Constructing redox-responsive metal-organic framework nanocarriers for anticancer drug delivery.ACS Appl. Mater. Interfaces20181019166981670610.1021/acsami.7b19693 29692177
    [Google Scholar]
  119. BadeauB.A. DeForestC.A. Programming stimuli-responsive behavior into biomaterials.Annu. Rev. Biomed. Eng.201921124126510.1146/annurev‑bioeng‑060418‑052324 30857392
    [Google Scholar]
  120. RasheedT. BilalM. Abu-ThabitN.Y. IqbalH.M.N. The smart chemistry of stimuli-responsive polymeric carriers for target drug delivery applications.Elsevier Ltd.201810.1016/B978‑0‑08‑101997‑9.00003‑5
    [Google Scholar]
  121. LiangJ. YangB. ZhouX. HanQ. ZouJ. ChengL. Stimuli-responsive drug delivery systems for head and neck cancer therapy.Drug Deliv.202128127228410.1080/10717544.2021.1876182 33501883
    [Google Scholar]
  122. Ruiz-PulidoG. MedinaD.I. BaraniM. RahdarA. SargaziG. BainoF. PandeyS. Nanomaterials for the diagnosis and treatment of head and neck cancers: A review.Materials (Basel)20211413370610.3390/ma14133706 34279276
    [Google Scholar]
  123. YaoQ. KouL. TuY. ZhuL. MMP-responsive smart drug delivery and tumor targeting.Trends Pharmacol. Sci.201839876678110.1016/j.tips.2018.06.003 30032745
    [Google Scholar]
  124. HuQ. KattiP.S. GuZ. Enzyme-responsive nanomaterials for controlled drug delivery.Nanoscale2014621122731228610.1039/C4NR04249B 25251024
    [Google Scholar]
  125. DevnarainN. OsmanN. FasikuV.O. MakhathiniS. SalihM. IbrahimU.H. GovenderT. Intrinsic stimuli‐responsive nanocarriers for smart drug delivery of antibacterial agents—An in‐depth review of the last two decades.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2021131e166410.1002/wnan.1664 32808486
    [Google Scholar]
  126. ZhiX. JiangY. XieL. LiY. FangC.J. Gold nanorods functionalized with cathepsin B targeting peptide and doxorubicin for combinatorial therapy against multidrug resistance.ACS Appl. Bio Mater.20192125697570610.1021/acsabm.9b00755 35021563
    [Google Scholar]
  127. GulfamM. SahleF.F. LoweT.L. Design strategies for chemical-stimuli-responsive programmable nanotherapeutics.Drug Discov. Today201924112914710.1016/j.drudis.2018.09.019 30292916
    [Google Scholar]
  128. DengJ. WaltherA. ATP‐responsive and ATP‐fueled self‐assembling systems and materials.Adv. Mater.20203242200262910.1002/adma.202002629 32881127
    [Google Scholar]
  129. SameiyanE. BagheriE. DehghaniS. RamezaniM. AlibolandiM. AbnousK. TaghdisiS.M. Aptamer-based ATP-responsive delivery systems for cancer diagnosis and treatment.Acta Biomater.202112311012210.1016/j.actbio.2020.12.057 33453405
    [Google Scholar]
  130. MoR. JiangT. DiSantoR. TaiW. GuZ. ATP-triggered anticancer drug delivery.Nat. Commun.201451336410.1038/ncomms4364 24618921
    [Google Scholar]
  131. ZhangJ. WangY. ChenJ. LiangX. HanH. YangY. LiQ. WangY. Inhibition of cell proliferation through an ATP-responsive co-delivery system of doxorubicin and Bcl-2 siRNA.Int. J. Nanomedicine2017124721473210.2147/IJN.S135086 28740380
    [Google Scholar]
  132. LiuS. QinS. HeM. ZhouD. QinQ. WangH. Current applications of poly(lactic acid) composites in tissue engineering and drug delivery.Compos., Part B Eng.202019910823810.1016/j.compositesb.2020.108238
    [Google Scholar]
  133. LeeB.K. YunY. ParkK. PLA micro- and nano-particles.Adv. Drug Deliv. Rev.201610717619110.1016/j.addr.2016.05.020 27262925
    [Google Scholar]
  134. LassalleV. FerreiraM.L. PLA nano- and microparticles for drug delivery: An overview of the methods of preparation.Macromol. Biosci.20077676778310.1002/mabi.200700022 17541922
    [Google Scholar]
  135. DavoodiP. LeeL.Y. XuQ. SunilV. SunY. SohS. WangC.H. Drug delivery systems for programmed and on-demand release.Adv. Drug Deliv. Rev.201813210413810.1016/j.addr.2018.07.002 30415656
    [Google Scholar]
  136. TylerB. GullottiD. MangravitiA. UtsukiT. BremH. Polylactic acid (PLA) controlled delivery carriers for biomedical applications.Adv. Drug Deliv. Rev.201610716317510.1016/j.addr.2016.06.018 27426411
    [Google Scholar]
  137. ThamC.Y. HamidZ.A.A. AhmadZ.A. IsmailH. Surface engineered poly (lactic acid) (PLA) microspheres by chemical treatment for drug delivery system.Key Eng. Mater.2013594-59521421810.4028/www.scientific.net/KEM.594‑595.214
    [Google Scholar]
  138. WuY. YangD. KangX. MaP. HuangS. ZhangY. LiC. LinJ. Core-shell structured luminescent and mesoporous β-NaYF4:Ce3+/Tb3+@mSiO2-PEG nanospheres for anti-cancer drug delivery.Dalton Trans.201342279852986110.1039/c3dt50658d 23689234
    [Google Scholar]
  139. SunB. ChenY. YuH. WangC. ZhangX. ZhaoH. ChenQ. HeZ. LuoC. SunJ. Photodynamic PEG-coated ROS-sensitive prodrug nanoassemblies for core-shell synergistic chemo-photodynamic therapy.Acta Biomater.20199221922810.1016/j.actbio.2019.05.008 31078764
    [Google Scholar]
  140. CalcagnoV. VecchioneR. QuagliarielloV. MarzolaP. BusatoA. GiustettoP. ProfetaM. GargiuloS. CiccoC.D. YuH. CassaniM. MaureaN. ManciniM. PellegrinoT. NettiP.A. Oil Core-PEG shell nanocarriers for in vivo MRI imaging.Adv. Healthc. Mater.201983180131310.1002/adhm.201801313 30614638
    [Google Scholar]
  141. ChenF. ZhaoT. ChenQ. HanL. FangS. ChenZ. Synthesis and release behavior of methotrexate from Fe3O4/PLA-PEG core/shell nanoparticles with high saturation magnetization.Mater. Lett.201310817918210.1016/j.matlet.2013.06.108
    [Google Scholar]
  142. LiuF. LiX. ZhangL.Y. SongQ.R. ZhangM. ZhaoC.X. WangJ. SunG. LiuZ.H. Stimuli-responsive nanocarriers for drug delivery to the central nervous system.Curr. Nanosci.201512141710.2174/1573413711666150706183157
    [Google Scholar]
  143. OishiM. NagasakiY. Synthesis, characterization, and biomedical applications of core-shell-type stimuli-responsive nanogels - Nanogel composed of poly[2-(N,N-diethylamino)ethyl methacrylate] core and PEG tethered chains.React. Funct. Polym.200767111311132910.1016/j.reactfunctpolym.2007.07.009
    [Google Scholar]
  144. SiafakaP. Üstündağ OkurN. KaravasE. BikiarisD. Surface modified multifunctional and stimuli responsive nanoparticles for drug targeting: Current status and uses.Int. J. Mol. Sci.2016179144010.3390/ijms17091440 27589733
    [Google Scholar]
  145. ZhangG. LiX. LiaoQ. LiuY. XiK. HuangW. JiaX. Water-dispersible PEG-curcumin/amine-functionalized covalent organic framework nanocomposites as smart carriers for in vivo drug delivery.Nat. Commun.201891278510.1038/s41467‑018‑04910‑5 30018290
    [Google Scholar]
  146. Hoang ThiT.T. PilkingtonE.H. NguyenD.H. LeeJ.S. ParkK.D. TruongN.P. The importance of poly(ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation.Polymers202012229810.3390/polym12020298 32024289
    [Google Scholar]
  147. NagataF. MiyajimaT. KatoK. Preparation of phylloquinone-loaded poly(lactic acid)/hydroxyapatite core-shell particles and their drug release behavior.Adv. Powder Technol.201627390390710.1016/j.apt.2016.02.007
    [Google Scholar]
  148. RezvantalabS. Keshavarz MoravejiM. Microfluidic assisted synthesis of PLGA drug delivery systems.RSC Advances2019942055207210.1039/C8RA08972H 35516107
    [Google Scholar]
  149. ArunY. GhoshR. DombA.J. Biodegradable hydrophobic injectable polymers for drug delivery and regenerative medicine.Adv. Funct. Mater.20213144201028410.1002/adfm.202010284
    [Google Scholar]
  150. GalogahiF.M. ZhuY. AnH. NguyenN.T. Core-shell microparticles: Generation approaches and applications.J. Sci. Adv. Mater. Devices20205441743510.1016/j.jsamd.2020.09.001
    [Google Scholar]
  151. JunejaR. RoyI. Surface modified PMMA nanoparticles with tunable drug release and cellular uptake.RSC Advances2014484444724447910.1039/C4RA07939F
    [Google Scholar]
  152. KloseD. SiepmannF. ElkharrazK. SiepmannJ. PLGA-based drug delivery systems: Importance of the type of drug and device geometry.Int. J. Pharm.20083541-29510310.1016/j.ijpharm.2007.10.030 18055140
    [Google Scholar]
  153. MirM. AhmedN. RehmanA. Recent applications of PLGA based nanostructures in drug delivery.Colloids Surf. B Biointerfaces201715921723110.1016/j.colsurfb.2017.07.038 28797972
    [Google Scholar]
  154. KapoorD.N. BhatiaA. KaurR. SharmaR. KaurG. DhawanS. PLGA: A unique polymer for drug delivery.Ther. Deliv.201561415810.4155/tde.14.91 25565440
    [Google Scholar]
  155. XuY. KimC.S. SaylorD.M. KooD. Polymer degradation and drug delivery in PLGA ‐based drug-polymer applications: A review of experiments and theories.J. Biomed. Mater. Res. B Appl. Biomater.201710561692171610.1002/jbm.b.33648 27098357
    [Google Scholar]
  156. MakadiaH.K. SiegelS.J. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier.Polymers2011331377139710.3390/polym3031377 22577513
    [Google Scholar]
  157. Tabatabaei MirakabadF.S. Nejati-KoshkiK. AkbarzadehA. YamchiM.R. MilaniM. ZarghamiN. ZeighamianV. RahimzadehA. AlimohammadiS. HanifehpourY. JooS.W. PLGA-based nanoparticles as cancer drug delivery systems.Asian Pac. J. Cancer Prev.201415251753510.7314/APJCP.2014.15.2.517 24568455
    [Google Scholar]
  158. MartinsC. SousaF. AraújoF. SarmentoB. Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications.Adv. Healthc. Mater.201871170103510.1002/adhm.201701035 29171928
    [Google Scholar]
  159. LewisJ.S. BaraniZ. MaganaA.S. KargarF. BalandinA.A. Thermal and electrical conductivity control in hybrid composites with graphene and boron nitride fillers.Mater. Res. Express20196808532510.1088/2053‑1591/ab2215
    [Google Scholar]
  160. LuB. LvX. LeY. Chitosan-modified PLGA nanoparticles for control-released drug delivery.Polymers201911230410.3390/polym11020304 30960288
    [Google Scholar]
  161. GaoS. XuY. AsgharS. ChenM. ZouL. EltayebS. HuoM. PingQ. XiaoY. Polybutylcyanoacrylate nanocarriers as promising targeted drug delivery systems.J. Drug Target.201523648149610.3109/1061186X.2015.1020426 25738991
    [Google Scholar]
  162. KellerB.L. LohmannC.A. KyerematengS.O. FrickerG. Synthesis and characterization of biodegradable poly(butyl cyanoacrylate) for drug delivery applications.Polymers202214599810.3390/polym14050998 35267821
    [Google Scholar]
  163. Ramos CarrilesY. SuetelM. HenzeS. Álvarez BritoR. MuellerW.D. Electrospun meshes of poly (n-butyl cyanoacrylate) and their potential applications for drug delivery and tissue engineering.Int. J. Pharm.202160612073510.1016/j.ijpharm.2021.120735 34048930
    [Google Scholar]
  164. MogoşanuG.D. GrumezescuA.M. BejenaruC. BejenaruL.E. Polymeric protective agents for nanoparticles in drug delivery and targeting.Int. J. Pharm.2016510241942910.1016/j.ijpharm.2016.03.014 26972379
    [Google Scholar]
  165. YeiniE. OfekP. AlbeckN. Rodriguez AjamilD. NeufeldL. Eldar-BoockA. KleinerR. VaskovichD. Koshrovski-MichaelS. DangoorS.I. KrivitskyA. Burgos LunaC. Shenbach-KoltinG. GoldenfeldM. HadadO. TiramG. Satchi-FainaroR. Targeting glioblastoma: Advances in drug delivery and novel therapeutic approaches.Adv. Ther.202141200012410.1002/adtp.202000124
    [Google Scholar]
  166. XuZ.R. WangW.F. LiangX.F. LiuZ.H. LiuY. LinL. ZhuX. Protective effects of poly (butyl) cyanoacrylate nanoparticles containing vasoactive intestinal peptide against 6-hydroxydopamine-induced neurotoxicity in vitro.J. Mol. Neurosci.201555485486410.1007/s12031‑014‑0438‑9 25326789
    [Google Scholar]
  167. WoodruffM.A. HutmacherD.W. The return of a forgotten polymer—Polycaprolactone in the 21st century.Prog. Polym. Sci.201035101217125610.1016/j.progpolymsci.2010.04.002
    [Google Scholar]
  168. GrossenP. WitzigmannD. SieberS. HuwylerJ. PEG-PCL-based nanomedicines: A biodegradable drug delivery system and its application.J. Control. Release2017260466010.1016/j.jconrel.2017.05.028 28536049
    [Google Scholar]
  169. WangY. ChangH.I. WertheimD.F. JonesA.S. JacksonC. CoombesA.G.A. Characterisation of the macroporosity of polycaprolactone-based biocomposites and release kinetics for drug delivery.Biomaterials200728314619462710.1016/j.biomaterials.2007.07.006 17659772
    [Google Scholar]
  170. ChoiS.H. ParkT.G. Synthesis and characterization of elastic PLGA/PCL/PLGA tri-block copolymers.J. Biomater. Sci. Polym. Ed.200213101163117310.1163/156856202320813864 12484491
    [Google Scholar]
  171. SinghS. AlrobaianM.M. MoluguluN. AgrawalN. NumanA. KesharwaniP. Pyramid-shaped PEG-PCL-PEG polymeric-based model systems for site-specific drug delivery of vancomycin with enhance antibacterial efficacy.ACS Omega2020521119351194510.1021/acsomega.9b04064 32548372
    [Google Scholar]
  172. HadjianfarM. SemnaniD. VarshosazJ. Polycaprolactone/chitosan blend nanofibers loaded by 5‐fluorouracil: An approach to anticancer drug delivery system.Polym. Adv. Technol.201829122972298110.1002/pat.4417
    [Google Scholar]
  173. BettencourtA. AlmeidaA.J. Poly(methyl methacrylate) particulate carriers in drug delivery.J. Microencapsul.201229435336710.3109/02652048.2011.651500 22251239
    [Google Scholar]
  174. CyphertE.L. LuC.Y. MarquesD.W. LearnG.D. Von RecumH.A. Combination antibiotic delivery in PMMA provides sustained broad-spectrum antimicrobial activity and allows for postimplantation refilling.Biomacromolecules20202185486610.1021/acs.biomac.9b01523
    [Google Scholar]
  175. Shanmuga SundarS. KannanN. SundaravadivelE. ZsoltS. MukunthanK.S. ManokaranJ. NarendranathJ. KamalakannanV.P. KavithaN.P. PrabhuN.V. BalasubramanianN. Study on the inflammatory response of PMMA/polystyrene/silica nanocomposite membranes for drug delivery and dental applications.PLoS One2019143e020994810.1371/journal.pone.0209948
    [Google Scholar]
  176. VianeyG.B.B. EliO.G.B. GuillerminaF.F. EnriqueM.A. AlejandraA.C. LauraJ.A. Multimeric system of RGD-grafted PMMA-nanoparticles as a targeted drug- delivery system for paclitaxel.Curr. Pharm. Des.201723233415342210.2174/1381612823666170407143525 28403791
    [Google Scholar]
  177. GuindaniC. FeuserP.E. CordeiroA.P. de MenesesA.C. PossatoJ.C. da Silva AbelJ. Machado-de-ÁvilaR.A. SayerC. de AraújoP.H.H. Bovine serum albumin conjugation on poly(methyl methacrylate) nanoparticles for targeted drug delivery applications.J. Drug Deliv. Sci. Technol.20205610149010.1016/j.jddst.2019.101490
    [Google Scholar]
  178. YangY. WangS. WangY. WangX. WangQ. ChenM. Advances in self-assembled chitosan nanomaterials for drug delivery.Biotechnol. Adv.20143271301131610.1016/j.biotechadv.2014.07.007 25109677
    [Google Scholar]
  179. LiW. ZhangL. GeX. XuB. ZhangW. QuL. ChoiC.H. XuJ. ZhangA. LeeH. WeitzD.A. Microfluidic fabrication of microparticles for biomedical applications.Chem. Soc. Rev.201847155646568310.1039/C7CS00263G 29999050
    [Google Scholar]
  180. HoK.M. LiP. Design and synthesis of novel magnetic core-shell polymeric particles.Langmuir20082451801180710.1021/la702887m 18225930
    [Google Scholar]
  181. SaboktakinM.R. TabarN.A. TabatabaieR.M. MaharramovA. RamazanovM.A. Intelligent drug delivery systems based on modified chitosan nanoparticles.Lett. Org. Chem.20129567010.2174/157017812799303999
    [Google Scholar]
  182. dos SantosK.S.C.R. CoelhoJ.F.J. FerreiraP. PintoI. LorenzettiS.G. FerreiraE.I. HigaO.Z. GilM.H. Synthesis and characterization of membranes obtained by graft copolymerization of 2-hydroxyethyl methacrylate and acrylic acid onto chitosan.Int. J. Pharm.20063101-2374510.1016/j.ijpharm.2005.11.019 16414219
    [Google Scholar]
  183. MoeiniA. PedramP. MakvandiP. MalinconicoM. Gomez d’AyalaG. Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: A review.Carbohydr. Polym.202023311583910.1016/j.carbpol.2020.115839 32059889
    [Google Scholar]
  184. AlavarseA.C. de Oliveira SilvaF.W. ColqueJ.T. da SilvaV.M. PrietoT. VenancioE.C. BonventJ.J. Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound dressing.Mater. Sci. Eng. C20177727128110.1016/j.msec.2017.03.199 28532030
    [Google Scholar]
  185. Ghaz-JahanianM.A. Abbaspour-AghdamF. AnarjanN. BerenjianA. Jafarizadeh-MalmiriH. Application of chitosan-based nanocarriers in tumor-targeted drug delivery.Mol. Biotechnol.201557320121810.1007/s12033‑014‑9816‑3 25385004
    [Google Scholar]
  186. Bernkop-SchnürchA. DünnhauptS. Chitosan-based drug delivery systems.Eur. J. Pharm. Biopharm.201281346346910.1016/j.ejpb.2012.04.007 22561955
    [Google Scholar]
  187. FinotelliP.V. Da SilvaD. Sola-PennaM. RossiA.M. FarinaM. AndradeL.R. TakeuchiA.Y. Rocha-LeãoM.H. Microcapsules of alginate/chitosan containing magnetic nanoparticles for controlled release of insulin.Colloids Surf. B Biointerfaces201081120621110.1016/j.colsurfb.2010.07.008 20688491
    [Google Scholar]
  188. PrajapatiS.K. JainA. JainA. JainS. Biodegradable polymers and constructs: A novel approach in drug delivery.Eur. Polym. J.201912010919110.1016/j.eurpolymj.2019.08.018
    [Google Scholar]
  189. TangsoK.J. LindbergS. HartleyP.G. KnottR. SpicerP. BoydB.J. Formation of liquid-crystalline structures in the bile salt-chitosan system and triggered release from lamellar phase bile salt-chitosan capsules.ACS Appl. Mater. Interfaces2014615123631237110.1021/am502192t 25050454
    [Google Scholar]
  190. OuyangJ. YangM. GongT. OuJ. TanY. ZhangZ. LiS. Doxorubicin-loading core-shell pectin nanocell: A novel nanovehicle for anticancer agent delivery with multidrug resistance reversal.PLoS One2020156e023509010.1371/journal.pone.0235090 32569270
    [Google Scholar]
  191. Rascón-ChuA. Díaz-BacaJ. Carvajal-MillanE. Pérez-LópezE. HotchkissA. González-RíosH. Balandrán-QuintanaR. Campa-MadaA. Electrosprayed core-shell composite microbeads based on pectin-arabinoxylans for insulin carrying: Aggregation and size dispersion control.Polymers201810210810.3390/polym10020108 30966143
    [Google Scholar]
  192. ZhangY. ChenT. YuanP. TianR. HuW. TangY. JiaY. ZhangL. Encapsulation of honokiol into self-assembled pectin nanoparticles for drug delivery to HepG2 cells.Carbohydr. Polym.2015133313810.1016/j.carbpol.2015.06.102 26344251
    [Google Scholar]
  193. LiuY. LiuK. LiX. XiaoS. ZhengD. ZhuP. LiC. LiuJ. HeJ. LeiJ. WangL. A novel self-assembled nanoparticle platform based on pectin-eight-arm polyethylene glycol-drug conjugates for co-delivery of anticancer drugs.Mater. Sci. Eng. C201886284110.1016/j.msec.2017.12.018 29525094
    [Google Scholar]
  194. RibeiroL.N.M. AlcântaraA.C.S. DarderM. ArandaP. Araújo-MoreiraF.M. Ruiz-HitzkyE. Pectin-coated chitosan-LDH bionanocomposite beads as potential systems for colon-targeted drug delivery.Int. J. Pharm.201446311910.1016/j.ijpharm.2013.12.035 24374607
    [Google Scholar]
  195. ZhangY. WangL. Core-shell biopolymer nanoparticles.Elsevier Inc.202010.1016/B978‑0‑12‑816897‑4.00010‑2
    [Google Scholar]
  196. HuK. HuangX. GaoY. HuangX. XiaoH. McClementsD.J. Core-shell biopolymer nanoparticle delivery systems: Synthesis and characterization of curcumin fortified zein-pectin nanoparticles.Food Chem.201518227528110.1016/j.foodchem.2015.03.009 25842338
    [Google Scholar]
  197. LiuY. ZongY. YangZ. LuoM. LiG. YingsaW. CaoY. XiaoM. KongT. HeJ. LiuX. LeiJ. Dual-targeted controlled delivery based on folic acid modified pectin-based nanoparticles for combination therapy of liver cancer.ACS Sustain. Chem.& Eng.2019733614362310.1021/acssuschemeng.8b06586
    [Google Scholar]
  198. KhotimchenkoM. Pectin polymers for colon-targeted antitumor drug delivery.Int. J. Biol. Macromol.20201581110112410.1016/j.ijbiomac.2020.05.002 32387365
    [Google Scholar]
  199. BhushanB. KhanadeevV. KhlebtsovB. KhlebtsovN. GopinathP. Impact of albumin based approaches in nanomedicine: Imaging, targeting and drug delivery.Adv. Colloid Interface Sci.2017246133910.1016/j.cis.2017.06.012 28716187
    [Google Scholar]
  200. ElzoghbyA.O. SamyW.M. ElgindyN.A. Albumin-based nanoparticles as potential controlled release drug delivery systems.J. Control. Release2012157216818210.1016/j.jconrel.2011.07.031 21839127
    [Google Scholar]
  201. ZhangY. TanX. RenT. JiaC. YangZ. SunH. Folate-modified carboxymethyl-chitosan/polyethylenimine/bovine serum albumin based complexes for tumor site-specific drug delivery.Carbohydr. Polym.2018198768510.1016/j.carbpol.2018.06.055 30093044
    [Google Scholar]
  202. KarimiM. BahramiS. RavariS.B. ZangabadP.S. MirshekariH. BozorgomidM. ShahrezaS. SoriM. HamblinM.R. Albumin nanostructures as advanced drug delivery systems.Expert Opin. Drug Deliv.201613111609162310.1080/17425247.2016.1193149 27216915
    [Google Scholar]
  203. OkamotoY. TaguchiK. YamasakiK. SakuragiM. KurodaS. OtagiriM. Albumin-encapsulated liposomes: A novel drug delivery carrier with hydrophobic drugs encapsulated in the inner aqueous core.J. Pharm. Sci.2018107143644510.1016/j.xphs.2017.08.003 28826882
    [Google Scholar]
  204. AnF.F. ZhangX.H. Strategies for preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery.Theranostics20177153667368910.7150/thno.19365 29109768
    [Google Scholar]
  205. ZhouC. SongX. GuoC. TanY. ZhaoJ. YangQ. ChenD. TanT. SunX. GongT. ZhangZ. Alternative and injectable preformed albumin-bound anticancer drug delivery system for anticancer and antimetastasis treatment.ACS Appl. Mater. Interfaces20191145425344254810.1021/acsami.9b11307 31479235
    [Google Scholar]
  206. HuangG. HuangH. Hyaluronic acid-based biopharmaceutical delivery and tumor-targeted drug delivery system.J. Control. Release201827812212610.1016/j.jconrel.2018.04.015 29649528
    [Google Scholar]
  207. YinT. LiuJ. ZhaoZ. ZhaoY. DongL. YangM. ZhouJ. HuoM. Redox sensitive hyaluronic acid‐decorated graphene oxide for photothermally controlled tumor‐cytoplasm‐selective rapid drug delivery.Adv. Funct. Mater.20172714160462010.1002/adfm.201604620
    [Google Scholar]
  208. AbednejadA. GhaeeA. MoraisE.S. SharmaM. NevesB.M. FreireM.G. NourmohammadiJ. MehriziA.A. Polyvinylidene fluoride-hyaluronic acid wound dressing comprised of ionic liquids for controlled drug delivery and dual therapeutic behavior.Acta Biomater.201910014215710.1016/j.actbio.2019.10.007 31586728
    [Google Scholar]
  209. JinY.J. UbonvanT. KimD.D. Hyaluronic acid in drug delivery systems.J. Pharm. Investig.201040spc334310.4333/KPS.2010.40.S.033
    [Google Scholar]
  210. JanaP. ShyamM. SinghS. JayaprakashV. DevA. Biodegradable polymers in drug delivery and oral vaccination.Eur. Polym. J.202114211015510.1016/j.eurpolymj.2020.110155
    [Google Scholar]
  211. VasiA.M. PopaM.I. ButnaruM. DodiG. VerestiucL. Chemical functionalization of hyaluronic acid for drug delivery applications.Mater. Sci. Eng. C20143817718510.1016/j.msec.2014.01.052 24656366
    [Google Scholar]
  212. KafedjiiskiK. JettiR. FögerF. HoyerH. WerleM. HofferM. BernkopschnürchA. Synthesis and in vitro evaluation of thiolated hyaluronic acid for mucoadhesive drug delivery.Int. J. Pharm.20073431-2485810.1016/j.ijpharm.2007.04.019 17544606
    [Google Scholar]
  213. HuangG. HuangH. Application of hyaluronic acid as carriers in drug delivery.Drug Deliv.201825176677210.1080/10717544.2018.1450910 29536778
    [Google Scholar]
  214. SchantéC.E. ZuberG. HerlinC. VandammeT.F. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications.Carbohydr. Polym.201185346948910.1016/j.carbpol.2011.03.019
    [Google Scholar]
  215. ZhangX. WeiD. XuY. ZhuQ. Hyaluronic acid in ocular drug delivery.Carbohydr. Polym.202126411800610.1016/j.carbpol.2021.118006 33910737
    [Google Scholar]
  216. SunQ. BiH. WangZ. LiC. WangX. XuJ. ZhuH. ZhaoR. HeF. GaiS. YangP. Hyaluronic acid-targeted and pH-responsive drug delivery system based on metal-organic frameworks for efficient antitumor therapy.Biomaterials201922311947310.1016/j.biomaterials.2019.119473 31499255
    [Google Scholar]
  217. ZhangX. ZhaoM. CaoN. QinW. ZhaoM. WuJ. LinD. Construction of a tumor microenvironment pH-responsive cleavable PEGylated hyaluronic acid nano-drug delivery system for colorectal cancer treatment.Biomater. Sci.2020871885189610.1039/C9BM01927H 32022813
    [Google Scholar]
  218. ZhaoQ. GengH. WangY. GaoY. HuangJ. WangY. ZhangJ. WangS. Hyaluronic acid oligosaccharide modified redox-responsive mesoporous silica nanoparticles for targeted drug delivery.ACS Appl. Mater. Interfaces2014622202902029910.1021/am505824d 25311422
    [Google Scholar]
  219. GöpferichA. TessmarJ. Polyanhydride degradation and erosion.Adv. Drug Deliv. Rev.200254791193110.1016/S0169‑409X(02)00051‑0 12384315
    [Google Scholar]
  220. BasuA. DombA.J. Recent advances in polyanhydride based biomaterials.Adv. Mater.20183041170681510.1002/adma.201706815 29707879
    [Google Scholar]
  221. KrukiewiczK. ZakJ.K. Biomaterial-based regional chemotherapy: Local anticancer drug delivery to enhance chemotherapy and minimize its side-effects.Mater. Sci. Eng. C20166292794210.1016/j.msec.2016.01.063 26952500
    [Google Scholar]
  222. PaarakhP. JoseP. SettyC. ChristoperP. Release kinetics - Concepts and applications.Int. J. Pharmaceut. Res. Technol.2018101220
    [Google Scholar]
  223. AdibkiaK. HamedeyazdanS. JavadzadehY. Drug release kinetics and physicochemical characteristics of floating drug delivery systems.Expert Opin. Drug Deliv.20118789190310.1517/17425247.2011.574124 21506906
    [Google Scholar]
  224. FuY. KaoW.J. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems.Expert Opin. Drug Deliv.20107442944410.1517/17425241003602259 20331353
    [Google Scholar]
  225. BrenzaT.M. SchlichtmannB.W. BhargavanB. Vela RamirezJ.E. NelsonR.D. PanthaniM.G. McMillanJ.M. KalyanaramanB. GendelmanH.E. AnantharamV. KanthasamyA.G. MallapragadaS.K. NarasimhanB. KanmogneG.D. Biodegradable polyanhydride‐based nanomedicines for blood to brain drug delivery.J. Biomed. Mater. Res. A2018106112881289010.1002/jbm.a.36477 30369055
    [Google Scholar]
  226. LeeY.S. GriffinJ. MasandS.N. ShreiberD.I. UhrichK.E. Salicylic acid‐based poly(anhydride‐ester) nerve guidance conduits: Impact of localized drug release on nerve regeneration.J. Biomed. Mater. Res. A2016104497598210.1002/jbm.a.35630 26691691
    [Google Scholar]
  227. SheskinT. GeyerO. LotanN. Sara SivanS. Controlled and time‐scheduled drug delivery: Polyanhydride‐based nanoparticles as ocular medication carriers.Polym. Adv. Technol.202132124851485910.1002/pat.5477
    [Google Scholar]
  228. GhadiR. MuntimaduguE. DombA.J. KhanW. ZhangX. Synthetic biodegradable medical polymer: Polyanhydrides.Elsevier Ltd201710.1016/B978‑0‑08‑100372‑5.00005‑2
    [Google Scholar]
  229. BahaarH. ReddyS.G. BellirajS.K. Modified layered double hydroxide - PEG magneto-sensitive hydrogels with suitable ligno-alginate green polymer composite for prolonged drug delivery applications.Eng. Sci.202320232410.30919/es914
    [Google Scholar]
  230. SeverinoP. da SilvaC.F. AndradeL.N. de Lima OliveiraD. CamposJ. SoutoE.B. Alginate nanoparticles for drug delivery and targeting.Curr. Pharm. Des.201925111312133410.2174/1381612825666190425163424 31465282
    [Google Scholar]
  231. HariyadiD.M. IslamN. Current status of alginate in drug delivery.Adv. Pharmacol. Pharm. Sci.2020202011610.1155/2020/8886095 32832902
    [Google Scholar]
  232. ReddyA. GiridharS. Study on the effects of crosslink agents on sodium alginate and lignosulphonic acid blends. Polym. (Korea).Polym. Soc. Korea.20164016369
    [Google Scholar]
  233. AbediniF. AbrahamJ. Overview on natural hydrophilic polysaccharide polymers in drug delivery.Poly. Adv. Technol.201829102564257310.1002/pat.4375
    [Google Scholar]
  234. ChaturvediK. GangulyK. MoreU.A. ReddyK.R. DuggeT. NaikB. AminabhaviT.M. NoolviM.N. Sodium alginate in drug delivery and biomedical areas.Elsevier Inc.201910.1016/B978‑0‑12‑817055‑7.00003‑0
    [Google Scholar]
  235. GrøndahlL. LawrieG. AnithaA. ShejwalkarA. Applications of alginate biopolymer in drug delivery.Elsevier Ltd201910.1016/B978‑0‑08‑102680‑9.00014‑7
    [Google Scholar]
  236. AthamnehT. AminA. BenkeE. AmbrusR. LeopoldC.S. GurikovP. SmirnovaI. Alginate and hybrid alginate-hyaluronic acid aerogel microspheres as potential carrier for pulmonary drug delivery.J. Supercrit. Fluids2019150495510.1016/j.supflu.2019.04.013
    [Google Scholar]
  237. de LimaH.H.C. KupferV.L. MoisésM.P. GuilhermeM.R. de C Rinaldi, J.; Felisbino, S.L.; Rubira, A.F.; Rinaldi, A.W. Bionanocomposites based on mesoporous silica and alginate for enhanced drug delivery.Carbohydr. Polym.201819612613410.1016/j.carbpol.2018.04.107 29891279
    [Google Scholar]
  238. ShtenbergY. GoldfederM. PrinzH. ShainskyJ. GhantousY. Abu El-NaajI. SchroederA. Bianco-PeledH. Mucoadhesive alginate pastes with embedded liposomes for local oral drug delivery.Int. J. Biol. Macromol.2018111626910.1016/j.ijbiomac.2017.12.137 29292143
    [Google Scholar]
  239. KaurJ. GillG.S. JeetK. Applications of carbon nanotubes in drug delivery: A comprehensive review.Elsevier Inc.201810.1016/B978‑0‑12‑814031‑4.00005‑2
    [Google Scholar]
  240. BiancoA. KostarelosK. PratoM. Applications of carbon nanotubes in drug delivery.Curr. Opin. Chem. Biol.20059667467910.1016/j.cbpa.2005.10.005 16233988
    [Google Scholar]
  241. ContrerasM.L. TorresC. VillarroelI. RozasR. Molecular dynamics assessment of doxorubicin-carbon nanotubes molecular interactions for the design of drug delivery systems.Struct. Chem.201930136938410.1007/s11224‑018‑1210‑5
    [Google Scholar]
  242. MadaniS.Y. NaderiN. DissanayakeO. TanA. SeifalianA.M. A new era of cancer treatment: Carbon nanotubes as drug delivery tools.Int. J. Nanomed.201162963297910.2147/IJN.S16923 22162655
    [Google Scholar]
  243. MengL. ZhangX. LuQ. FeiZ. DysonP.J. Single walled carbon nanotubes as drug delivery vehicles: Targeting doxorubicin to tumors.Biomaterials20123361689169810.1016/j.biomaterials.2011.11.004 22137127
    [Google Scholar]
  244. KarthikaV. KaleeswarranP. GopinathK. ArumugamA. GovindarajanM. AlharbiN.S. KhaledJ.M. Al-anbrM.N. BenelliG. Biocompatible properties of nano-drug carriers using TiO2-Au embedded on multiwall carbon nanotubes for targeted drug delivery.Mater. Sci. Eng. C20189058960110.1016/j.msec.2018.04.094 29853129
    [Google Scholar]
  245. ZhangD.X. YoshikawaC. WelchN.G. PasicP. ThissenH. VoelckerN.H. Spatially controlled surface modification of porous silicon for sustained drug delivery applications.Sci. Rep.201991136710.1038/s41598‑018‑37750‑w 30718670
    [Google Scholar]
  246. KulyavtsevP.A. SpencerR.P. Drug delivery via porous silicon: A focused patent review.Pharm. Pat. Anal.201762778510.4155/ppa‑2016‑0042 28248125
    [Google Scholar]
  247. LiW. LiuZ. FontanaF. DingY. LiuD. HirvonenJ.T. SantosH.A. Tailoring porous silicon for biomedical applications: From drug delivery to cancer immunotherapy.Adv. Mater.20183024170374010.1002/adma.201703740 29534311
    [Google Scholar]
  248. VenutaA. WolframJ. ShenH. FerrariM. Post-nano strategies for drug delivery: Multistage porous silicon microvectors.J. Mater. Chem. B Mater. Biol. Med.20175220721910.1039/C6TB01978A 28670454
    [Google Scholar]
  249. WartherD. XiaoY. LiF. WangY. HuffmanK. FreemanW.R. SailorM. ChengL. Porous silicon based intravitreal platform for dual-drug loading and controlled release towards synergistic therapy.Drug Deliv.20182511537154510.1080/10717544.2018.1486474 29996687
    [Google Scholar]
  250. LiM. GaoX. LinC. ShenA. LuoJ. JiQ. WuJ. WangP. An intelligent responsive macrophage cell membrane-camouflaged mesoporous silicon nanorod drug delivery system for precise targeted therapy of tumors.J. Nanobiotechnol.202119133610.1186/s12951‑021‑01082‑1 34689763
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298304506240628062045
Loading
/content/journals/mroc/10.2174/0118756298304506240628062045
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test